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Attention Module for Enhanced Posture
Accurate in 2D-3D Pose Estimation Network

Abstract— Addressing the challenge of effectively reduc-
ing a redundant 2D pose sequence from a weak pose detec-
tor to create a representative 3D pose remains unresolved.
To tackle this, the proposed method integrates an efficient
system that incorporates the attention mechanism. This
system deploys two main networks: a 2D pose detector and
a 3D pose estimator. The 2D pose detector is enhanced
with an attention module for precise joint detection, and
a new attention module is implemented after 2 last blocks
to improve accuracy. The 3D pose network also leverages
a Transformer-based architecture with advanced attention
mechanisms, including a new Transformer Encoder that
applies spatial and temporal attention to capture long-
range dependencies in 2D pose sequences. This proposed
architecture has demonstrated good comparison perfor-
mance on two benchmark datasets for 3D human pose es-
timation—Human3.6M and MPI-INF-3DHP—improving per-
formance by 0.9% and 0.3% respectively over its closest
counterpart, PoseFormer. Additionally, in terms of 2D pose
estimation, the system surpasses existing methods on the
COCO 2017 Microsoft Dataset. Link demo: demo vision

Index Terms— 3D modeling, Pose estimation, Deep learn-
ing, Video surveillance.

I. INTRODUCTION

A. Research Background

THREE Dimension human pose estimation (HPE) is a
crucial topic in computer vision. This approach involves

determining the three-dimensional locations of a human body
joint from a two-dimensional image or set of photos. Many
applications can be used for human pose estimation such as
object recognition [1], [2], human-computer-interaction [3],
activity recognition [4], [5] or robotic system [6], [7].

1) 2D Human Pose Network: In the field of 2D Human
Pose Estimation, as outlined in the introduction, most tech-
niques fall into two main categories: top-down and bottom-up.
Recently, bottom-up methods [27] have become popular due
to their efficiency. These methods predict keypoints directly
from the input image without requiring person detection.
However, because they do not focus specifically on human
regions, their accuracy may be compromised. Conversely, top-
down methods start with a human detector that identifies all
individuals in an image, then performs single-person pose
estimation for each detected subject, resulting in more accurate
predictions. Notable techniques in this category include HRNet
[18] and HRFormer [8]. This paper introduces a novel top-
down approach that significantly enhances heatmap prediction
by applying an attention mechanism between the characteristic
functions of the predicted and ground truth (GT) heatmaps.

2) 3D Human Pose Network: Existing single-view 3D pose
estimation methods can be divided into two mainstream types:
one-stage approaches and two-stage methods. One-stage ap-
proaches directly infer 3D poses from input images without
intermediate 2D pose representations [19], [29], while two-
stage network first obtain 2D keypoints from pretrained 2D
pose detections and then feed them into a 2D-to 3D lifting
network to estimate 3D poses. Benefiting from the excellent
performance of 2D HPE, this 2D-to-3D pose lifting method
can efficiently and accurately regress 3D poses using detected
2D key points. Despite the promising results achieved by using
temporal correlations from fully convolutional [4], [26] or
graph-based [2] architectures, these methods are less efficient
in capturing global-context information across frames.
Recently, vision transformers advanced all the visual recogni-
tion tasks [14]. Following PoseFormer [21], the transformer
has been used to lift 2D poses to the corresponding 3D poses.
To eliminate the redundancy in the sequence with temporal
information, Li et al. [12] proposed a strided transformer net-
work. spatial-temporal transformer is used for 3D HPE tasks.
Using transformers in HPE showed significant improvement
overall. However, pre-training on a large dataset is required
to learn more representative and effective representations for
the sequence HPE data. The proposed method is different
from the previous methods in leveraging the cross-interaction
between the joints of the body parts in the spatial and temporal
domains.

B. Problem Statement and Technical Challenges

For the 2D Pose Estimator, deep convolutional neural net-
works have demonstrated exceptional performance. Typically,
most existing approaches process the input through a network
to enhance the resolution and subsequently apply 3D Human
Pose Estimation (HPE) on the 2D results, as depicted in
Fig.1. The 3D network, which uses a series of 2D points
as input, generally consists of high-to-low resolution sub-
networks arranged in sequence. For instance, the Hourglass
model [11] employs a symmetric low-to-high resolution tech-
nique to regain high resolution, while Simple Baseline [27]
utilizes a few transposed convolution layers to create high-
resolution representations. Nevertheless, accurately lifting the
2D keypoints to a 3D model remains a significant challenge.

Recent advancements in 3D human posture encoding have
been facilitated by deep neural networks [17], [22]. However,
these networks encounter several challenges. First, improving
the accuracy of various network types, such as real-time net-
works or networks that measure accuracy, is crucial. Second,
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Fig. 1. The proposed system comprises two main components: the 2D Pose Detector and the 3D Pose Estimator. The 2D Pose Detector processes
the input image to identify 2D human keypoints. Subsequently, the 3D Pose Estimator takes a sequence of these predicted 2D joints from the
Detector and accurately estimates the final 3D pose of the human figure.

it is common practice to verify the accuracy of a network by
using different 2D pose results. Finally, the current challenge
for networks is to enhance accuracy while either maintaining
or increasing processing speed. The proposed study introduces
a novel network structure and evaluates it in terms of speed
and accuracy. This experiment diverges from PoseFormer [21]
by implementing a new attention mechanism known as spatial-
temporal attention.

C. Attention in Human Pose Estimation Review

The attention mechanism has been widely adopted in natural
language processing (NLP) tasks, achieving state-of-the-art
performance in machine translation [5] and language under-
standing [21]. Recently, attention-aware features have also
proved highly effective in computer vision tasks. For instance,
Newel et al. [11] proposed a robust attention module that in-
tegrates an attention branch with an hourglass block, which is
stacked multiple times to construct a deep convolutional neural
network for image classification. Leveraging the self-attention
mechanism, the network described in [13] captures rich con-
textual dependencies for scene segmentation. Similarly, Zhang
et al. [17] and Yang et al. [21] have incorporated attention
mechanisms into various convolutional neural networks to
enhance human pose estimation. A prominent mechanism in
this area is self-attention, also known as transformer-based
attention, which enables the model to focus on different
parts of the input and recognize long-range dependencies.
This capability allows pose estimation models to dynamically
prioritize the significance of different joints or body parts
based on their interrelations.

Furthermore, spatial attention can be utilized to empha-
size relevant spatial regions within an image, enhancing the
model’s focus on crucial areas for accurate pose estimation
through technologies like spatial transformer networks or
spatial attention modules.

D. Contribution of The Paper

Many papers have been researched on 2D and 3D human
pose estimation over the past few years. However, less work
has been deeply studied on attention mechanisms for both 2D

and 3D networks. This article proposes a new attention mech-
anism for the whole network, which significantly improves
the accuracy of the final 2D and 3D prediction results. In
summary, the main contribution of the paper is described in
three-fold:

1) This paper introduces and applies a novel attention
mechanism to both the 2D pose detector and the 3D
estimator, enhancing the network’s ability to focus on
and resolve occlusion issues. Within the 2D Pose Net-
work, an attention module employing 1× 1 depth-wise
convolution across different channels effectively cap-
tures long-range dependency information. Additionally,
a new spatial-temporal attention mechanism has been
implemented in the 3D Network, significantly increasing
the accuracy of 3D predictions.

2) The study presents a comprehensive system for Lifting
2D-3D Pose Estimation. The proposed architecture ac-
curately predicts the final 3D human posture from the
input image, incorporating several minor techniques to
enhance both 2D and 3D results.

3) Our proposed method, straightforward and free from un-
necessary complexities, surpasses the original methods
in performance on benchmark datasets. For 2D, it is ex-
tensively compared with other methods on the Microsoft
COCO 2017 benchmark. Additionally, it achieves com-
petitive results on the Human3.6M and MPI-INF-3DHP
datasets for the 3D Network.

II. METHODOLOGY

A. 2D Pose Estimator
1) Backbone network: The proposed system utilizes

a benchmark composed of HighResolutionNet-W32 and
HighResolutionNet-W48 [18], as depicted in Fig. 2, represent-
ing the complete network architecture. Each HighResolution-
Net is organized into four stages, comprising four subnetworks
that include skip connections and residual blocks. The default
input image is resized to dimensions of 256 × 192 for both
HighResolutionNet-W32 and HighResolutionNet-W48 mod-
els. The extracted features pass through each stage, with the
initial dimensions of H × W being halved at every stage.
Consequently, by the end of the backbone, the feature map
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size is reduced to W
16 × H

16 , and the number of channels at the
final layer reaches 256. The architecture employs only the first
subnet throughout, maintaining the dimension of W ×H up
to the conclusion of the regression process. Additionally, the
dimension of the channels doubles at each level, with tensor
channels increasing from 32 at the first stage to 256 at the final
stage. The baseline architecture’s primary function is to gather
crucial information from the extracted tensor and integrate it
into the training process, which predicts human joints using
cross-entropy loss.
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Fig. 2. The proposed 2D Pose Detector architecture incorporates
a multi-resolution framework adapted from the original HRNet, which
includes both downsampling and upsampling processes. The key mod-
ification in our design is the integration of an attention mechanism into
the final layer of the last two residual blocks, enhancing the model’s
focus and performance in key areas.

Fig. 3. Architecture of Attention module. The Attention was imple-
mented on the last layer of the residual block

2) Attention Module: In the proposed 2D Pose Estimator,
the Attention Mechanism was applied only to the last two
blocks of each sub-network. As shown in Fig. 2, only six
attention modules were employed to balance computational

cost and accuracy. According to Fig. 3, the attention module
employed is based on channel attention, as spatial attention
was deemed inefficient for keypoints. After one residual block
in the backbone network, the feature information is directed
to the channel attention module where a 1× 1 convolution is
applied.
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The tensor information in the Channel Attention Module
(CAM) uses this convolution to reduce the channel dimension
from C to C

s , where s, the shrinking ratio, is typically set to
4. This layer compresses the essential features into a tensor of
size 1 × 1 × C

s . The network then activates these parameters
via the ReLU function within the channel mechanism.

B. 3D Pose Estimation Network

1) Baseline network: In this work, it adopt a Transformer-
based architecture which in Fig. 4 since it performs well
in long-range dependency modeling. Then first give a brief
description of the basic components in the Transformer [13],
including a multi-head self-attention(MSA) and a multi-layer
perceptron (MLP). MSA. In the MSA, the inputs x ∈ Rn×d

are linearly mapped to queries Q ∈ Rn×d , keys K ∈ Rn×d ,
and values V ∈ Rn×d , where n is the sequence length, and
d is the dimension. The scaled dot-product attention can be
computed by:

Attention(Q ,K ,V ) = Softmax (
QKT

√
dm

)V, (3)

MSA splits the queries, keys, and values for h times as well
as performs the attention in parallel. Then, the outputs of
the attention heads are concatenated. The MLP consists of
two linear layers, which are used for non-linearity and feature
transformation:

MLP(x ) = α(xW1 + a1)W2 + a2, (4)

where α denotes the GELU activation function, W1 ∈ Rd×dm

and W2 ∈ Rdm×d are the weights of the two linear layers
respectively, and a1 ∈ Rdm and a2 ∈ Rd are the bias terms.

2) Spatial Attention (SA module): This module is inserted
between the MSA layer and MLP for each block. The Spatial
attention module consists of two depth-wise convolutions with
kernel size 5, group normalization and non-linearity GELU.
Also, the residual connection is added to the output of the
module to avoid overfitting. The following operations on
output of the patch embedding step P0 can be described:

P = CONV (Norm(GELU(CONV (P)))) + P , (5)

where GELU refers to the non-linear layer, CONV is the
standard convolution layer with kernel 5 and Norm indicates th
normalization used in [28]. Since the focus of the SA module
is on the interaction between the joints, the output of the MSA
part in Eq.2 has been transposed. That is, it becomes P0 ∈ R
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D×P . The spatial encoders for a transformer layer l cn then
be represented by the following list of operations:

MLP(x0 ) = β(xW1 + a1)W2 + a2, (6)

where β denotes the P function in Eq.3
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Fig. 4. Detailed Architecture of 3D Pose Estimator. The proposed
network is based on the transformer. The new here is we apply the 1×1
conv with different channels for the Spatial and Temporal attention. In the
case of Temporal attention, the attention-getting the interaction among
multi feature

3) Temporal Attention (TA module): Same with SA module,
The TA module learns pairwise feature correlations using
the outer product. Each element of the correlation matrix
Cij =

∑
F PiPj is a dot product of the corresponding

embedded features of frames i and j and then it is sum-
pooled, where Pi ∈ RJ×D is the input feature of frame i.
More precisely, the input is transformed by combining the
positional information with the frames where P ∈ RF×J×D

and then using convolutions this paper extract K, Q, and V
such that:

K = PWk ,Q = PWq ,V = PWv (7)

4) Regression Head: In the regression head, a linear trans-
formation layer is applied on the output ZL3 to perform
regression to produce pose sequence X̃ ∈ RN×J×3. Finally,
the 3D pose of center frames X̂ ∈ RJ×3 is selected from X̃
as our final prediction

C. Loss Function

1) 2D Pose Estimator Loss: Heat maps are utilized in the
proposed work to demonstrate body keypoint locations in
the loss function. At the beginning, we set the ground-truth
point by m = {mn}N = 1N , where Xn = (xn, yn) is the
geographical information of the nth body keypoint for every
image. The principles of Ground-truth heat map Hn is then
built up by utilizing the Gaussian distribution and the mean
an with variance σ as illustrated in the next equation.

Hn(p) ∼ N (an, σ), (8)

where p ∈ R2 illustrate the coordinate, and σ is automatically
decided as an identity matrix I. The final layer of the proposed
architecture generated J heat maps, i.e., Ŝ = Ŝa

b and b = 1B

for B body joints. The mean square error for the loss function
is defined, which is summarized as follows:

L =
1

AB

A∑
A=1

B∑
B=1

∥∥∥Sa
b − Ŝa

b

∥∥∥2 , (9)

Where A denotes the number of selected in the training
process, B denotes the number of joints. Sa

b and Ŝa
b is the

predict and ground truth for 2D Keypoint.
2) 3D Loss: The entire 3D Estimator is trained in an end-

to-end manner with a Mean Square Error loss for the Spatial
module function defined by the mean of MPJPE, which is
calculated as follows:

Ls =

M∑
m=1

J∑
j=1

∥∥∥Sm
j − Ŝm

j

∥∥∥
2
, (10)

Where M denotes the number of selected 2D Pose in the
training process, J is the number of Joint. Sm

j is the predict 3D
human pose joint and Ŝm

j is the ground truth 3D Pose. Same
with the Spatial L2 Loss, The Temporal L2 Loss is calculated
as follows:

Lt =

N∑
N=1

J∑
j=1

∥∥∥Sn
j − Ŝn

j

∥∥∥
2
, (11)

Where N denotes the number of selected predicted 3D Pose in
the training process. The total loss for 3D network composed
in:

L = λsLs + λtLt, (12)

While λs and λt is the weighted parameter for each loss

III. EXPERIMENT

A. Datasets and Evaluation Protocols
For the 2D human pose estimator, Microsoft COCO 2017

[3] was used for training and testing in the whole process.
1) Microsoft COCO 2017: was utilized through the training

and testing process. This dataset is a challenging dataset
for joint detection which comprises around 250K human
labeled in 200K images, each human pose has 17 key-
point labels. The proposed research applies Object Keypoint
Similarity (OKS) for Microsoft COCO2017 dataset with
OKS =

∑
i exp(−di

2/2s2k2
i )δ(vi>0)∑

i δ(vi>0) In the above function,
The Euclidean distance between the groundtruth joint and the
predicted joint is di, The target’s visibility flag is vi, The object
scale is s, and ki is one of seventeen joints in Microsoft COCO
2017 Benchmark. Hence, The standard average accuracy and
recall value are then computed.

About the 3D human pose, this approach evaluate proposed
model on two general datasets: Human3.6M [9], MPI-INF-
3DHP [20] and Industrial dataset individually.

2) Human3.6M: is the most commonly used indoor dataset
for the 3D human pose estimation tasks. Following the same
policy of the base method [14], the 3D human pose in
Human3.6M is adopted as a 17-joint skeleton, and the subjects
S1, S5, S6, S7, S8 from the dataset are applied during
training, the subjects S9 and S11 are used for testing. The two
commonly used evaluation metrics (MPJPE and P-MPJPE) are
involved in this dataset. In addition, mean per-joint velocity
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TABLE I
COMPARISON RESULT ON COCO 2017 VALIDATION SET. PT = PRETRAIN THE BACKBONE ON THE IMAGENET CLASSIFICATION TASK

Methodology Backbone PT #Parameters Image dimension AP AR AP 50 AP 75 APL APM

Fine-tune Attention [26] ResNet-50 N 31.2M 256×192 71.4 76.3 91.6 78.6 75.7 68.2
Fine-tune Attention [26] ResNet-101 N 50.2M 256×192 72.3 77.1 92.0 79.4 77.1 68.3
High-Resolution Net [18] HRNet-W32 N 28.5M 256×192 73.4 78.9 89.5 80.7 80.1 70.2
High-Resolution Net [18] HRNet-W32 Y 28.5M 256×192 74.4 79.8 90.5 81.9 81.0 70.8
High-Resolution Net [18] HRNet-W48 Y 63.6M 256×192 75.1 80.4 90.6 82.2 81.8 71.5
Zhang at al. [17] HRNet-W32 N 29.2M 256×192 74.8 77.6 92.5 81.6 79.3 72.0
Zhang at al. [17] Hourglass-8 N 25.8M 256×192 75.1 80.4 90.6 82.6 81.9 71.6
MogaNet-T [25] MogaNet N 8.1M 256×192 73.2 90.1 81.0 78.8 - -
MogaNet-S [25] MogaNet N 29M 256×192 74.9 90.7 82.8 80.1 - -
PPE-Net [24] ResNeXt-101 Y - 256×192 75.7 - 90.3 76.3 80.7 79.5
Our HRNet-W32 N 29.5M 256×192 75.7 80.6 90.6 82.1 82.4 71.3
Our HRNet-W48 N 66.2M 256×192 76.1 80.9 90.7 82.7 82.9 71.9

error (MPJVE) is applied to measure the smoothness of the
prediction sequence.

3) MPI-INF-3DHP: is a recently proposed large-scale
dataset, which consists of three scenes, i.e., green screen, non-
green screen, and outdoor. By using 14 cameras, the dataset
records 8 actors performing 8 activities for the training set
and 7 activities for evaluation. Following the works [21],
the proposed network adopts the MPJPE (P1), percentage of
correct keypoints (PCK) with 150mm, and area under the
curve (AUC) results as the evaluation metrics.

B. Implementation Details

The proposed model, implemented using PyTorch, utilizes
2D keypoints from HRNet [18], CPN Detector, or 2D ground
truth to analyze performance. The 2D pose detector in this
study is based on the AlphaPose [15] codebase, while the 3D
pose estimator adopts the PoseFormer codebase [21]. Although
the proposed model is capable of adapting to any length of the
input sequence, for fairness in comparison, specific sequence
lengths (T) were chosen for three datasets: Human3.6M (T=81,
243), and MPI-INF-3DHP (T=1, 27). Details regarding the
selection of frame lengths are discussed in the ablation study
(Section III.E.3). The batch size, dropout rate, and activation
function are set at 1,024, 0.1, and GELU, respectively. All
experiments were conducted on the PyTorch framework using
two NVIDIA GeForce GTX 2080 Ti GPUs. The network
training employs the Adam optimizer [10], with a learning
rate of 0.001 and a decay factor of 0.95 applied every two
epochs.

C. Comparison with the SOTA 2D Pose Methods

1) Result for COCO2017 dataset: The proposed result in
Table I was estimated on the COCO validation dataset. In
all instances, the accuracy in the proposed technique is larger
than the Benchmark High-Resolution Network of 1.3 and
1.0 AP in backbone HRNet-32 and HRNet-W48 respectively.
In addition, the average recall (AR) for HRNet-W32 is 0.5
points higher and 0.4 points higher for HRNet-W48. Overall,
the experiment outcomes improved modestly in both AP and
AR, showing that attention mechanisms affect the result. To
ensure a fair comparison, we evaluated the results against
networks without pretraining. Despite being only trained on

COCO, the proposed network still surpasses the ImageNet-
pretrained HRNet-W32 and HRNet-W48 by 1.3% and 1.6%
in Average Precision (AP), respectively. This demonstrates
that the integration of the attention mechanism can outperform
models that rely on pretraining.

D. Comparison with the SOTA 3D Pose Methods

1) Result for Human3.6M dataset: For the 2D-to-3D pose
lifting task, the accuracy of the 2D detections directly. To
guarantee fair comparisons, the input is taken from CPN in
the form of 2D keypoints for training and testing. Table II
shows the comparison of the SOTA methods with the proposed
method (81 frames). In Table II, the proposed method achieves
the state-of-the-art on Human3.6 on all the metrics and it out-
performs the state-of-the-art (Chen at al) with a considerable
margin of 0.9%, 1.3% for Protocols 1 and 2, respectively. It is
worth noting that the across-joint modules in the spatial and
temporal cases are crucial to infer the body-joint dependencies.
Comparing the proposed method with PoseFormer (with no
pre-training used) shows the significance of the across-joint
correlation modules. Our method outperforms with a large
margin of 2% the SOTA. In terms of accuracy, it achieve
1% better than the second best accuracy. Additionally, the
proposed method achieves the best performance amongst all
the compared methods in protocol 2 in Table II (bottom).
In some selected difficult poses such as walk together, walk,
smoke, where the poses change very quickly, the proposed
method showed a significant improvement ranging from 1.1%
to 2.5% over the baseline. This highlights the ability of our
method to encode the long-range interactions between the
body joints. Considering the pre-trained baseline, the proposed
method achieves better performance for all the actions. These
results show the importance of plugging the Spatial-temporal
attention modules in the transformers.

Further experiments on Human3.6 using ground-truth 2D
poses as input have also been performed. This shows the
power of the proposed method where there is no noise
in the input as in the previous case. Table III shows the
comparisons of our method and the baselines. Overall, the
proposed method achieved the best performance amongst the
baselines. It achieved 28.3% MPJPE, whereas the second-best
approach achieved 31.0 with gain of 3%. The proposed method
outperforms the baselines in all the actions with a considerable



6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

TABLE II
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ON HUMAN3.6M DATASET USING CPN DETECTOR UNDER PROTOCOL #1 AND PROTOCOL

#2 FOR FULLY-SUPERVISED METHODS. THE BOLD NUMBER IS THE BEST PERFORMANCE IN EACH CASE, ⋆ DENOTES THAT THE 2D KEYPOINT

DETECTION IS THE CASCADED PYRAMID NETWORK(CPN) WHILE ∗, † REFERS TO 3D NETWORK APPLY TRANSFORMER-BASED MODEL

.
Protocol # 1 - CPN Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [16] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Fang et al. [22] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Li et al. [23] 47.0 47.1 49.3 50.5 53.9 58.5 48.8 45.5 55.2 68.6 50.8 47.5 53.6 42.3 45.6 50.9
Zhen [18] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Xu et al. [19] 45.2 49.9 47.5 50.9 54,9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Yang et al. [21] 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Our 45.0 48.3 46.6 49.8 46.6 59.0 48.7 41.9 57.7 60.2 45.1 48.2 45.8 41.0 45.1 43.1
Protocol # 2 - CPN Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Fang et al. [22] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Pavllo et al. [29] ⋆ 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Yang et al. [30] 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Yang et al. [21] 30.0 33.6 29.9 31.0 30.2 35.4 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Li et al. [23] 34.5 34.9 37.6 39.6 38.8 45.9 34.8 33.0 40.8 51.6 38.0 35.7 40.2 30.2 34.8 38.0
Our 34.1 36.0 36.4 39.9 39.4 45.0 35.9 32.8 43.1 52.1 37.3 36.6 39.7 30.2 35.8 38.3

TABLE III
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ON HUMAN3.6M DATASET USING GROUNDTRUTH AS 2D KEYPOINT UNDER PROTOCOL #1

WITH 2D GROUND-TRUTH INPUT. BOLD NUMBER IS THE BEST PERFORMANCE IN EACH CASE

.
Protocol # 1 - GrouthTruth Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [16] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Fang et al. [22] 32.1 36.6 34.3 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 30.3 37.6 35.6 38.4
Li et al. [23] † 32.9 38.7 32.9 37.0 37.3 44.8 38.8 36.1 41.2 45.6 36.8 37.7 37.7 29.5 31.6 37.2
Zhen [18] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 31.7 38.5 45.5 35.4 36.6 36.2 28.9 30.8 35,8
Xu et al. [19] 35.8 38.1 47.5 31.4 39.6 35.8 45.5 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Xue et al. [3] 35.0 37.2 46.6 30.8 38.7 35.1 44.3 34.9 40.1 41.0 32.1 33.6 32.5 26.0 26.1 33.3
Chen et al. [28] - - - - - - - - - - - - - - - 32.3
Yang et al. [21] 34.8 32.1 29.8 31.5 36.9 35.6 30.5 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.6 32.0
Our 27.9 29.9 26.6 27.8 28.6 32.8 31.1 26.7 36.5 35.5 30.0 29.8 27.5 19.6 19.7 31.0

improvement range from 2.4% as the minimum difference and
4.8% for the largest.

2) Result for MPII-INF-3DHP dataset: The approach further
compares the proposed methods to the baseline PoseFormer
on MPP-INF-3DHP using 9 frames. This is important because
it illustrates the ability of the proposed method to train with
fewer training samples in outdoor settings. As Table IV shows,
this paper obtains the best performance among the compared
approaches.

TABLE IV
PERFORMANCE COMPARISION IN TERMS OF PCK, AUC AND P1 WITH

THE STATE-OF-THE-ART METHODS ON MPI-INF-3DHP

Method PCK ↑ AUC ↑ MPJPE ↓
Pavllo et al. [29] (f=81) 86.0 51.9 84.0
Lin et al. [13] (f=25) 83.6 51.4 79.8
Li et al. [23] 81.2 46.1 99.7
Chen et al. [28] 87.9 54.0 78.8
Yang et al [21] (f=9) 88.6 56.4 75.5
Our (f=9) 89.1 57.5 76.3

E. Ablation Study
1) Effect of attention in 2D Detector and 3D Estimator: In

Table V, To evaluate the impact and performance of the 2D
for the whole 3D model, The proposed network evaluates
and investigates the result in the Human3.6M dataset. The
result shows that applying the attention module in the 2D
pose estimator makes the 2D input accurate and then helps
the final 3D result. Fig.5 shows the impact of the attention

mechanism when the arm in the picture is straight compared
to the baseline HRNet looks folding the arms while in the
testing image, the person is straight his arm.

TABLE V
COMPARISION RESULT FOR APPLYING THE ATTENTION MODULE IN

HRNET WITH OTHER DETECTORS

Detector Protocol #1 Protocol #2 MPJVE ↓
CPN 47.6 37.4 3.20
Detectron2 [30] 45.7 37 3.02
Hourglass [11] 52.3 41.2 4.11
HRNet-W32 [18] 45.1 36.3 2.91
HRNet-W32+AM (our) 43.6 35.1 2.77
GroundTruth 28.6 24.5 0.98

Table VI is a comparison of different module in a proposed
system, focusing on the presence or absence of specific
modules and their impact on the Mean Per Joint Position
Error (MPJPE). The modules include 2D Attention, 3D SAM
(Spatial Attention Module), and 3D TAM (Temporal Attention
Module). Each row in the table corresponds to a specific
configuration, indicating the presence or absence of these
modules. The MPJPE values for each configuration serve
as a quantitative measure of the accuracy of joint position
predictions. Notably, the proposed method exhibits improved
performance when incorporating all three modules simultane-
ously, achieving the lowest MPJPE at 42.2, which decreases
by 3.2% in accuracy compared to the baseline.

2) Position of Attention Module in 2D Detector and 3D Es-
timator: Table VII investigates the result when applying dif-
ferent AM in each subnetwork and each stage in HRNet. In
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TABLE VI
COMPARISION RESULT OF EACH MODULE IN THE PROPOSED SYSTEM

Method 2D Attention 3D SAM 3D TAM MPJPE ↓
PoseFormer 44.3
Our ✓ 43.6
Our ✓ 43.7
Our ✓ 43.8
Our ✓ ✓ 43.3
Our ✓ ✓ ✓ 42.2

conclusion, the result when applied in the attention module
in all stages (16 Attention modules got added) got the best
result however it also got the highest number of parameters
in the computational cost. Besides, Table VII also shows that
AM had the most effect in the first sub and stage than in the
remaining. Hence, this paper only applies the module for the
first sub-network and stage (only 6 were added) to not only
balance the computational cost but also keep the high accuracy.

TABLE VII
THE RESULT WHEN UTILIZING THE ATTENTION MECHANISM FOR EACH

SUB-NETWORK AND EACH STAGE OF HRNET-W32

Backbone Sub-Net AP #Param
HRnet-W32 - 73.4 28.5M
HRnet-W32 1 74.2 28.8M
HRnet-W32 2+1 75.9 29.3M
HRnet-W32 3+2+1 76.2 30.0M
Backbone Stage AP #Param
HRnet-W32 1 74.3 28.9M
HRnet-W32 2+1 76.0 29.4M
HRnet-W32 3+2+1 76.2 30.0M

Table VIII showcases the influence of different positions of
the Spatial Attention Module (SAM) and Temporal Attention
Module (TAM) on Mean Per Joint Position Error (MPJPE).
For SAM, positioning it after Multi-Head Self-Attention
(MSA) or after Multi-Layer Perceptron (MLP) yields lower
MPJPE (44.1 and 44.9) compared to before MSA (45.2).
Similarly, for TAM, placing it after MSA results in the lowest
MPJPE (44.9), while before MSA and after MLP have slightly
higher errors (45.0 and 46.2, respectively). This highlights the
importance of the relative positioning of attention modules
in achieving optimal accuracy in joint position predictions.
Hence, this paper decided to put SAM and TAM between the
MSA and MLP.

TABLE VIII
THE RESULT WHEN APPLYING DIFFERENT POSITIONS OF 1 × 1

CONVOLUTION IN SAM AND TAM

Module Before MSA After MSA After MLP MPJPE ↓
SAM ✓ 45.2
SAM ✓ 44.1
SAM ✓ 44.9
TAM ✓ 45.0
TAM ✓ 44.9
TAM ✓ 46.2

3) Effect of modifying the setting in 3D network: Table IX
presents a comparative evaluation of different backbone archi-
tectures for human pose estimation under varying stride frame
configurations. Three methods, Pavllo et al.’s approach [29],
PoseFormer by PoseFormer et al. [21], and a proposed method

are analyzed. For Pavllo et al.’s method, adjusting the stride
frame from the default 243 to 81 leads to a slight reduction
in the number of parameters from 12.75M to 12.70M, with
a marginal increase in the Mean Per Joint Position Error
(MPJPE) from 47.5 mm to 47.9 mm. PoseFormer demon-
strates improved accuracy with reduced MPJPE values when
the stride frame is decreased from 81 to 27, resulting in
MPJPE values of 44.3 mm and 44.6 mm, respectively. The
proposed method (”Our”) consistently outperforms the other
methods, achieving lower MPJPE values as the stride frame
decreases from 81 to 27 to 9, while maintaining a relatively
stable parameter count of around 9.86M. This suggests that
the proposed method is effective in producing accurate pose
estimations with different stride frame configurations.

TABLE IX
THE RESULT FOR APPLYING DIFFERENT LEVELS OF FRAME. THE

DEFAULT SETTING FOR LEARNING RATE IS 0.25

Method Stride Frame #Param (M) MPJPE ↓
SimplePose et al. [29] 243 (default) 12.75M 47.5
SimplePose et al. [29] 81 12.70M 47.9
PoseFormer et al. [21] 81 (default) 9.59M 44.3
PoseFormer et al. [21] 27 9.60M 44.6
Our 9 9.85M 44.3
Our 27 9.86M 43.6
Our 81 9.86M 43.3

TABLE X
THE COMPARISON RESULT FOR APPLYING DIFFERENT LEARNING RATES

FOR 3D MODEL. THE DEFAULT FRAME WAS SET AT 81 FOR ALL OF THE

EXPERIMENT

Method Learning rate #Param (M) MPJPE ↓
SimplePose et al. [29] 0.25 (default) 12.70M 47.9
SimplePose et al. [29] 0.1 12.70M 47.5
PoseFormer et al. [21] 0.25 (default) 9.60M 44.3
PoseFormer et al. [21] 0.1 9.60M 44.6
Our 0.25 9.86M 43.3
Our 0.2 9.86M 43.3
Our 0.1 9.86M 43.1
Our 0.05 9.86M 43.4

Table X shows the result when changing the learning rate
setting. While other papers set the learning rate as 0.25 and
do not consider this. This paper found based on the gradient
descent, 0.1 in learning rate is truly a perfect match for 3D
model. Only simple changing with our increase the compu-
tational cost but significantly improve the accuracy which
decreases almost 1% of the error. The side effect of changing
the learning rate is only making training time increase from
20 hours to 22 hours.

IV. CONCLUSION

This research explores the impact of attention mechanisms
not only on the 2D Pose Detector but also on the 3D Pose
Estimator, particularly in the context of constructing a full
system from input to 3D result for the Industrial Environment.
Additionally, this work illustrates that the attention module
can yield significant benefits without substantially increasing
computational costs. Extensive experiments demonstrate that
the proposed network holds a fundamental advantage over
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Fig. 5. 3D human pose estimation result come from 2D skeleton based
on detector and detector with attention mechanism

baseline Transformers, achieving state-of-the-art performance
on two benchmark datasets. The proposed method anticipate
that our approach will stimulate further research in 2D to 3D
pose lifting, considering various ambiguities.

However, the proposed model faces challenges that need to
be considered in future work. Firstly, training and predicting
occluded joints proved to be difficult for the architecture.
Implementing techniques to handle the hypothesis of 3D Pose
could address this issue. Secondly, the computational demands
of end-to-end networks pose a hurdle for real-time applications
due to their significant computational load. In future research,
this paper aims to mitigate this computational cost and develop
a lightweight system.
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