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A Real-Time Memory Updating Strategy for
Unsupervised Person Re-Identification
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Abstract— Recently, clustering-based methods have been the
dominant solution for unsupervised person re-identification
(ReID). Memory-based contrastive learning is widely used for its
effectiveness in unsupervised representation learning. However,
we find that the inaccurate cluster proxies and the momentum
updating strategy do harm to the contrastive learning system.
In this paper, we propose a real-time memory updating strategy
(RTMem) to update the cluster centroid with a randomly sampled
instance feature in the current mini-batch without momentum.
Compared to the method that calculates the mean feature vectors
as the cluster centroid and updating it with momentum, RTMem
enables the features to be up-to-date for each cluster. Based
on RTMem, we propose two contrastive losses, i.e., sample-to-
instance and sample-to-cluster, to align the relationships between
samples to each cluster and to all outliers not belonging to any
other clusters. On the one hand, sample-to-instance loss explores
the sample relationships of the whole dataset to enhance the
capability of density-based clustering algorithm, which relies on
similarity measurement for the instance-level images. On the
other hand, with pseudo-labels generated by the density-based
clustering algorithm, sample-to-cluster loss enforces the sample
to be close to its cluster proxy while being far from other
proxies. With the simple RTMem contrastive learning strategy,
the performance of the corresponding baseline is improved
by 9.3% on Market-1501 dataset. Our method consistently
outperforms state-of-the-art unsupervised learning person ReID
methods on three benchmark datasets. Code is made available
at:https://github.com/PRIS-CV/RTMem.

Index Terms— Real-time memory updating, unsupervised
person ReID, contrastive learning, memory bank.

I. INTRODUCTION

PERSON re-identification (ReID) targets at retrieving the
person of interest under different camera views. It is

widely used in large-scale security systems in the real world.
Although great progress has been made by supervised ReID
methods [1], [2], [3], [4], [5], reliance on cross-camera identity
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labels limits the scalability of ReID systems to real-world
applications. Recently, unsupervised person ReID methods
[6], [7], [8], [9] have drawn much more attention for their
potential on the unlimited scalability.

Most existing unsupervised person ReID methods can
be divided into two categories. One kind of methods is
the unsupervised domain adaptation (UDA). These methods
[9], [10], [11] first learn abundant knowledge from the
labeled source-domain dataset, and then transfer the learned
knowledge to the unlabeled target-domain dataset. UDA
methods, however, heavily depend on the scale and quality
of the source-domain dataset. Another category is the fully
unsupervised learning (USL). USL methods [6], [7], [8], [12]
usually generate pseudo labels from the unlabeled dataset by a
clustering algorithm and train ReID model with these pseudo
labels. USL is more challenging but owns more flexibility as
it does not require any identity annotation.

During the model training, most pioneering USL works [9],
[13], [14], [15], [16] employs the mean feature of all instances
belonging to its pseudo identity as the cluster centroid. They
assume that the data of each cluster is distributed in a
high-dimensional spherical distribution, which follows the
same assumption in the conventional K-means. In contrast,
lots of methods [16], [17], [18] find that the density-based
clustering algorithm, such as DBSCAN, can achieve higher
accuracy in USL ReID task. It is because that the data
points actually distribute in a manifold which may not always
follow spherical clusters. Despite the employment of a proper
clustering algorithm, there still exist conflicts between the
clustering manner and the training process in current SOTA
methods [15], [16], [17], [19]. First, it is inaccurate to utilize
the mean feature as the proxy point of the cluster centroid.
As shown in Figure 1 (d), if the real data distribute in a
manifold instead of the spherical cluster, the proxy point of
the mean feature may not fall in its own cluster and even
in other clusters. Second, most existing methods update the
proxy point with a momentum updating scheme. This scheme
follows the same assumption of K-means on the spherical
distribution in a cluster, which is not consistent with the
assumption of DBSCAN. It thus results in the sub-optimal
performance.

To overcome existing conflicts, we propose a novel real-
time memory updating strategy for unsupervised person ReID.
The main idea is to directly replace the feature stored in
the memory bank with a random feature sampled from the
current mini-batch without the momentum update. We call
this strategy as the real-time memory updating strategy
(RTMem). An instance-level and a cluster-level memory bank
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Fig. 1. The K-means algorithm classifies data points into spherical clusters based on the Euclidean distance. However, it does not work well on noisy and
non-convex shaped data points (e.g., toroidal-shaped data). On the contrary, the density-based DBSCAN algorithm is more satisfactory on different shaped
points, with less influence by noises and outliers (i.e., green dots in (b)). Besides, when the clustering algorithm produces non-spherical clusters as shown in
(c) and (d), the mean feature can not well represent a cluster centroid. Note that, rounded dots represent data points, while pentagrams mean the mean feature
for the cluster.

are built to calculate two contrastive losses for the model
optimization, i.e., sample-to-instance and sample-to-cluster
losses. Considering the DBSCAN clustering manner that
measures the instance-level similarities, our sample-to-instance
contrastive loss treats anyone sample as an anchor and explores
all its positive and negative samples stored in the instance-
level memory bank during the training process. This allows
our model to take full advantage of the global information,
which is beneficial for overcoming the intra-cluster variations
and learning to adapt clustering results. Further, our sample-
to-cluster contrastive loss randomly picks one image feature
in each mini-batch pseudo cluster as the proxy in the
cluster-level memory and enforces the mini-batch sample to
be close to its cluster proxy while being far from other
proxies. It follows the character of the DBSCAN clustering
algorithm, maintaining the original data manifold rather than
the hypothetical spherical clusters in the previous works.
Clustering and instance-level contrasts are not redundant, but
synergistically enhance each other. Our key idea follows an
intuitive format that each image should be close to any or
even all of the samples in the same pseudo cluster to which
it belongs. On the one hand, sample-to-instance explores the
sample relationships of the whole dataset to enhance the
clustering ability of DBSCAN, which relies on similarity
measurement for the instance-level images. On the other hand,
with pseudo-labels generated by DBSCAN, sample-to-cluster
enforces the sample to be close to its cluster proxy while being
far from other proxies.

The overall framework diagram of our proposed method is
illustrated in Figure 2. Our contributions can be summarized
as follows:
• We point out the limitations of the current momentum-

based memory updating strategy and analyze the conflicts
between the data distribution assumption in the clustering
methods and the model learning process.
• We present a real-time memory updating strategy

(RTMem). Based on RTMem, the sample-to-instance and the
sample-to-cluster contrastive losses are proposed to improve
the representation ability of the features.
• The proposed RTMem contrastive learning framework

achieves consistent improvements on all benchmark datasets
compared to state-of-the-art unsupervised person ReID
methods.

II. RELATED WORK

A. Unsupervised Person ReID
In recent years, unsupervised methods for person ReID

have been proposed and they can be divided into two main

categories, including generative network based methods [11],
[20], [21], [22], [23], [24] and clustering-based methods [7],
[8], [12], [13], [25], [26], [27], [28], [29], [30], [31].
Generative networks based methods leveraged GANs to
learn domain-invariant information from cross domain style-
transferred images [20], [21] or disentangle feature space
into id-related/unrelated components [11], [23]. In clustering-
based methods, their labels are obtained from feature similarity
computation [28], [29], [30] or clustering features [7], [8],
[12], [13], [25], [26], [27]. Clustering-based methods gradually
becomes a mainstream learning paradigm to achieve state-
of-the-art performance. Early works [7], [9], [14] mostly
heavily relied on the K-means algorithm to generate pseudo
labels. Due to its poor clustering capability, ReID models
often need to be pre-trained on labeled source domain before
clustering image features on the unlabeled target domain.
The major challenge behind it is how to alleviate the effect
brought by pseudo-label noise. Several works [13], [26],
[32], [33] leveraged DBSCAN algorithm [34] to discard
noisy labels automatically and generate high-quality clustering
results based on data distribution. These methods also utilized
self-similarity grouping [26], progressive augmentation strate-
gies [13], multi-feature fusion with adaptive graph learning
[35], and style-translated images [32] to further enhance the
discriminative ability of the model. As a milestone, SpCL [16]
treated each cluster and outlier as a single class while
performing contrastive learning based on a hybrid memory
containing cross-dataset features. Recently, a series of works
retained the contrastive learning but further considered identity
centroids for each camera [36], [37], a cluster consistency [15]
or reliable pseudo labels generation [17], [38].

B. Joint Clustering and Feature Learning

Clustering algorithm is an effective technique to group
unlabeled data into different clusters by clustering image
features. K-means [39] and DBSCAN [34] are two traditional
clustering methods. Recently, various unsupervised learning
methods [40], [41], [42] have shown great potential in jointly
optimizing feature learning and image clustering. Closer to
our work, DeepCluster [42] adopted deep network model
as a prior knowledge to iterative K -means clustering and
representation learning. Along this direction, PCL [43] found
the distribution of prototype via K -means to reformulate
network training as Expectation-Maximization framework.
In ReID context, considering that K -means is sensitive to ini-
tial cluster centroids and outliers, some methods [7], [9], [14]
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Fig. 2. Overview of the overall training process. The pipeline consists of three main components: feature extractor F , instance-level memory bank MI,
and cluster-level memory bank MC. During training, we feed the mini-batch training images into F to obtain their up-to-date feature representations. Then,
these newly extracted features are used to conduct the sample-to-instance and the sample-to-cluster contrastive learning based on MI and MC. During the
back-propagation, we directly replace memory features to the coming-in features at the corresponding position. The details are illustrated in Section III.

designed special mechanisms to avoid those situations, e.g.
initializing ReID models with labeled source dataset and
refining pseudo labels in a mutual learning strategy. Recently,
a series of works [15], [16], [33], [36] used the DBSCAN
algorithm to produce pseudo-labels and integrated it with
contrastive learning to refine features. Reference [44] generate
support samples from actual samples and their neighboring
clusters to discover underlying information and reveal the
accurate clusters.

Their success can largely be ascribed to the use of
DBSCAN, which can handle clusters of different sizes or
shapes and is less affected by noise and outliers. Different
from these approaches, our work comprehensively considers
feature update strategy and enforces these features over
the entire dataset to fit DBSCAN algorithm, rather than
simply using pseudo labels for hardest mining. For example,
ClusterContrast [15] used cluster centroid as cluster proxy
and update it with one (hardest) instance feature vector from
the current mini-batch in a moving averaging manner. Inter-
instance Contrastive Encoding (ICE) [19] leverages inter-
instance pairwise similarity scores as one-hot hard pseudo
labels for hard instance contrast, which aims at reducing
intra-class variance. However, ICE, an unsupervised learning
paradigm, rarely ensure the hardest mining ability with noisy
labels and incorrect case of hardest mining can mislead the
ReID model. As shown in Table III, randomly picking the
proxy surpasses the hardest proxy strategy with large margins
(e.g. 2.3% for mAP on Market). Different from the above
works, our method only requires to randomly select one
image feature from each cluster (without momentum updating)
and compare it with current mini-batch image features in
a contrastive learning manner. Our key intuition is that the
training data of the same class can follow an unbalanced
distribution, i.e. the shape of data distribution is not the
hypothetical spherical distribution in the previous works
[16], [19] and there are no cluster centers and hardest (easiest)
pairs in feature space.

The non-parametric memory bank has been presented
to address various tasks, including unsupervised contrastive
learning [45], [46], metric learning [47], few-shot learn-
ing [48], [49], face recognition [50], [51] and unsuper-
vised ReID [16], [27]. In these computer vision tasks,

non-parametric memory allows sample features to be stored
directly in the feature bank and updated at each training
iteration. References [27], [28], [45] stored the whole dataset
and treat each image instance as a different class, which is dis-
tinguished with a classifier. Recently, several works [47], [51]
identify the phenomenon of slow feature drift and directly
use the current mini-bath feature to update the embeddings of
instances, without additional computational cost (i.e. moving
averaging). Inspired by these approaches, we have developed
a new memory-based framework for unsupervised ReID.
However, our work differs from these memory-based variants
in: (1) All the above methods take a memory bank as instance-
level storage to memorize the past features, while we bridge
feature learning and clustering features not only at instance-
level but also at cluster-level. (2) [27], [28], [45] discard
clustering and treat each instance as a single class, while we
make full use of DBSCAN clustering and inject memorized
features into both sample-to-cluster and sample-to-instance
contrast. (3) Although XBM [47] and VPL [51] and our work
all use the slow feature drift, these methods train network
models with human-annotated labels in a supervised manner.
In this paper, the training of our method can be viewed as an
unsupervised process and it can achieve better performance
over the previous unsupervised methods, even surpassing
supervised methods on several benchmarks. (4) [45] uses
real-time memory updating to store features and conduct
instance-level non-parametric classification, but our method
addresses the inconsistency between clustering algorithm and
momentum-based contrastive learning from sample-to-cluster
and sample-to-instance contrast. In addition, our method does
not require a feature smoothing term [45] to stabilize the
training process and instead relies on real-time sample-to-
cluster contrast to ensure the discriminative ability of the
approach. This strategy allows the features to be more up-
to-date and provides more accurate cluster proxies.

III. METHODOLOGY

A. Preliminary and Revisiting

Let X = {x1, x2, . . . , xn} denote an unlabeled training set,
where xi is the i-th unlabeled image and n is the total number
of person images. The aim of the unsupervised person ReID is
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to train a robust model F = f (θ; x) to project an image to a
specific embedding feature fff ∈ Rd . d is the feature dimension.
Most of methods [15], [16], [17], [19], [33] perform the
two-step iterative strategy: i) generate pseudo labels Y =
{yi , y2, . . . , yn} of all training images via offline clustering
operations, such as Kmeans [39] and DBSCAN [34]. Here,
yi ∈ {1, 2, . . . , C} and C is the number of pseudo labels. ii)
optimize the model with the obtained pseudo-labeled dataset
X ′ = {(x1, y1), (x1, y2), . . . , (xn, yn)}.

1) Revisiting Memory-Based Methods: During the model
optimization, current state-of-state-art methods [15], [16],
[17], [18], [33], [36] adopt the non-parametric InfoNCE [52]
as the loss function. Despite the various variations of InfoNCE
in different approaches, the unified formulation is defined by:

L = −log
exp( fff T

i ·mmmi/τ)∑K
j=1 exp( fff T

j ·mmm j/τ)
. (1)

where τ is a temperature that controls the concentration of
distribution [53]. fff i is L2-normalized, i.e., fff i ← fff i/|| fff i ||2.
mmmi is a specific proxy entry that the i-th sample belongs to.
Specifically, mmm is picked from a memory bank M. There
are several types of M: i) If M stores the feature of each
image sample [16], M ∈ Rd×n and mmmi is the i-th entry of
M. ii) If M saves the centroid of each cluster [15], [19],
M ∈ Rd×C and mmmi is the yi -th entry of M. iii) If camera IDs
are available, M can maintain the camera-based centroid of
each cluster [19], [36]. For each cluster c, M[c] is separated
into A = {a1, a2, · · · ac} entries, where a j represents the j-th
camera of the cluster c and the total camera number is ac.
In this way, mmmi is the j-th camera entry of M[yi ].

It is important to update the memory bank M during
the back-propagation. Most of previous approaches apply the
momentum updating strategy following [27], which is denoted
as:

mmmi ←− αmmmi + (1− α) fff i , (2)

where the hyper-parameter α ∈ [0, 1] controls the updating
rate. The larger α will maintain more previous information,
while the smaller α will focus more on current features.
Therefore, the former works usually adjust α carefully to
achieve the best result. In this paper, we denote the centroid-
based memory (the 2rd type of M) with the above momentum
updating strategy as our baseline LBase.

B. Real-Time Memory Updating Strategy
To the best of our knowledge, there is no prior work

to explore the negative impact of the momentum updating
strategy. In other words, we still do not know whether the
momentum updating is optimal or not, especially under the
DBSCAN clustering method. In this paper, we first analyze
this issue from a new perspective, and then propose a novel
real-time memory updating strategy.

1) A New Perspective: Inconsistency Between the Clustering
Algorithm and the Momentum Memory Updating Strategy:
Previous centroid-based methods [15], [16], [19], [36] gener-
ally represent a cluster with its centroid, i.e., the mean feature
of all samples belonging to this cluster. The centroid-based
memory is then stored in M as shown in Section III-A.1.
The canonical way to update M is the momentum updating

Fig. 3. Examples of the learning process. All points belong to the same
pseudo cluster. (a) The original feature distribution. (b) The centroid-based
method: the mean feature is used as the proxy point of the cluster centroid. All
features are pulled to the proxy point. (c) Our RTMem: The sample-to-instance
memory stores instance features as proxy points. RTMem encourage a
specific feature to be close to all proxies with the same pseudo label
(sample-to-instance memory) and the randomly sampled proxy in the same
cluster (sample-to-cluster memory). For simplicity, we only present a few
proxy points to illustrate our method.

Fig. 4. The slow drift phenomena observed in the feature updating process.
After one epoch, the Euclidean distance between embedding features at the
present and the previous iterations is relatively small. Even though there is
a large variation of the feature representations due to the decrease of the
learning rate, the re-initialization of the memorized features at each epoch
can maintain the slow drift of the feature change.

as Eq. (2). It is based on the assumption that the data follows
a perfect spherical distribution. Based on the assumption,
it is natural to utilize K-means [39] as the clustering method
since K-means also estimates a proxy as the cluster center.
However, most of the prior approaches apply the density-
based DBSCAN [34] algorithm as the clustering method
and find that DBSCAN outperforms K-means by a large
margin. The underlying reason is that the data points distribute
in a manifold that the clustering manner of DBSCAN is
more appropriate. Despite the proper clustering algorithm to
generate good pseudo labels, these approaches still use the
momentum updating strategy on M. Actually, the manifold
requires Euclidean space in a local area. That is to say that the
mean feature of a cluster may be not in the real distribution (as
shown in Figure 1). It thus results in sub-optimal performance
due to the inconsistency between the clustering algorithm and
the momentum-based memory updating strategy.
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2) Real-Time Memory Updating Strategy (RTMem): To
address the above problem, we propose to update the memory
bank with the timely feature embedding. This behavior is
named as the real-time memory updating strategy. In detail,
we simply replace the memory entry mmmi with the current
feature fff i :

mmmi ← fff i (3)

Interestingly, our real-time updating strategy in Eq. (3) is a
special situation of Eq. (2) when α = 0. In this case, we can
preserve the original feature distribution with the sample
feature rather than the fake distribution with the mean feature.
Meanwhile, it is reasonable to directly replace the memory
entry with the feature embedding. As shown in Figure 4, the
feature drift (formulated with the Euclidean distance between
the features of the preceding iteration and those of the present
iteration) gradually becomes low. It demonstrates the stability
and effectiveness of the real-time updating strategy. Besides,
there is no need to carefully tune the hyper-parameter α,
making our method more efficient. The proposed updating
strategy enables cluster learnable to provide accurate cluster
proxies for sample-to-cluster contrast. Some existing works
[54], [55] have a similar idea of the learnable queries or
prototype. For example, [54] uses a set of learnable queries to
interact with both video and textual representations. [55] uses
the learnable verb prototypes to guide noun classification with
information flow between verb and noun.

C. Optimization
Based on the proposed RTMem, we further propose two

losses for the model optimization, i.e., the sample-to-instance
loss and the sample-to-cluster loss.

1) Sample-to-Instance Loss With RTMem: Considering the
DBSCAN clustering manner that measures the instance-level
similarities, it is necessary to explore the sample relationships
during the training process. To this end, we first construct a
memory bank MI, storing the features of all images in the
training set. Here, MI[i] is the i-th entry of MI, representing
the i-th image. To ensure the real-time memory updating on
the instance feature, we directly replace MI[i] with the timely
feature fff i in every iteration, where fff i is in the current mini-
batch B:

MI[i] ← fff i . (4)

The goal of the model optimization is to pull intra-cluster
samples together while push inter-cluster samples far away
from each other. To this end, given a specific feature fff i ,
we propose a sample-to-instance loss function, which is
formulated as:

LS2I = −log

∑
s∈S exp( fff T

i ·mmms/τ)∑n
j=1 exp( fff T

i ·mmm j/τ)
, (5)

where mmms = MI[s], s ∈ S. S is a set that consists of
all positive samples, sharing the same pseudo label with
fff i . Note that the features in MI are real-time updated via
Eq. (4). In this way, the sample-to-instance loss LS2I can focus
on the up-to-date features, instead of the fake and obsolete
momentum-updated features [16], [56]. Meanwhile, we take
all samples into consideration at once. It is different from [56]

Algorithm 1 Our RTMem Algorithm on Unsupervised Person
ReID
Require: Unlabeled data X , network F , the instance-based memory bank

MI initialized with features of all training images, the cluster-based
memory bank MC initialized with image features, the temperature τ ,
the iteration number Niters, the total training epochs Nepochs.

Ensure: A powerful F .
1: for epoch in [1, Nepochs] do
2: Cluster X into C pseudo clusters;
3: Obtain the pseudo-labeled dataset X ′ =

{(x1, y1), (x1, y2), . . . , (xn , yn)};
4: Initial the centroid-based memory bank MC in Eq.(6);
5: for iter in [1, Niters] do
6: Sample mini-batch images and extract the sample features fff ;
7: Calculate LS2I and LS2C according to Eq. (5) and Eq. (7);
8: Update the network F by back-propagation;
9: Update MI and MC according to Eq. (4) and Eq. (6);

10: end for
11: end for

that [56] only considers the hardest positive samples. We argue
that our LS2I can take full advantages of the global information
that is beneficial for overcoming the intra-cluster variations.

2) Sample-to-Cluster Loss With RTMem: The previous
work [15] finds that the centroid-based memory with the
contrastive loss is effective on the unsupervised ReID.
However, they still utilize the momentum updating on the
memory bank to keep the stability of the training process.
As analyses in Section III-B, there exists the inconsistency on
the momentum updating scheme and the DBSCAN clustering
manner. Thus, we update the centroid-based memory by the
proposed real-time updating strategy. Specifically, we build a
centroid-based memory bank MC as in [15]. Instead of the
momentum update, for a specific mini-batch B, we randomly
pick one sample in each mini-batch pseudo cluster. For a
specific fff i with the pseudo label yi , we directly replace the
yi -th entry in MC to fff i in each iteration. The formulation is
as follows:

MC[yi ] ← fff i . (6)

In this way, the randomly sampled instance can be considered
as the newly assigned proxy of the cluster centroid as
illustrated in Figure 3. Here, we also initial MC in each epoch
with the randomly picked sample in each cluster. Then we
utilize the non-parameter InfoNCE [52] loss function on MC
to enforce the sample to be close to its cluster proxy while
being far from other proxies. We name this loss as the sample-
to-cluster loss function, denoted as:

LS2C = − log
exp( fff T

i ·MC[yi ]/τ)∑C
j=1 exp( fff T

i ·MC[ j]/τ)
. (7)

Different from [15], our LS2C directly utilize the
up-to-date centroid proxy for the model optimization.
It follows the characteristic of the DBSCAN clustering
algorithm, maintaining the original data manifold rather
than the hypothetical spherical distribution in the previous
works [16], [19].

3) Overall: In each iteration, we joint optimize the sample-
to-instance loss and the sample-to-cluster loss. The overall
optimization is:

L = LS2C + λLS2I, (8)
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where λ controls the degree of two loss functions. In summary,
the proposed RTMem based optimization does not rely on
any strict assumption of the data distribution, but follows an
intuitive format that each image should be close to any or
even all of the samples in the same pseudo cluster to which it
belongs. The training details of our RTMem are provided in
Algorithm 1.

IV. EXPERIMENT

Datasets: We evaluate our proposed RTMem on three
large-scale ReID benchmarks, i.e., Market-1501 [57],
MSMT17 [20], and VeRi [58].

Market-1501 [57] contains 32,668 annotated images of
1,501 identities captured by 6 disjoint cameras. Among them,
12,936 images of 751 identities are used for training and the
remaining images of 705 identities are for testing.

MSMT17 [20] is the most challenging ReID dataset, which
is composed of 126,441 bounding boxes of 4,101 identities.
The training set has 32,621 images with 1,041 identities and
the testing set has 93,820 testing images with 3,060 identities,
collected by fifteen cameras.

VeRi [58] consists of over 40,000 bounding boxes of
619 vehicles in real-world traffic scene, where each vehicle
is captured by 2∼18 cameras and thus contains different
viewpoints, illuminations, and resolutions.

Evaluation Protocols: In all experiments, we adopt mean
average precision(mAP) and cumulative matching character-
istic (CMC) to evaluate the performance of our methods on
three benchmark datasets. No post-processing technique (e.g.
re-ranking [59] and multi-query fusion [57]) is adopted during
testing stage.

Implementation Details: For fairness, we follow the
standard experiment settings as in [15], [16], [17], and [19].
Specifically, we adopt an ImageNet [60] pretrained ResNet-
50 [61] as the default backbone network. We remove all sub-
modules after the 4-th layer and add a global average pooling
(GAP) layer or a generalized mean pooling (GEM) layer,
followed by a batch normalization layer [62] to yield 2048-
dimensional feature embeddings. Without the specification,
we adopt GEM as the default pooling operation for all ablation
studies. Note that we report both results of GAP and GEM
in Table IV in the main paper. The maximum distance
between two samples to be considered as the neighbors in
DBSCAN [34] is set to 0.5 for Market-1501 and DukeMTMC-
reID, and 0.7 for MSMT17. At the beginning of each epoch,
DBSCAN is first utilized to generate pseudo labels for
training images. During training, person images is resized to
256 × 128. The image augmentation is random flipping,
padding with 10 pixels, random crop, and random erasing [63].
Each mini-batch is composed of 256 training images
belonging to 16 pseudo classes and is sampled with the
class-balanced manner [64]. The optimizer is Adam [65]
and the weight decay is 5 × 10−4. The learning rate
is initialized to 3.5 × 10−4 and is decreased by 0.1 of
its previous value every 20 epochs. The total epoch is
50. For sample-to-instance and sample-to-cluster contrastive
loss, we set the temperature parameter τ as 0.05 and the
balancing factor λ in Eq. (8) as 1.2 based on empirical
experiments.

A. Ablation Study

To comprehensively understand that our RTMem can fully
exploit the clustering results and fit feature distribution in a
manifold for unsupervised ReID task, we conduct a qualitative
ablation study to investigate different components of our
methods.

1) Effectiveness of the Sample-to-Instance Loss LS2I: We
train our baseline model with the mean feature vectors as the
cluster centroid and update it with the momentum scheme.
As shown in Table I, we observe the obvious improvement
when adding LS2I into baseline model, especially from 17.2%
to 23.5% mAP on MSMT17. RTMem also achieves significant
improvements when adding LS2I into LS2C, e.g., 6.6% mAP
improvement on MSMT17. It demonstrates that the proxy
centroid for the cluster representation in the baseline results in
a sub-optimal status. On the contrary, our sample-to-instance
loss with RTMem treats each cluster as a set of real-time
features. Injecting the real-time features within cluster into
the model could take full advantage of DBSCAN clustering
to align all intra-cluster samples and overcome their variations,
which in turn improves clustering.

2) Effectiveness of the Sample-to-Cluster Loss LS2C: The
sample-to-cluster loss LS2C is enforced on mini-batch features
and proxy features of the real-time memory MC. It preserves
the original data manifold, rather than the hypothetical
spherical distribution in the previous works [16], [19]. With
LS2C, our method can adaptively characterize the original
data distributions and maintain as much benefits of DBSCAN
clustering as possible to achieve the strong representation
capability. Applying our RTMem on MC can boost the
baseline model by 9.3% and 14.7% mAP on Market1501 and
MSMT17, respectively. It is observed that LS2C combining
LS2I further improves its retrieval accuracy. Our RTMem
generalizes better than the baseline model. We also re-
implement XBM [47] on ReID datasets (i.e., Market-1501 and
MSMT17) and obtain poor performance. The main reason is
that cross-batch memory in XBM is used to collect sufficient
sample pairs and mining hard negative examples heavily rely
on human-annotated labels in a supervised manner, while our
clustering-based method rarely ensures the quality of labels.

3) Clustering Methods v.s. the Memory Updating Strategy:
Current mainstream methods (e.g., SpCL [16]) typically
moving average as feature update strategy and make each
image feature converge to its corresponding cluster centroid
at uniform space. However, the data points of same class
actually distribute in a manifold, where the shape of data
distribution is non-uniform and there are no cluster centroids
in feature space. This is also why K-means is not a mainstream
clustering algorithm due to its poor clustering ability for ReID
data. In fact, as shown in Figure 1, K-means based clustering
estimates a proxy as the cluster center during clustering
process and thus K-means is suitable for the learning paradigm
of converging to a center point and not consistent with the
memory updating strategy.

To validate this point, we train our RTMem (i.e., LS2I&LS2C
in Table II) and the centroid-based learning paradigm
(i.e., LBase in Table II) with different clustering processes,
including K-means and DBSCAN. Specifically, in order to
preserve original feature distribution, we adopt the real-time
memory updating strategy for sample-to-instance (LS2I) and
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TABLE I
QUALITATIVE ABLATION STUDIES OF THE PROPOSED APPROACH ON MARKET1501 AND MSMT17. THE BASELINE SCHEME (LBASE ) IS

TRAINED WITH THE MEAN FEATURE VECTORS AS THE CLUSTER CENTROID AND UPDATING IT WITH MOMENTUM

TABLE II
COMPARISON WITH CENTROID-BASED APPROACHES UNDER DIFFERENT CLUSTERING METHODS. MAP AND R1 ARE REPORTED TO EVALUATE

THE PERFORMANCE QUANTITATIVELY ON MARKET1501 (MARKET) AND MSMT17 (MSMT). LBASE REPRESENTS THE MOMENTUM-BASED
MEMORY UPDATING WITH THE CENTROID-BASED LEARNING. LS2I&LS2C DENOTES OUR RTMEM WITH THE SAMPLE-TO-CLUSTER

AND SAMPLE-TO-INSTANCE CONTRASTIVE LEARNING. UNDER THE K-MEANS CLUSTERING, THE LEARNING PARADIGM OF
CONVERGING TO A CENTER POINT IS SUPERIOR TO OURS, WHILE UNDER DBSCAN CLUSTERING, OUR METHOD

PERFORMS SUPERIOR PERFORMANCE

TABLE III
QUALITATIVE ABLATION STUDIES OF THE PROPOSED
APPROACH WITH DIFFERENT SAMPLE-TO-CLUSTER
FEATURE CONTRASTIVE LOSS ON MARKET-1501

Fig. 5. Performance of our method and baseline with different momentum
parameter on Market-1501.

sample-to-cluster (LS2C), in which each memorized feature
is directly replaced with up-to-date feature in a random
manner.

The detailed results are summarized in Table II, from
which we draw two observations. 1) First, comparing our
proposed method (LS2I&LS2C) with centroid-based learning
(LBase) under K-means setting, we clearly observe that LBase

Fig. 6. Results of our method with different values of parameter λ on
Market-1501.

consistently surpasses our LS2I&LS2C. Taking Market as
an example, LBase outperforms our LS2I&LS2C by +18.2%
(mAP), +24.3% (R1), respectively. It is because that K-means
assumes that the data is the spherical distribution, so that
the mean feature with momentum updating as proxy is
better than using a randomly picked proxy. 2) Second,
comparing DBSCAN with K-means under the same method,
we find that DBSCAN performs better than K-means on all
results. This indicates that DBSCAN possesses a stronger
clustering ability than K-means. In addition, our method
consistently outperforms the centroid-based methods when
using DBSCAN, clearly verifying the analyses in Section III
that DBSCAN manner is more appropriate on the manifold
data. For intuitive illustration, we also draw the behaviors of
different clustering methods with different memory updating
strategies in Figure 7. It clearly shows that DBSCAN is better
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Fig. 7. Behaviors of different clustering methods v.s. different memory updating strategies. The baseline method is the centroid-based method with the
momentum updating strategy. Comparing with (a) and (b), DBSCAN clustering algorithm performs better than the K-means clustering method. Comparing
with (b) and (c), our RTMem achieves better feature representation than the momentum updating strategy. Here, different shapes (& colors) represent different
ground-truth identities.

Fig. 8. Visualization comparison with ICE [19] and our RTMem on top five retrieved images on Market1501. Red boxes indicate false results, while green
boxes represent correct results.

TABLE IV
THE COMPARISONS OF MODEL PARAMETERS, COMPUTATIONAL EFFORT

AND TRAINING (TESTING) TIME. FLOPS§ REPRESENTS THE CAL-
CULATED AMOUNT DURING TRAINING PHASE, WHILE FLOPS†

INDICATES COMPUTATIONAL EFFORT GENERATED
BY POST-PROCESSING

than K-means and our RTMem outperforms the baseline by a
large margin.

4) Ablation on the Choice of the Cluster Proxy: In Table I,
we have shown that the proposed RTMem outperforms the
baseline of using mean features as the cluster proxy. In this
section, we compare the performance of several variants of
the proposed sample-to-cluster loss by replacing the cluster
proxy with the hardest sample or the easiest sample in

the corresponding cluster. The cluster proxy is used to
update cluster-level memory bank MC) on Market-1501 [57],
as shown in Table III. From Table III, we find that randomly
picking the proxy surpasses other designed proxy choice
strategies. The implementation of random samples is also
easier as it does not require calculating external hardest or
easiest samples. We speculate that the reason for its superior
performance is two-fold. On the one hand, when the averaging
operation of features within cluster is employed in an off-
the-shelf manner, cluster centroids fail to depict the true
semantic similarity on the feature space. Compared with
it, designed proxy choice strategies only provide relatively
reliable optimization direction for ReID model with the
hardest and easiest samples, respectively. On the other hand,
randomly sampling image features as the timely feature could
cover more semantic information and effectively leverage
the sample relation to enhance the representation ability
of the ReID model. Thus, such a strategy brings about
higher ReID accuracy than others. Furthermore, the proposed
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TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON PERSON REID TASK, INCLUDING UNSUPERVISED DOMAIN ADAPTATION, FULLY UNSUPERVISED,

AND SUPERVISED METHODS. GAP REPRESENTS EMPLOYING THE GLOBAL AVERAGE POOLING. GEM DENOTES TO EMPLOY THE GENERALIZED
MEAN POOLING. AGNOSTIC MEANS THE CAMERA INFORMATION IS UNAVAILABLE, WHILE AWARE MEANS

THE AVAILABLE CAMERA INFORMATION

TABLE VI
COMPARISON WITH THE REID METHODS ON VERI DATASET

sample-to-instance loss can boost the performance for all
kinds of proxies, indicating the generalization ability of the
proposed LS2I.

5) Discussion on Momentum-Based Memory Updating: As
shown in Figure 5, the performance of the baseline is sensitive
to the momentum coefficient (i.e., controlling the feature
updating rate). The result is consistent with [15], and [16]. As a
result, it usually needs to carefully tune the hyper-parameter

to get the best results. However, the inconsistency between the
clustering and the memory updating still exists. In contrast, our
RTMem directly replaces the memory proxies with the up-to-
date features to ensure the original data distribution, resulting
in better performance. In addition, the random sampling
scheme in our RTMem is more robust when using momentum
updating since we maintain the original data rather than the
fake proxy of the mean feature.

Figure 6 shows the influences of different values of λ in our
method. We can see that as λ increases, the model performance
gradually becomes better. The best result is achieved with
the parameter λ = 1.2., but model performance begins to
degrade again after λ = 1.2. Overall, our approach is not very
sensitive to parameter and consistently achieves comparable
performance in the range.

Table IV presents the comparisons of model parameters,
computational effort and training (testing) time. From the
results of Table IV, our method increases some additional
computational effort and consequently training time compared
to other methods (e.g, SpCL [16] and ClusterContrast [15]),
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Fig. 9. The change process of cluster centroids (i.e. feature means). The top row shows the results of cluster centroids updated with momentum mechanism,
while the bottom row presents the results of clusters proxy with online update. For the above results, we calculate mean feature from the same pseudo cluster
as cluster centroids and highlight them with blue “+”. Different colors represents the different clusters. Zoom in for a better view of the results.

but achieves the significant improvement on identification
accuracy. Additionally, our method maintains the same
inference efficiency as other methods in the inference
phase.

B. Comparison With State-of-the-Art Methods

In this section, we compare the proposed RTMem with other
state-of-the-art methods on Market-1501, DukeMTMC-reID
and MSMT17. The quantity results are in Table V and the
quality results are in Figure 8.

1) Comparison With UDA Methods: The existing UDA re-
ID methods usually adopt labeled source data to reduce label
noise. Benefitting from the prior knowledge of external labeled
data, the results of UDA methods are commonly superior
to fully unsupervised methods. For instance, SpCL [16]
obtains 76.7% mAP when using an external source domain
when tested on Market-1501, surpassing fully unsupervised
SpCL [16] by 3.6% mAP. Despite the success on UDA,
our RTMem can still outperform the current SOTA UDA
methods when using the same backbone and pooling operation
(i.e., ResNet-50 and GAP). Interestingly, our RTMem is
even superior than IDM [69], especially on DukeMTMC-
reID, with only unlabeld data. The main reason is that
the great progress of UDA methods heavily rely on an
assumption that the distribution gap between source and
target domain is not significant. Indeed, having labeled
source data for unsupervised ReID might be a sub-optimal
solution. On the contrary, our method focuses more on
unlabeled dataset and fully exploits identity information
from unsupervised clustering, therefore owning unlimited
scalability.

2) Comparison With Fully Unsupervised Methods: Under
the fully unsupervised setting, our RTMem also consistently
outperforms the existing methods on all three datasets.
Specifically, as a milestone, SpCL [16] treats each cluster
and outlier as a single class while performing contrastive
learning based on a memory containing unlabeled image
features. Along this direction, a series of works [15], [17], [38]
have achieved better performance by refining pseudo labels
or designing hard instance contrast. Relying on a simple
real-time memory updating strategy, our RTMem surpasses
the prior approaches. The improvement is further enlarged
with GEM pooling. Compared with camera-aware methods
[19], [36], our RTMem (GAP-agnostic) is camera-agnostic
and still outperforms them on Market1501 and DukeMTMC-
reID. When camera information is available, our RTMem
(GAP-aware) further enlarges the performance lead and
outperforms ICE [19]. Figure 8 shows the visualization
on the top five retrieval results of ICE [19] and our
RTMem . The results show that our method can focus
on more detailed information since the real-time memory
updating strategy can well maintain the original data
distribution.

3) Comparison With Supervised Methods: Finally,
we present two supervised methods for reference, including
PCB [1] and DG-Net [2]. We also report the performance
of our backbone network trained with different GAP and
GEM, which indicates the compatibility of our methods
with different pooling operations. It can be observed that
our unsupervised model (RTMem) consistently surpasses
PCB [1] and reduces the gap with DG-Net [2] on two standard
benchmarks (i.e. Market1501 and DukeMTMC-reID). Further,
with the GEM pooling, our method surpasses DG-Net [2] by
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Fig. 10. The visualization of t-SNE on 30 randomly sampled clusters from the Market-1501 training set. Different colors represent different clusters. The
top and the bottom figures represent the change of the sampled clusters along with the training process in our RTMem and the baseline model, respectively.
Figure shows that the variation of the feature distribution in our RTMem is more stable than that of the baseline. Our method finally achieves more compact
and correct clusters compared to the baseline scheme.

0.5% and 1.2% mAP on Market1501 and DukeMTMC-reID,
respectively. On a larger and more challenging dataset, i.e.,
MSMT17, we observe that our approach still mitigates the
gap with PCB [1].

To show the robustness of our approach, we conduct
experiments with the real-world vehicle datasets (i.e., VeRi-
776). As shown in Table VI, our proposed method outperforms
prior state-of-the-art methods on VeRi dataset with +3.7%
and +4.0% of mAP than ClusterContrast on GAP and GEM
poolings, respectively.

4) More Visualization: To better show the effectiveness of
our RTMem along with the training process, we visualize
the feature distribution of 30 randomly sampled clusters
using t-SNE [73]. Different color points represent clusters
with different pseudo labels generated by DBSCAN [34].
Note that t-SNE can not show the true feature distribution
since the data points distribute in a manifold. But t-SNE
can still reflect the transformation of the data during the
training process. From Figure 10, it can be seen that the
distribution of same cluster is highly variable and unbalanced
at the early phase of training. Our RTMem, using the real-
time memory updating strategy, does not group the features
of the same pseudo-label into one cluster as quickly as
the baseline does, which uses the clustering center with
momentum as a proxy. At the 10-th epoch, the feature
distribution of the same pseudo-label still preserves certain
shape in our method, while the baseline model achieves
more compact clusters. However, our method outperforms
the baseline model by 3.7% mAP for identification accuracy.
As time goes on, our RTMem gradually compacts the samples
within the same pseudo clusters. At the end of the training,
our method achieves not only the best performance, but

also the optimal intra-cluster compactness and inter-cluster
separation.

We have presented the cluster centroids at different epochs
during training, highlighting the changes in their positions
with online update. The top and bottom rows of Figure 9
illustrates the changes in cluster centroids obtained without
and with online update. The results show that more compact
feature distributions are achieved when online update is added.
Without online update, the cluster centroids almost appear
in the center of each cluster and may group person images
with different identities into the same pseudo clusters, which
contain multiple person identities. Our method aligns the
current image feature into its randomly sampled cluster feature
with online update, rather than feature center points, This
only provides a relatively reliable optimization direction for
the model and enhances the representation ability of model
progressively.

Figure 9 shows that how the cluster centroids change at
different epochs during training when the online update is
added. Top and bottom rows show the change process of
clusters obtained without and with online update, respectively.
From the results of Figure 9, we can observe that the more
compact feature distributions are achieved when online update
is added. With cluster centroid as cluster proxy, features
within the same pseudo labels are grouped into their clusters.
However, these pseudo labels are not correct, and the same
pseudo labels may contain different person identities. On the
contrary, our method can alleviate the problem with randomly
sampled features as cluster proxy. This equally treats features
within the same pseudo clusters as cluster centroids and
provides a relatively reliable proxy for model optimization,
rather than converging into unreliable cluster centroids.
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V. CONCLUSION

Our work directly addresses deficiencies of prior work
that uses the inaccurate cluster proxies and the momentum
updating strategy to unsupervised representation learning.
First, a real-time memory updating strategy (RTMem) is
proposed for unsupervised person ReID task. With the
RTMem, we can directly replace the feature stored in the
memory bank with a random feature sampled from the
current mini-batch without momentum updating. And thus we
could effectively enforce two kinds of contrastive learning
for unlabeled images into the network training process,
including the sample-to-instance loss and the sample-to-cluster
loss. Experimental results demonstrate that representing each
sample and cluster with RTMem produces better identi-
fication accuracy than the previously-dominant approaches
of the centroid-based method with the momentum updating
strategy.

REFERENCES

[1] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part
models: Person retrieval with refined part pooling (and a strong
convolutional baseline),” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 480–496.

[2] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint
discriminative and generative learning for person re-identification,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2138–2147.

[3] L. Wei et al., “SIF: Self-inspirited feature learning for person re-
identification,” IEEE Trans. Image Process., vol. 29, pp. 4942–4951,
2020.

[4] J. Yin, J. Xie, Z. Ma, and J. Guo, “MPCCL: Multiview predictive coding
with contrastive learning for person re-identification,” Pattern Recognit.,
vol. 129, Sep. 2022, Art. no. 108710.

[5] R. Quan, X. Dong, Y. Wu, L. Zhu, and Y. Yang, “Auto-ReID: Searching
for a part-aware ConvNet for person re-identification,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3750–3759.

[6] M. Li, X. Zhu, and S. Gong, “Unsupervised person re-identification by
deep learning tracklet association,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 737–753.

[7] F. Yang et al., “Asymmetric co-teaching for unsupervised cross-domain
person re-identification,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 12597–12604.

[8] Y. Lin, L. Xie, Y. Wu, C. Yan, and Q. Tian, “Unsupervised person re-
identification via softened similarity learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 3390–3399.

[9] Y. Zhai, Q. Ye, S. Lu, M. Jia, R. Ji, and Y. Tian, “Multiple expert
brainstorming for domain adaptive person re-identification,” in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 594–611.

[10] J. Li and S. Zhang, “Joint visual and temporal consistency for
unsupervised domain adaptive person re-identification,” in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 483–499.

[11] Y. Zou, X. Yang, Z. Yu, B. V. Kumar, and J. Kautz, “Joint disentangling
and adaptation for cross-domain person re-identification,” in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 87–104.

[12] Y. Lin, X. Dong, L. Zheng, Y. Yan, and Y. Yang, “A bottom-up
clustering approach to unsupervised person re-identification,” in Proc.
AAAI, vol. 33, Aug. 2019, pp. 8738–8745.

[13] X. Zhang, J. Cao, C. Shen, and M. You, “Self-training with progressive
augmentation for unsupervised cross-domain person re-identification,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 8222–8231.

[14] Y. Ge, D. Chen, and H. Li, “Mutual mean-teaching: Pseudo label refinery
for unsupervised domain adaptation on person re-identification,” in Proc.
Int. Conf. Learn. Represent., 2020, pp. 1–15.

[15] Z. Dai, G. Wang, W. Yuan, X. Liu, S. Zhu, and P. Tan, “Cluster contrast
for unsupervised person re-identification,” 2021, arXiv:2103.11568.

[16] Y. Ge, F. Zhu, D. Chen, R. Zhao, and H. Li, “Self-paced contrastive
learning with hybrid memory for domain adaptive object re-ID,” in Proc.
Adv. Neural Inf. Process. Syst., 2020, pp. 11309–11321.

[17] X. Zhang, Y. Ge, Y. Qiao, and H. Li, “Refining pseudo labels
with clustering consensus over generations for unsupervised object re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 3436–3445.

[18] K. Zeng, M. Ning, Y. Wang, and Y. Guo, “Hierarchical clustering
with hard-batch triplet loss for person re-identification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13657–13665.

[19] H. Chen, B. Lagadec, and F. Bremond, “ICE: Inter-instance contrastive
encoding for unsupervised person re-identification,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14960–14969.

[20] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer GAN to
bridge domain gap for person re-identification,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 79–88.

[21] W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and J. Jiao, “Image-
image domain adaptation with preserved self-similarity and domain-
dissimilarity for person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 994–1003.

[22] Y. Huang, Q. Wu, J. Xu, and Y. Zhong, “SBSGAN: Suppression
of inter-domain background shift for person re-identification,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 9527–9536.

[23] Q. Yang, H.-X. Yu, A. Wu, and W.-S. Zheng, “Patch-based discrimina-
tive feature learning for unsupervised person re-identification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 3633–3642.

[24] H. Chen, Y. Wang, B. Lagadec, A. Dantcheva, and F. Bremond,
“Joint generative and contrastive learning for unsupervised person re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 2004–2013.

[25] L. Song et al., “Unsupervised domain adaptive re-identification: Theory
and practice,” Pattern Recognit., vol. 102, Jun. 2020, Art. no. 107173.

[26] Y. Fu et al., “Self-similarity grouping: A simple unsupervised cross
domain adaptation approach for person re-identification,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6112–6121.

[27] Z. Zhong, L. Zheng, Z. Luo, S. Li, and Y. Yang, “Invariance matters:
Exemplar memory for domain adaptive person re-identification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 598–607.

[28] H.-X. Yu, W.-S. Zheng, A. Wu, X. Guo, S. Gong, and J.-H. Lai,
“Unsupervised person re-identification by soft multilabel learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2148–2157.

[29] D. Wang and S. Zhang, “Unsupervised person re-identification via multi-
label classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 10981–10990.

[30] H. Ji, L. Wang, S. Zhou, W. Tang, N. Zheng, and G. Hua,
“Meta pairwise relationship distillation for unsupervised person re-
identification,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 3661–3670.

[31] J. Yin, S. Zhang, J. Xie, Z. Ma, and J. Guo, “Unsupervised person re-
identification via simultaneous clustering and mask prediction,” Pattern
Recognit., vol. 126, Jun. 2022, Art. no. 108568.

[32] Y. Zhai et al., “AD-Cluster: Augmented discriminative clustering for
domain adaptive person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9021–9030.

[33] T. Isobe, D. Li, L. Tian, W. Chen, Y. Shan, and S. Wang, “Towards
discriminative representation learning for unsupervised person re-
identification,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 8526–8536.

[34] M. Ester et al., “A density-based algorithm for discovering clusters in
large spatial databases with noise,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 1996, pp. 226–231.

[35] R. Zhou, X. Chang, L. Shi, Y.-D. Shen, Y. Yang, and F. Nie, “Person
reidentification via multi-feature fusion with adaptive graph learning,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1592–1601,
May 2020.

[36] M. Wang, B. Lai, J. Huang, X. Gong, and X.-S. Hua, “Camera-aware
proxies for unsupervised person re-identification,” in Proc. AAAI Conf.
Artif. Intell., 2021, pp. 2764–2772.

Authorized licensed use limited to: University of Ulsan. Downloaded on November 28,2023 at 05:53:44 UTC from IEEE Xplore.  Restrictions apply. 



YIN et al.: REAL-TIME MEMORY UPDATING STRATEGY FOR UNSUPERVISED PERSON RE-IDENTIFICATION 2321

[37] Z. Hu, Y. Sun, Y. Yang, and J. Zhou, “Divide-and-regroup clustering
for domain adaptive person re-identification,” in Proc. AAAI Conf. Artif.
Intell., 2022, vol. 36, no. 1, pp. 980–988.

[38] Y. Zheng et al., “Online pseudo label generation by hierarchical cluster
dynamics for adaptive person re-identification,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 8371–8381.

[39] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[40] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 5147–5156.

[41] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 5879–5887.

[42] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 132–149.

[43] J. Li, P. Zhou, C. Xiong, and S. C. Hoi, “Prototypical contrastive learning
of unsupervised representations,” in Proc. Int. Conf. Learn. Represent.,
2021, pp. 1–16.

[44] X. Zhang et al., “Implicit sample extension for unsupervised person re-
identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 7369–7378.

[45] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3733–3742.

[46] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9729–9738.

[47] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch memory
for embedding learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 6388–6397.

[48] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 29, 2016, pp. 3630–3638.

[49] Z. Wu, A. A. Efros, and S. X. Yu, “Improving generalization via scalable
neighborhood component analysis,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 685–701.

[50] Q. Meng, S. Zhao, Z. Huang, and F. Zhou, “MagFace: A universal
representation for face recognition and quality assessment,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 14225–14234.

[51] J. Deng, J. Guo, J. Yang, A. Lattas, and S. Zafeiriou, “Variational
prototype learning for deep face recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 11906–11915.

[52] M. U. Gutmann and A. Hyvarinen, “Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image
statistics,” J. Mach. Learn. Res., vol. 13, no. 2, pp. 307–361, 2012.

[53] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[54] X. Wang, L. Zhu, Z. Zheng, M. Xu, and Y. Yang, “Align and Tell:
Boosting text-video retrieval with local alignment and fine-grained
supervision,” IEEE Trans. Multimedia, early access, Sep. 5, 2022, doi:
10.1109/TMM.2022.3204444.

[55] X. Wang, L. Zhu, H. Wang, and Y. Yang, “Interactive prototype
learning for egocentric action recognition,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 8168–8177.

[56] Z. Hu, C. Zhu, and G. He, “Hard-sample guided hybrid contrast
learning for unsupervised person re-identification,” in Proc. 7th
IEEE Int. Conf. Netw. Intell. Digit. Content (IC-NIDC), Nov. 2021,
pp. 91–95.

[57] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 1116–1124.

[58] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance
measures and a data set for multi-target, multi-camera tracking,” in
Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 17–35.

[59] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-
identification with k-reciprocal encoding,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1318–1327.

[60] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Patt. Recognit., Jun. 2009, pp. 248–255.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[62] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[63] M. Saran, F. Nar, and A. N. Saran, “Perlin random erasing for data
augmentation,” in Proc. 29th Signal Process. Commun. Appl. Conf.
(SIU), Jun. 2021, pp. 13001–13008.

[64] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” 2017, arXiv:1703.07737.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2014, pp. 1–15.

[66] Z. Zhong, L. Zheng, Z. Luo, S. Li, and Y. Yang, “Learning to adapt
invariance in memory for person re-identification,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 8, pp. 2723–2738, Aug. 2021.

[67] G. Chen, Y. Lu, J. Lu, and J. Zhou, “Deep credible metric
learning for unsupervised domain adaptation person re-identification,”
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020,
pp. 643–659.

[68] Y. Bai, C. Wang, Y. Lou, J. Liu, and L. Y. Duan, “Hierarchical
connectivity-centered clustering for unsupervised domain adaptation
on person re-identification,” IEEE Trans. Image Process., vol. 30,
pp. 6715–6729, 2021.

[69] Y. Dai, J. Liu, Y. Sun, Z. Tong, C. Zhang, and L.-Y. Duan, “IDM:
An intermediate domain module for domain adaptive person re-ID,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 11864–11874.

[70] Z. Wang et al., “CycAs: Self-supervised cycle association for learning
re-identifiable descriptions,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 72–88.

[71] Y. Cho, W. J. Kim, S. Hong, and S.-E. Yoon, “Part-based pseudo
label refinement for unsupervised person re-identification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 7308–7318.

[72] M. Li, C.-G. Li, and J. Guo, “Cluster-guided asymmetric contrastive
learning for unsupervised person re-identification,” IEEE Trans. Image
Process., vol. 31, pp. 3606–3617, 2022.

[73] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.

Authorized licensed use limited to: University of Ulsan. Downloaded on November 28,2023 at 05:53:44 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TMM.2022.3204444

