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Abstract

The ability of modern detectors to detect small targets is still an unresolved topic compared
to their capability of detecting medium and large targets in the field of object detection.
Accurately detecting and identifying small objects in the real-world scenario suffer from
sub-optimal performance due to various factors such as small target size, complex back-
ground, variability in illumination, occlusions, and target distortion. Here, a small object
detection method for complex traffic scenarios named deformable local and global atten-
tion (DLGADet) is proposed, which seamlessly merges the ability of hierarchical attention
mechanisms (HAMs) with the versatility of deformable multi-scale feature fusion, effec-
tively improving recognition and detection performance. First, DLGADet introduces the
combination of multi-scale separable detection and multi-scale feature fusion mechanism
to obtain richer contextual information for feature fusion while solving the misalignment
problem of classification and localisation tasks. Second, a deformation feature extrac-
tion module (DFEM) is designed to address the deformation of objects. Finally, a HAM
combining global and local attention mechanisms is designed to obtain discriminative
features from complex backgrounds. Extensive experiments on three datasets demon-
strate the effectiveness of the proposed methods. Code is available at https://github.com/
ACAMPUS/DLGADet

1 INTRODUCTION

Small object detection refers to the task of detecting and
localising small objects in images or videos. Small objects are
characterized by limited spatial extent and low pixel density
compared to larger objects, making their accurate detection
challenging [1]. This field has gained significant attention due
to its numerous real-world applications in areas such as surveil-
lance, autonomous driving, medical imaging, and robotics. The
notion of a ‘small object’ refers to the size of the object
being considered. Typically, two distinct approaches are used
to characterize small objects. The first approach involves abso-
lute size, as exemplified in the COCO [2] dataset, where
any target occupying an area less than 32 × 32 pixels is
considered a small target. Conversely, the second approach
relies on relative size, classifying a target that occupies less
than 0.12% of the original image dimensions as a small
object.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

Despite significant advancements [3–9] in computer vision,
recognizing small objects in real-world scenarios remains chal-
lenging. Figure 1 illustrates some challenging scenarios for
detection tasks. The detection results of modern detectors on
the COCO dataset show that the detection of small targets
is still unsatisfactory compared to that of medium and large
objects. This can be attributed to several reasons:

1. Size problem: Small targets are typically small in size, and the
deep feature map may have only a few pixels left after the
multi-layer convolutional downsampling process, making it
difficult to extract effective features.

2. Target deformation problem: Due to different camera
shooting angles, the same target exhibits different character-
istics at different angles.

3. Receptive field problem: There exists a gap [10] between
the theoretical receptive field and the real receptive field of
convolutional neural networks (CNNs).
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FIGURE 1 Examples of the challenging scenarios for the detection tasks in the dataset. The yellow rectangular boxes in the figures contain the small targets to
be identified, and the red rectangular boxes are the corresponding zoom area for easy observation. (a) Poorly illuminated environments. (b) Severe target
deformation. (c) Tiny target and complex background. (d) Complex illumination and tiny target.

4. Background complexity and occlusion problem: The back-
grounds in which small targets are located in real scenes
often have low contrast and high complexity. The colour or
brightness of the small targets may be similar to the sur-
rounding environment under different lighting or weather
conditions, increasing the difficulty of detection algorithms.

CNN-based computer vision algorithms have shown promis-
ing results in detecting small targets. Researchers have proposed
various methods [11, 12] to enhance localisation and detection
accuracy, such as multi-scale feature fusion network structures
[13]. Shallow feature maps contain valuable information like
edges and textures for small target localisation, while deep
feature maps provide semantic information beneficial for classi-
fication. These methods effectively address the scale problem
by transferring shallow features to deep layers. However, the
transfer process involving multiple convolutional and down-
sampling operations often leads to feature loss and limited
effectiveness [1]. Furthermore, although multi-scale detection
is used, the scale of tiny targets is not adequately considered,
as accurate localisation requires higher resolution. Thus, it is
crucial to integrate deep semantic information while preserv-
ing high resolution for accurate detection of small objects.
Small objects often overlap or get occluded by the surround-
ing background or other objects, making it challenging for
detection algorithms to locate the targets accurately. There-
fore, the algorithms need to handle the occlusion problem and
incorporate an attention mechanism. Some computer vision
algorithms [14–17] employ CNNs to extract features from
images, utilize data augmentation methods to enrich the fea-
tures of small targets, and address the resolution issue. However,
these algorithms struggle to effectively leverage local contex-
tual features in the presence of significant target deformations.
The traditional convolutional approach with fixed kernels sam-
pling fixed locations may struggle to adequately address target

deformations, even with multiple convolutional and down-
sampling layers. There remains a gap between the theoretical
receptive field and the actual receptive field, posing difficul-
ties in handling target deformations [18, 19]. Some algorithms
[20–22] employ an attention mechanism to tackle occlusion,
suppressing extraneous noise interference and significantly
improving detection accuracy. However, these algorithms
encounter difficulties in effectively capturing global image
feature dependencies while simultaneously emphasizing local
features.

To address the aforementioned challenges, we propose an
algorithm based on a hierarchical attention mechanism (HAM)
with deformable multi-scale detection and fusion, inspired by
the concept of a one-stage detection algorithm. Our approach
includes the following key components and contributions: First,
we introduce Multi-scale separable detection (MSD) and multi-
scale contextual feature fusion block (MCFF) to increase the
number of detection layers while preserving high-resolution fea-
ture maps for detailed information retention. Additionally, we
address the misalignment issue between object classification
and localisation by decoupling them through the separation of
detection heads. Second, we design deformable feature extrac-
tion module (DFEM) to dynamically adapt to different target
shapes and sizes, effectively addressing target deformation and
the problem of insufficient actual receptive field. Finally, the
multi-head self-attention (MHSA)[23] mechanism is introduced
to capture the long-range dependencies between features, fol-
lowed by the use of shuffle attention [24] to bias the allocation
of the most informative feature expressions. We also use an
effective data augmentation strategy to further improve the
training accuracy. In summary, our main contributions can be
outlined as follows:

1. Proposal of the MSD and multi-scale context feature fusion
(MCFF) block for accurate detection of extremely small
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targets. Introduction of the decoupling idea to address the
misalignment problem between classification and localisa-
tion in small object detection.

2. Design of the DFEM module within the feature extraction
network to handle target deformation and address the issue
of insufficient actual receptive field.

3. Introduction of a HAM to mitigate interference from
irrelevant backgrounds and capture global dependencies.

4. Performance improvements on three challenging public
datasets outperform current state-of-the-art models while
maintaining real-time detection capabilities.

2 RELATED WORK

2.1 Small object detection

The challenge of detecting small targets has been addressed
from four main perspectives in current research. First,
researchers have focused on constructing multi-scale feature
representations to extract comprehensive semantic and detailed
information. Liu et al. [25] add a deconvolution layer and nor-
malization layer to the output of the convolution layer. They
concatenate the features of different layers into a fused fea-
ture map and propose a two-stage adaptive classification loss
function to improve training effectiveness. Second, contex-
tual information can be utilized to establish the relationship
between the target and its surroundings. Yuan et al. [26]
use a multi-resolution feature fusion approach and a verti-
cal spatial sequence attention module. Their network consists
of two stages: the first stage extracts multi-resolution feature
maps using MobileNet and deconvolution layers, while the
second stage constructs a vertical spatial sequence attention
module to fully exploit context information. Third, super-
resolution images can be constructed to localise more details.
Ren et al. [27] utilize a region context network (RCN) as
the backbone for efficient feature extraction. They incorpo-
rate a generative adversarial network (GAN) with distribution
transformation and super-resolution enhancement modules
to improve target visibility and resolution. The GAN-based
approach effectively enhances the detailed information of
images, especially for super-resolution applications. It can be
applied to any type of generator network, without the need
for a specific architecture. However, the training process of
GANs is challenging. Last, data augmentation strategies can
be utilized. Wang et al. [28] employ an image segmenta-
tion strategy to augment the data and increase the number
of small objects, thereby facilitating the full training of the
algorithm.

2.2 Multi-scale features representations

The feature pyramid network (FPN) [29] serves as the foun-
dation for constructing multi-scale feature representations.
Utilizing multi-scale features effectively mitigates the challenges

posed by target scale variation, as it integrates semantic infor-
mation with high-resolution details to enhance object detection.
Numerous studies have explored approaches to enhance multi-
scale feature representation. Liu et al. [30] improve information
flow by augmenting the entire feature hierarchy with precise
localisation signals in lower layers through bottom-up path aug-
mentation, thereby shortening the information path between
lower layers and the topmost feature. Qiao et al. [13] reformu-
late feature pyramid construction as a feature reconfiguration
process and introduce a new reconfiguration architecture that
efficiently combines low-level representations with high-level
semantic features in a highly non-linear manner. Tan et al.
[31] propose a weighted bi-directional FPN (BiFPN) for rapid
multi-scale feature fusion. Wang et al. [32] present a novel
multi-scale context-aware FPN that enhances object detec-
tion performance by addressing the context information gap
across different levels, yielding substantial improvements com-
pared to existing FPN-based methods on the MS-COCO
dataset.

2.3 Attention mechanism

Attention mechanisms have gained widespread popularity in
the field of deep learning due to their ability to enhance the
performance of deep learning models in various computer
vision tasks, such as image recognition, object detection, and
semantic segmentation. These mechanisms enable models to
focus on the most significant features and allocate processing
resources effectively, leading to a better understanding of feature
relationships and more accurate predictions. The squeeze-
and-excitation block [33] dynamically recalibrates channel-wise
feature responses in a CNN by computing a global average
pooling (GAP) of the feature maps, which summarizes spa-
tial information. It then models the channel relationships using
two fully connected layers. The resulting channel weights are
used to rescale the feature maps, allowing the network to
prioritize the most informative feature channels. Guo et al.
[34] introduce a novel linear attention mechanism called large
kernel attention (LKA), which enables self-adaptive and long-
range correlations, addressing the limitations of traditional
self-attention. They also present a visual attention network
(VAN) that utilizes LKA and outperforms similarly sized vision
transformers (ViTs) and CNNs across multiple tasks. Zhang
et al. [35] present the ensemble transformer with attention mod-
ules (ETAM) encoder, a powerful approach for detecting small
objects by extracting subtle features. This method leads to sig-
nificant improvements in small object detection performance
across multiple datasets. The ViT has garnered considerable
attention in the field of computer vision for its remarkable per-
formance in various image tasks. Instead of the conventional
convolutional and pooling layers used in computer vision, ViT
employs self-attention mechanisms. This substitution enables
the model to selectively attend to different regions of an image
at various scales, capturing complex long-range dependencies
between pixels.
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ZHANG ET AL. 3989

FIGURE 2 Architecture of our proposed deformable local and global
attention. Initially, the input image is fed into the backbone network, which
applies the MCFFBlock (multi-scale context feature fusion) module proposed
in Section 3.1 and the hierarchical attention mechanism. The backbone
network extracts essential features from the input image. Next, the features are
passed to the Neck section for further processing. The Neck section includes
CSPUp and CSPDown modules, which are variations of the cross stage partial
(CSP) modules [36] with upsampling and downsampling operations based on
CSPDarknet. These modules utilize convolution, batch normalization, and Silu
activation functions. The numbers S 3 × 3 and 1 × 1) denote the sizes of the
convolution kernels, and ‘s’ represents the stride. The Neck section refines the
feature map by aggregating features from different backbone layers into
different detector levels. Finally, the proposed Multi-scale separable detection
(MAD) detector head is employed to predict boxes at four different scales. For
more detailed information on the structure of the MSD, please refer to
Figure 3d.

3 PROPOSED METHODS

This section presents the deformable local and global atten-
tion (DLGADet) model, which is depicted in Figure 2. The
section is organized as follows: In Section 3.1, we introduce
the general structure of the model, including the (MSD mod-
ule and the MCFF module. Next, in Section 3.2, we introduce
the proposed deformation feature extraction module (DFEM).
Last, in Section 3.3, we provide a detailed description of the
proposed HAM.

3.1 Multi-scale context feature fusion block
and multi-scale separable detection

The design of the method follows the following principle:
enhancing the ability to capture small targets by leveraging
shallow layer features such as textures and edges for localisa-
tion, while propagating features from lower to higher layers to
improve the overall localisation ability of the feature layer. This
is based on the observation that shallow textures and edges are
more conducive to localisation. Two key improvements have
been made. The first improvement is the introduction of the

MCFFBlock for the backbone network. Additionally, a skip con-
nection to the backbone network has been added to the head
part, similar to the feature fusion operation used in FPN. This
is depicted by the green dashed section in Figure 2. The sec-
ond improvement involves the inclusion of a downsampling
quadruple detection layer with a decoupling header design.

3.1.1 Multi-scale context feature fusion block

Given the input feature map Xci
of layer i in backbone, the

specific flow from MCFFBlock to the detection head can be
expressed as the following process:

FfM
= Fconv(Fconv(Xci

)) + Fcsp_n(Fconv(Xci
)) (1)

FfP
= Φ(Fconv(XPi−1

)) (2)

FfN
= ℏ(Fconv(XNi+1

) (3)

Ffmi
= 𝜓(Fconv(𝜓(FfM

,FfN
)),FfP

) + FfM
(4)

Here, the convolution operation is denoted as Fconv(⋅), ℏ(⋅)
represents the CSP module and upsampling operation, Φ rep-
resents the CSP module and downsampling operation, Fcsp_n
represents n CSP modules, and 𝜓(⋅) represents a channel direc-
tion concatenation operation. Each convolution operation is
followed by batch normalization and Silu activation functions,
which are not shown for simplicity. The top-down feature map
is denoted as XNi+1

, and the bottom-up feature map is denoted
as XPi−1

. FfM
represents the feature map obtained through

MCFF processing, FfN
represents the feature map obtained

through convolution, CSP module, and upsampling, and FfP
represents the feature map obtained through convolution, CSP
module, and downsampling. As shown in Figure 3a, the input
feature map needs to undergo several convolutional operations
and N ×CSP modules in the backbone network. However, this
process inevitably leads to the loss of shallow textures, edges,
and other features that contribute to localisation during network
deepening. In contrast, the lateral connection in MCFF consists
of only two convolutional layers, and the fused feature maps are
directly subjected to an elementwise summation operation with
the feature maps of the Neck part. This allows shallow features
that aid in localisation to be merged into the deeper network,
thereby enhancing the model’s ability to detect small targets.
Additionally, this design provides a shortcut for the gradient
backpropagation process of the higher-level network, speeding
up the convergence of the network.

3.1.2 Multi-scale separable detection

We introduce an additional feature layer specifically designed
for small target detection, which is added on top of the orig-
inal detection feature layer. This expands the total number
of detection layers from three to four, known as MSD as
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3990 ZHANG ET AL.

FIGURE 3 A detailed explanation of the partial process in Figure 2 is as follows: Each letter ‘i’ indicates a feature layer that has been downsampled 2i times.
For example, C3 represents downsampling 8 times. Let us consider the feature map processing of the C3 layer as an example. The C3 layer undergoes processing
through the MCFFBlock and is concatenated with the upsampled feature map of the N4 layer, resulting in the feature map N3. N3 is then processed by the cross
stage partial (CSP) module and upsampled to obtain N2 (P2). Additionally, N3 undergoes a convolution operation and is concatenated with the downsampled feature
map of P2, resulting in the feature map P3. To enhance the shallow features in P3, a skip connection is established between the feature map obtained from the
MCFFBlock and P3. The obtained P3 is further processed using the proposed MSD to obtain the classification and position coordinate detection results.

shown in Figure 3d. To address the misalignment between
classification and localisation in object detection, we use an
approach that separates the classification and regression tasks,
which is achieved by replacing the 1 × 1 convolution with two
parallel detection layers, each stacked with convolutional lay-
ers [37-39]. Through this approach, our network is able to
effectively capture semantic features while maintaining high
resolution for accurate localisation, thus solving the problem
of classification and localisation misalignment simultaneously.
Notably, when comparing the training curves of our decoupled
head method with the YOLO [17] head method on the TT100k
dataset, as shown in Figure 4, our approach demonstrates supe-
rior performance by converging faster and achieving better
results.

3.2 Deformation feature extraction module

3.2.1 Starting with deformable convolution

We extract complex geometric transformation visual features
using deformable convolution. Deformable convolution intro-
duces a 2D offset to the regular grid sampling locations of
standard convolution, allowing adaptable geometric structures
for the convolution kernels. In Figure 5, the basic block of
the DFEM module resembles the widely used bottlenecks in
traditional CNNs. However, instead of using ordinary convolu-
tion, we employ deformable convolution (denoted as DCNv2).
Deformable convolution is a variant of standard convolution
that enables the modulation of spatial sampling locations within
the convolutional kernel. Let us begin with the standard convo-
lutional operation. Given an output feature map y, the operation

FIGURE 4 The mean average precision training curve of our head and
YOLO head.

can be formulated as:

y(p0) =
∑

pn∈V

wk(pn ) ⋅ x(p0 + pn ) (5)

Here, p0 represents the current location of the output fea-
ture map, wk denotes the weight, pn represents each location
in set V, and V is the set of sampling locations on the pre-
defined grid (V = (−1, −1), (−1, 0), … , (0, +1), … , (+1, +1))
over the input feature map x. Deformable convolution intro-
duces the use of learnable offset values, which replace the fixed
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ZHANG ET AL. 3991

FIGURE 5 The architecture of the deformation feature
extractionmodule.

kernel shifts. These offsets are integrated into the kernel posi-
tions before performing the convolution. Mathematically, this
operation can be represented as:

y(p0) =
∑

pn∈V

wk(pn ) ⋅ x(p0 + pn + Δpn ) (6)

Here, Δpn represents the learnable offset, and each new sam-
pling location is adjusted with an offset. Bilinear interpolation is
commonly used to compute the equation above.

3.2.2 Extending DCNv2 for deformation
feature extraction

However, this operation suffers from the issue of extending
beyond the region of interest and influencing features with irrel-
evant image content. To address this, we introduce a modified
version denoted as follows:

y(p0) =
∑

pn∈V

wk(pn ) ⋅ x(p0 + pn + Δpn ) ⋅ Δmk (7)

Here, Δpn and Δmk are learnable parameters. They are
obtained from 3K channels, which are the result of another
convolutional layer having the same input and spatial resolu-
tion as the current convolutional branch. The first 2K channels
correspond to Δpn, while the remaining K channels are passed
through a sigmoid activation function to obtain modulation
scalars. It is worth noting that Δpn is an unrestricted value
obtained after training, whereas Δmk is constrained between
0 and 1. This constraint ensures that the aforementioned
problem is resolved. To achieve adaptive extraction of defor-
mation targets, we simply replace the 3 × 3 convolution in
the CSP module of the MCFFBlock with DCNv2. Unlike
standard convolution, which applies the same operation to
all inputs with fixed parameters, deformable convolution can
dynamically adjust to fit different target shapes and sizes
based on the input content. This design allows for the adap-
tation to various small deformed traffic signs, dynamically
expanding the model’s perceptual field, and effectively reducing
gradient reuse and computational complexity [36]. The effec-
tiveness of our method is demonstrated in the experiment in
Section 4.

3.3 Hierarchical attention mechanism

3.3.1 MSAB module

We propose a HAM called HAM, which combines a multi-head
self-attention block (MSAB) and shuffle attention (SA). The
design of the MSAB block is as follows: First, we embed a multi-
headed self-attention (MHSA) layer into the CSP-DarkNet
backbone, replacing the 3 × 3 convolution operation in the top
CSP module of the bottleneck. Next, we apply SA operations
to the obtained feature maps. Given the output feature map X
from the backbone network, we flatten X to X ∈ ℝC×(H∗W ),
where H and W represent the original resolution of the feature
map. The processing flow of the MHSA module with M heads
can be described as follows:

X = position_embedding(X ) + X (8)

Q = XWq, K = XWk, V = XWv (9)

f (m) = 𝜓

(
Q(m) × (K (m) )T√

d

)
V (m), m ∈ [1, … ,M ] (10)

f = Concat( f (1), … , f (m) )Wp (11)

Here, position_embedding(⋅) represents the position embed-
ding vector. We use a learnable one-dimensional position
embedding and a linear layer to obtain the position information.
The function 𝜓(⋅) denotes the softmax function, and d=C/M

represents the dimension of each head. f m represents the mth
attention head, and Q(m), K (m), and V (m) are obtained by linearly
transforming X. Wq , Wk, Wv , and Wp denote the corresponding
weight matrices. Finally, the obtained matrix X is resized back
to the original dimensions C × H ×W and used as input to the
SA module.

3.3.2 SA module

The SA module divides the feature map into g groups along
the channel direction, resulting in matrices [X1, … ,Xg]. Each
Xk in the g feature maps has a shape size of H ×W ×C∕g.
Xk is further split into Xk1 and Xk2 along the channel direc-
tion, with a shape size of H ×W ×C∕2g. Channel attention
and spatial attention operations are performed on each Xk1 and
Xk2, respectively. The attention processing can be described as
follows:

s = GAP(Xk1) =
1

H ×W

H∑
i=1

W∑
j=1

Xk1(i, j ) (12)

Here, GAP denotes global average pooling, which generates
a compact feature to guide precise and adaptive selection using a
gating mechanism incorporating a sigmoid activation function.
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3992 ZHANG ET AL.

The final result is obtained by scaling Xk1 as follows:

X ′
k1 = 𝜎(W1s + b1) ⋅ Xk1 (13)

where W1 represents the scaling parameter and b1 represents
the bias. Spatial attention is complementary to channel atten-
tion and is performed after group norm (GN) [40]. The spatial
attention operation is similar to the channel attention operation
and can be expressed as:

X ′
k2 = 𝜎(W2 ⋅ GN (Xk2) + b2) ⋅ Xk2 (14)

Here, 𝜎 represents the sigmoid activation function, W2 is
the scaling parameter, b2 is the bias, and GN denotes group
norm. Finally, a ‘channel shuffle’ operator is applied to transfer
information across groups along the channel dimension. The
output of the SA module maintains the same dimensions as
the input, making it convenient to integrate into contemporary
architectural designs.

3.3.3 Designing rules

To prevent the premature enforcement of regression bound-
aries and preserve meaningful context information, we limit the
usage of the transformer layer. Additionally, considering the low
resolution of the high-level feature map, this approach helps
reduce computational complexity and memory space occupa-
tion. Consequently, in our HAM module, the MSAB module
is only employed in the penultimate third layer of the backbone
section. It is then followed by the shuffle attention (SA) module,
which combines channel attention and spatial attention.

4 EXPERIMENT

Here, we provide an overview of the benchmark datasets in Sec-
tion 4.1. Following that, we describe the implementation details
and evaluation metrics used in the experiments in Section 4.2.
Next, we conduct a comprehensive performance evaluation of
the proposed DLGADet model, comparing it with the current
state-of-the-art convolution-based neural network model on the
publicly available TT100K dataset in Section 4.3. Furthermore,
we present a thorough ablation experiment of the proposed
method in Section 4.4. Finally, we test the proposed method on
VisDrone2019 [41] and SODA-D [1] in Section 4.5.

4.1 Benchmark datasets

Experiments were conducted using three datasets. The primary
experiments were carried out on the challenging TT100K
dataset, which serves as a comprehensive benchmark with
100,000 Tencent Street View panoramas. Additionally, the pro-
posed method was tested on the VisDrone2019 and SODA-D
datasets. It is worth noting that all of the selected datasets

consist of a significant number of small objects, each measuring
less than 32 × 32 pixels.

4.2 Implementation details and evaluation
criterion

The original TT100K dataset consists of approximately 150
classes of traffic signs. We followed a similar approach as in ref-
erence [42] and excluded classes with fewer than 100 instances,
resulting in a final training dataset comprising 45 classes of traf-
fic signs. For classes with 100 to 1000 instances, we utilized
data augmentation techniques to expand their quantity to 1000
instances. Drawing inspiration from the cut–mix [43] and copy–
paste [44] data augmentation strategies, we employed a similar
technique of pasting the targets into different training images.
However, we did not introduce new background images that
were not present in the original training set. The training phase
involved approximately 6103 images with various resolutions,
while 3067 images were reserved for testing. All experiments
were conducted using the PyTorch deep learning framework
on a cloud server equipped with an NVIDIA GeForce RTX
A5000 (24GB) GPU, a 15 vCPU Intel(R) Xeon(R) Platinum
8358P CPU, and 80GB of RAM. The models were pretrained
using weights based on the COCO dataset and fine-tuned on
the TT100K dataset using the DLGADet model to expedite the
training process. The experimental hyperparameter settings fol-
lowed those outlined in YOLOv5. The initial learning rate was
set to 0.01 and gradually decayed to 0.0001 using cosine anneal-
ing. We employed a stochastic gradient descent optimizer with
a batch size of 16 and trained the models for 400 epochs. Here,
various evaluation metrics were employed for comparisons,
including mean average precision (mAP), average precision
for small objects (APS), average precision for medium objects
(APM), average precision for large objects (APL), precision,
recall, frames per second (FPS), and F1 measure.

4.3 Comparison with state-of-the-arts

The detection results were analyzed in detail on the TT100K
dataset using images of different resolutions. Table 1 shows
the results.

We compared our method with other state-of-the-art detec-
tors on the TT100K benchmark. As shown in Table 1, the
proposed DLGADet model achieves an mAP of 92.0 at a
resolution of 640, which is 1.5 AP higher than the state-of-
the-art competitors. Notably, in terms of APS, which is an
important metric for small target detection, DLGADet shows
significant improvements. It outperforms YOLOv5-L by 1.1
APS and 0.4 APS at resolutions of 640 and 1024, respectively.
Compared to general-purpose state-of-the-art target detectors,
DLGA demonstrates considerable advancements in addressing
the challenges of small target detection. This improvement can
be attributed to DLGADet’s effective handling of scale pro-
cessing, feature preservation during information transmission
in small object detection, object deformation, occlusion, and the
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ZHANG ET AL. 3993

TABLE 1 Comparison of latest state-of-art detectors on TT100K.

Resol-

ution Method mAP APS APM APL

Prec-

ision Recall

F1

measure

640 ×
640

YOLOv3 84.3 37.3 67.3 68.3 - - -

YOLOv4-CSP 86.2 43.6 72.6 81.3 85.0 79.7 82.3

YOLOv5-L 88.3 55.6 74.4 83.1 86.9 85.5 86.2

YOLOv6-L 88.2 46.4 77.9 85.5 83.8 81.0 82.4

YOLOR-CSP-X 89.0 47.8 74.3 83.3 84.6 84.6 84.6

YOLOv7 90.1 50.3 76.2 82.5 87.7 84.8 86.2

YOLOv7-X 90.5 50.4 76.0 84.2 87.2 84.7 85.9

Ours 92.0 57.7 77.4 83.7 90.6 89.2 89.9

1024 ×
1024

YOLOv3 92.7 55.1 74.2 80.5 - - -

YOLOv4-CSP 91.8 54.4 77.8 85.9 87.2 89.0 88.1

YOLOv5-L 94.5 62.3 79.9 87.1 91.7 93.0 92.3

YOLOv6-L 88.2 46.4 77.9 85.5 83.8 81.0 82.4

YOLOR-CSP-X 92.3 53.7 77.5 86.3 90.0 89.6 89.8

YOLOv7 93.8 57.6 79.0 87.9 89.0 90.6 89.8

YOLOv7-X 95.1 61.1 79.8 88.8 91.0 91.9 91.4

Ours 94.8 62.7 79.9 87.1 92.0 93.7 92.8

recognition of tiny targets as critical issues. It should be noted
that DLGADet may not perform optimally in terms of APM
and APL metrics at a resolution of 640. However, when com-
pared to the primary focus of this paper, which is small object
detection, the difference in accuracy for large object detection is
minimal compared to other state-of-the-art detectors. This dis-
crepancy could be attributed to DLGADet’s passing of more
shallow features to the upper feature map, potentially affecting
the model’s ability to discern semantic information in the upper
feature map. Furthermore, although the mAP metric is lower
than that of YOLOv7-X at a resolution of 1024, it is important
to note that YOLOv7-X is a larger and more complex model
with a higher number of parameters. Additionally, DLGADet
still outperforms YOLOv7-X by 1.6 APS. Finally, our proposed
method achieves the highest F1-measure metric at both reso-
lutions, indicating that DLGADet attains an optimal balance
between precision and recall.

Figure 6 illustrates the temporal variation of AP values, preci-
sion, and recall across epochs for our proposed model, as well as
YOLOv4, YOLOv5-L, YOLOv7, YOLOv7-X, and YOLOR-
CSP-X. Upon careful analysis of the figures, it is clear that our
proposed model consistently outperforms the other models in
terms of AP metrics and exhibits a faster convergence rate.

Table 2 shows the experiment that evaluated the perfor-
mance of several methods for traffic sign recognition on the
TT100K dataset. The evaluation metrics used in this experi-
ment were precision, recall, and F1 measure. Precision measures
the percentage of correctly recognized traffic signs out of all
the detected traffic signs. Recall measures the percentage of
correctly recognized traffic signs out of all the actual traffic
signs. F1 measure is the harmonic mean of precision and
recall. Based on the experimental results, it is evident that the

proposed method outperforms the other evaluated methods in
the majority of cases, exhibiting the highest F1 measure across
various traffic sign symbols such as i2, il100, il60, and so on.
It is worth noting that we also found that DLGADet does not
perform as an optimal solution on all categorical entries. This
may be attributed to the fact that we bring shallow features to
the deeper layers resulting in ambiguity and loss of semantic
information, which in turn is closely related to classification
accuracy. Furthermore, in the instances where our method does
not achieve the top performance, the difference between its F1
measure and the best result is negligible. These findings under-
score the accuracy and robustness of the proposed method,
which demonstrates its potential as a reliable and promising
approach for traffic sign recognition tasks.

Figure 7 showcases the robustness of the proposed model
in detecting small traffic signs under challenging conditions,
including deformation, occlusion, illumination variations, small
object size, and combinations thereof. To facilitate visualization
and comprehensive analysis of the model’s detection perfor-
mance, the recognition results are magnified and displayed at
the bottom of the figure. Remarkably, our model demonstrates
precise recognition of small objects that make up less than
1% of the overall scene, even in extremely unfavourable con-
ditions. This highlights the model’s ability to handle objects
with low visibility, thereby elevating its potential for practical
applications.

4.4 Ablation studies

Table 3 presents the results of an ablation experiment con-
ducted on the TT100K dataset to evaluate the effectiveness of
different components in a method. The components investi-
gated include the MCFF block, MSD, shuffle attention (SA),
data augmentation (*) described in Section 4.2, (DFEM, and
MSAB. The evaluation metric used in this study is mAP,
expressed as a percentage.

The results of the ablation experiment demonstrate that
the inclusion of each component improves the overall perfor-
mance, as measured by mAP. The initial baseline, without any
components, achieves an mAP of 88.3%. The addition of the
MCFF block increases the mAP to 89.5%, while the incorpo-
ration of MSD further improves it to 90.1%. The introduction
of DFEM has a more substantial impact, raising the mAP to
91.7%. The highest mAP value of 92.0% is achieved when all
components are used together. Through analysis, it has been
determined that the synergistic utilization of all constituent ele-
ments shows potential for further advancement in the model’s
performance. This observation suggests that the functions of
the aforementioned modules do not conflict with each other.

We conducted ablation experiments on the MCFFBlock
component. In the Neck section, the elementwise summa-
tion from the backbone to the Neck feature fusion strategy is
denoted as ‘Fusion’ For the ablation experiments, we excluded
the MCFFBlock component (‘-MCFFBlock’), the fusion strat-
egy (‘-Fusion’), and both components (‘-All’). The results of
these experiments, as shown in Table 4, demonstrate the
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3994 ZHANG ET AL.

TABLE 2 Comparison of each category on TT100K.

Methods Metrics i2 i4 i5 il100 il60 il80 io ip p10 p11 p12 p19 p23 p26 p27

YOLOv4-
CSP

Precision 87.3 86.5 90.6 94.9 93.4 84.0 74.6 85.6 79.9 85.7 96.1 96.7 94.4 85.3 100.0

recall 77.8 89.6 95.0 95.2 98.6 96.9 89.1 92.9 77.8 90.1 75.6 88.5 90.3 89.2 89.0

F1-measure 82.3 88.0 92.7 95.0 95.9 90.0 81.2 89.1 78.8 87.8 84.6 92.4 92.3 87.2 94.2

YOLOv5-
L

precision 87.6 92.1 93.7 92.4 95.2 87.6 90.2 88.4 86.8 89.8 86.8 87.7 92.3 86.2 94.1

recall 85.2 95.2 94.6 97.4 98.3 88.2 89.5 89.1 82.9 81.9 75.8 87.9 93.1 90.5 89.4

F1-measure 86.4 93.6 94.1 94.8 96.7 87.9 89.8 88.7 84.8 85.7 80.9 87.8 92.7 88.3 91.7

YOLOv6-
L

precision 86.7 95.4 95.2 95.0 98.5 92.1 88.0 90.1 82.9 90.8 84.3 96.7 97.0 85.4 95.5

recall 82.0 81.0 82.0 97.0 94.0 96.0 80.0 92.0 78.0 81.0 89.0 87.0 93.0 87.0 89.0

F1-measure 84.3 87.6 88.1 96.0 96.2 94.0 83.8 91.0 80.4 85.6 86.6 91.6 94.9 86.2 92.1

YOLOR-
CSP-
X

precision 83.1 88.6 93.3 84.9 96.3 88.6 77.7 85.9 82.3 86.5 78.4 95.2 94.9 84.6 98.3

recall 84.5 94.8 95.6 92.3 97.1 97.1 90.4 94.8 80.4 91.3 81.8 93.9 90.3 88.9 91.5

F1-measure 83.8 91.6 94.4 88.4 96.7 92.7 83.6 90.1 81.3 88.8 80.1 94.5 92.5 86.7 94.8

YOLOv7 precision 85.6 90.8 92.3 95.6 95.8 91.1 77.6 89.9 83.7 89.7 90.5 96.9 94.0 89.6 97.7

recall 83.7 94.5 95.4 100.0 98.6 99.0 88.3 94.5 78.2 91.1 92.4 93.3 93.2 87.6 91.9

F1-measure 84.6 92.6 93.8 97.8 97.2 94.9 82.6 92.1 80.9 90.4 91.4 95.1 93.6 88.6 94.7

YOLOv7-
X

precision 86.7 86.4 91.6 92.5 97.6 86.2 80.9 86.8 83.7 88.2 86.5 92.7 94.1 86.9 93.9

recall 85.2 95.2 94.9 95.1 97.9 97.9 88.7 95.3 77.0 90.1 93.9 93.9 92.3 90.8 95.7

F1-measure 85.9 90.6 93.2 93.8 97.7 91.7 84.6 90.9 80.2 89.1 90.0 93.3 93.2 88.8 94.8

Ours precision 89.2 91.3 93.9 97.3 99.3 92.1 87.0 91.4 87.0 92.6 91.1 93.6 95.9 89.0 100.0

recall 86.8 94.8 95.3 100.0 97.9 99.0 88.7 89.8 84.8 90.1 93.5 93.9 94.2 90.9 92.9

F1-measure 88.0 93.0 94.6 98.6 98.6 95.4 87.8 90.6 85.9 91.3 92.3 93.7 95.0 89.9 96.3

Methods Metrics p3 p5 p6 pg ph4 ph4.5 ph5 pl100 pl120 pl20 pl30 pl40 pl5 pl50 pl60

YOLOv4-
CSP

Precision 83.2 87.9 72.2 88.1 95.2 74.9 71.2 93.3 97.4 82.6 95.2 90.2 87.8 89.7 95.9

recall 81.0 92.1 56.4 95.3 67.6 85.0 42.5 96.3 86.6 67.7 68.3 76.1 79.8 69.4 69.1

F1-measure 82.1 90.0 63.3 91.6 79.1 79.6 53.2 94.8 91.7 74.4 79.5 82.6 83.6 78.3 80.3

YOLOv5-
L

precision 90.2 88.8 78.2 88.4 79.4 84.6 87.1 92.4 90.8 80.6 87.1 88.5 85.4 88.3 85.7

recall 79.7 93.9 83.0 95.3 70.3 83.3 67.4 92.6 90.8 82.1 82.5 87.0 89.4 85.3 83.2

F1-measure 84.6 91.3 80.5 91.7 74.6 83.9 76.0 92.5 90.8 81.3 84.7 87.7 87.4 86.8 84.4

YOLOv6-
L

precision 98.0 91.4 86.5 91.1 85.7 88.3 82.8 95.4 96.5 94.9 92.1 90.7 92.3 80.1 93.8

recall 84.0 89.0 82.0 95.0 81.0 88.0 60.0 95.0 95.0 66.0 74.0 79.0 83.0 77.0 77.0

F1-measure 90.5 90.2 84.2 93.0 83.3 88.2 69.6 95.2 95.7 77.8 82.1 84.5 87.4 78.5 84.6

YOLOR-
CSP-
X

precision 79.2 92.3 64.7 84.5 97.9 78.6 70.3 95.4 97.6 85.7 96.2 87.4 86.9 91.5 96.4

recall 87.9 94.9 69.2 95.3 62.2 88.3 60.0 96.8 94.7 74.9 73.3 84.0 87.7 75.9 72.6

F1-measure 83.3 93.6 66.9 89.6 76.1 83.2 64.7 96.1 96.1 79.9 83.2 85.7 87.3 83.0 82.8

YOLOv7 precision 87.9 92.5 81.1 77.6 100.0 73.8 73.6 96.4 97.7 88.6 94.3 92.0 88.0 90.7 93.2

recall 91.4 94.7 76.8 96.7 68.9 85.0 70.0 97.2 96.1 55.7 72.7 79.6 85.7 77.1 69.0

F1-measure 89.6 93.6 78.9 86.1 81.6 79.0 71.8 96.8 96.9 68.4 82.1 85.4 86.8 83.3 79.3

YOLOv7-
X

precision 82.0 90.6 80.9 82.7 96.4 79.9 75.5 96.8 97.6 89.6 98.0 90.5 88.9 92.4 97.4

recall 91.4 92.4 74.4 97.7 72.6 85.9 65.0 97.5 94.3 64.3 72.1 85.2 85.2 75.4 71.5

F1-measure 86.4 91.5 77.5 89.6 82.8 82.8 69.9 97.1 95.9 74.9 83.1 87.8 87.0 83.0 82.5

Ours precision 96.4 90.8 89.0 85.2 96.0 84.7 90.5 96.6 97.7 88.6 89.1 94.5 89.5 92.9 95.4

recall 93.3 96.6 84.6 97.7 73.0 88.3 71.9 96.8 96.3 82.9 86.8 88.1 92.7 84.5 87.6

F1-measure 94.8 93.6 86.7 91.0 82.9 86.5 80.1 96.7 97.0 85.7 87.9 91.2 91.1 88.5 91.3

Methods Metrics pl70 pl80 pm20 pm30 pm55 pn pne po pr40 w13 w32 w55 w57 w59 wo

YOLOv4-
CSP

Precision 100.0 95.5 84.3 92.3 78.8 86.4 88.3 80.0 80.5 48.7 62.2 77.6 78.6 73.1 61.0

recall 54.6 69.9 69.4 74.7 76.3 94.6 96.4 65.6 98.1 73.4 70.6 75.0 90.2 84.5 23.7

F1-measure 70.6 80.7 76.1 82.6 77.5 90.3 92.2 72.1 88.4 58.6 66.1 76.3 84.0 78.4 34.1

(Continues)
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ZHANG ET AL. 3995

TABLE 2 (Continued)

Methods Metrics pl70 pl80 pm20 pm30 pm55 pn pne po pr40 w13 w32 w55 w57 w59 wo

YOLOv5-
L

precision 95.0 83.6 83.5 70.4 92.7 91.9 96.5 81.8 89.2 77.6 84.9 80.0 88.0 75.5 72.1

recall 87.0 89.2 73.5 71.9 86.8 90.9 96.2 73.7 96.8 83.9 70.6 80.0 92.6 89.7 61.1

F1-measure 90.8 86.3 78.2 71.1 89.7 91.4 96.3 77.5 92.8 80.6 77.1 80.0 90.2 82.0 66.1

YOLOv6-
L

precision 100.0 92.8 86.4 92.3 88.1 86.8 92.9 78.8 98.4 88.9 80.0 86.4 92.9 76.8 74.1

recall 70.0 84.0 77.0 75.0 97.0 85.0 85.0 71.0 95.0 77.0 82.0 85.0 86.0 91.0 52.0

F1-measure 82.4 88.2 81.4 82.8 92.3 85.9 88.8 74.7 96.7 82.5 81.0 85.7 89.3 83.3 61.1

YOLOR-
CSP-
X

precision 100.0 85.6 83.9 89.9 69.1 87.3 92.7 76.7 78.7 51.1 73.4 82.2 80.1 67.1 66.4

recall 67.6 86.9 75.5 83.6 81.6 94.7 96.7 67.8 95.2 80.6 82.4 76.8 92.4 89.7 52.6

F1-measure 80.7 86.2 79.5 86.6 74.8 90.8 94.7 72.0 86.2 62.5 77.6 79.4 85.8 76.8 58.7

YOLOv7 precision 92.8 90.0 88.0 86.5 79.5 89.2 92.0 84.4 90.4 59.2 73.3 91.5 83.5 72.4 84.9

recall 68.2 85.4 74.9 80.4 86.8 93.8 96.4 70.7 96.8 77.4 82.4 78.3 93.4 90.3 44.7

F1-measure 78.6 87.6 80.9 83.3 83.0 91.4 94.1 76.9 93.5 67.1 77.6 84.4 88.2 80.4 58.6

YOLOv7-
X

precision 97.0 91.0 89.2 86.4 78.0 88.3 91.4 82.2 88.0 64.1 76.1 86.2 87.4 71.6 72.0

recall 72.5 85.0 75.5 79.6 83.7 93.8 97.1 66.6 98.4 87.1 75.0 73.1 91.0 91.1 34.2

F1-measure 83.0 87.9 81.8 82.9 80.7 91.0 94.2 73.6 92.9 73.9 75.5 79.1 89.2 80.2 46.4

Ours precision 97.2 91.4 96.0 94.5 79.6 92.1 94.9 89.2 93.1 64.7 89.8 90.3 89.9 75.2 69.5

recall 79.5 93.0 85.7 84.4 94.7 92.4 96.4 73.0 96.8 90.3 91.2 83.3 92.6 94.8 52.6

F1-measure 87.5 92.2 90.6 89.2 86.5 92.2 95.6 80.3 94.9 75.4 90.5 86.7 91.2 83.9 59.9

TABLE 3 Ablation studies of components on TT100K.

Baseline MCFF MSD SA DFEM MSAB mAP(%)

YOLOv5 88.3

YOLOv5 ✓ 89.5

YOLOv5 ✓ ✓ 90.1

YOLOv5 ✓ ✓ ✓ 90.2

YOLOv5* ✓ ✓ ✓ ✓ 91.7

YOLOv5* ✓ ✓ ✓ ✓ ✓ 92.0

TABLE 4 Effect of the MCFFBlock and feature fusion strategy.

Component AP50:95 AP50 Precision Recall F1 measure

Base 70.0 89.5 89.5 87.9 87.5

-MCFFBlock 69.2 88.6 89.2 85.7 87.4

-Fusion 69.0 88.9 88.1 85.5 86.8

-All 68.9 88.3 86.9 85.5 86.2

significant impact of removing the various components. These
findings confirm the effectiveness of the proposed mod-
ule. Furthermore, the results indicate that omitting either the
MCFFBlock or the feature fusion strategy leads to a modest
decline in system performance, suggesting that both compo-
nents contribute significantly to performance improvement. On
the other hand, excluding both components results in a substan-
tial reduction in performance, highlighting their critical role in
the module.

TABLE 5 Experiments using different attention mechanisms.

Component AP50:95 AP50 Precision Recall F1 measure

SE-Attention 71.3 91.9 90.6 88.3 89.4

GAM-Attention 71.7 91.9 90.1 89.4 89.8

Shuffle-Attention 72.1 92.0 90.6 89.2 89.9

We also conducted ablation experiments using different
attention mechanisms. The three attention mechanisms con-
sidered were SE-Attention, GAM-Attention [45], and Shuffle-
Attention. The results of these experiments are presented in
Table 5. The findings indicate that all three attention mecha-
nisms contribute to the improvement of the object detection
system’s performance. Among them, Shuffle-Attention achieves
the most significant improvements in terms of AP50:95, AP50,
and F1 scores. As a result, the Shuffle-Attention mechanism is
selected and utilized in this study to construct the HAM module.

4.5 Experiments on more datasets

To assess the robustness and generalization capability of the
proposed method, we conducted experiments on additional
large-scale datasets containing images of varying resolutions.
These datasets, such as SODA-D and VisDrone2019, encom-
pass both large-scale images and numerous small objects. The
experimental results are presented in Tables 6 and 7. The results
demonstrate that our method achieves significantly higher mAP
and APS metrics compared to the baseline on both datasets,
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3996 ZHANG ET AL.

FIGURE 6 Training curve of mAP50, mAP50:95, precision, and recall metrics.

regardless of the resolution. These findings indicate that our
method exhibits a relatively strong generalization ability, effec-
tively detecting and recognizing small objects in diverse settings
and varying image resolutions.

5 CONCLUSION

The focus of this paper is to address the challenges in small
object detection using c). We find that although existing meth-
ods have improved in terms of localisation and detection
accuracy, they still have limitations in terms of scale handling,
feature loss during transmission, object deformation problems,
and insufficient consideration of tiny targets. In addition, occlu-
sion and global feature dependency pose further challenges. To
address these issues, we propose an algorithm that combines
a HAM with deformable multi-scale detection and fusion. The

scale problem is solved by introducing MSD and MCFF blocks,
which increase the number of detection layers while preserv-
ing the high-resolution feature maps needed to detect small
objects. By adding jump connections to the detection layer, the
problem of feature loss during feature transmission with mul-
tiple convolutional downsampling is reduced. During training,
we observed slow convergence of simultaneous classification
and localisation using coupled heads, and therefore improved
it by decoupling the classification and regression heads. To
cope with the problem of object deformation due to filming,
and the problem of insufficient effective receptive field, we
use the property of deformable convolutional dynamic sam-
pling to integrate into the feature extraction module DFEM,
which effectively improves the above problems. In order to
cope with the complex environments housing small objects and
the occlusion issues that small objects encounter, the property
of capturing global dependence using transformer is integrated
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ZHANG ET AL. 3997

FIGURE 7 Examples of detection on the TT100K testing set. The yellow rectangular boxes in the figures contain the small targets to be identified, and the red
rectangular boxes are the corresponding zoom area for easy observation. It is worth noting that the objects to be detected in all the figures occupy only a very small
percentage of the overall image. In addition, figures (a), (f), and (h) with sharp target deformation, figures (b), (e), and (g) with low contrast of the target under
illumination, and figures (c) and (d) with severe occlusion of the target.

TABLE 6 Experimental results on the VisDrone2019 dataset.

Resolution Method mAP APS

576 ×
576

YOLOv5-L 36.2 11.4

Ours 41.4+5.2 14.8+3.4

640 ×
640

YOLOv5-L 39.7 13.2

Ours 44.2+4.5 17.0+3.8

768 ×
768

YOLOv5-L 43.8 16.0

Ours 47.7+3.9 18.9+2.9

into the proposed MSAB module, which effectively solves the
problems such as occlusion in detection. Experiments at differ-
ent resolutions on multiple datasets demonstrate the superiority
and robustness of the proposed method. At the same time,
we also observe that our method has sub-optimal FPS met-
rics. This may be due to the increased model complexity. In
addition, our understanding of how to improve the detection
of large objects based on how to ensure high-precision detec-
tion of small targets is preliminary. These two issues await future
work.
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