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ESIF: Frequency and Texture Aware Multi-Domain
Feature Fusion for Enhanced Remote Sensing Scene

Classification

Abstract—Remote Sensing (RS) scene classification, a pivotal
task in Earth observation, entails the categorization of satellite
or aerial imagery into distinct land-use and land-cover classes.
It is fraught with challenges due to high intra-class variabil-
ity and low inter-class distinctions. Historically, state-of-the-art
methods in this field have struggled to achieve satisfactory results
without a significant trade-off in computational efficiency. These
methods often require substantial computational resources to
process the complex data characteristics of RS imagery, leading
to inefficiencies that limit their practical application in real-
time or on resource-constrained platforms. Delving into these
complexities, we propose the Efficient Spectral Inception Former
(ESIF) architecture, which introduces a novel paradigm in RS
scene classification by integrating multi-domain feature fusion,
including spatial, texture, and spectral (frequency) domains.
Our proposed approach leverages the strengths of Convolutional
Neural Networks (CNNs) for spatial information extraction, a
novel Texture Feature Alignment Block (TFAB) for nuanced
texture differentiation, the Efficient SpectroFormer Block (ESFB)
utilizing spectral analysis for enhanced pattern recognition, the
Cross-Domain Fusion Block (CDFB) and finally, the Inception
Transformer Block (iFB) balances high and low-frequency infor-
mation. ESIF achieves state-of-the-art accuracy in all six tested
benchmarks with 86.55% on Optimal-31, 95.71% on UC-Merced,
94.1% on RSSCN7, 95% on SIRI-WHU, 94.52% on WHU-
RS19 and 93.5% on AID datasets while compared with previous
state-of-the-art architectures. Furthermore, ESIF exemplifies an
optimal accuracy-efficiency trade-off, accentuating its viability
for deployment in real-world applications.

Index Terms—Convolutional neural networks (CNNs), Fre-
quency analysis, Large Kernel Attention (LKA), Multi domain,
Remote sensing (RS), Scene classification, Self-Attention, Texture
Analysis.

I. INTRODUCTION

REMOTE sensing techniques, as employed in Earth obser-
vation, represent a pivotal area of research that involves

the acquisition of signals emanating from various physical
phenomena through instruments mounted on spaceborne and
airborne platforms. These methodologies are invaluable for
a broad spectrum of applications, ranging from the accurate
measurement and estimation of geo-bio-physical parameters
to the identification of materials based on the analysis of
the signals [1] [2]. Scene classification from RS imagery are
among the most significant tasks in this field, offering essential
insights for various applications such as urban planning, agri-
culture, environmental conservation, climate change research
etc. [2].

In recent advancements within the field of RS Scene
Classification, deep learning-based vision algorithms have
markedly increased in prevalence and effectiveness. Predom-
inantly, these models are stratified into three primary cat-

egories: Convolutional Neural Network or CNN-based [3]
[4] [5] [6] [7], Transformer-based [8] [9] [10] and Hybrid
(CNN+Transformer) [11] [12] models. CNNs are renowned
for their capacity to extract local information from the input,
synthesizing numerous local inferences to produce the final
output [13]. Conversely, Transformer models are engineered to
capture global information from the onset, though they often
lack the nuanced local contexts inherent to the input, a gap that
Hybrid models aim to bridge by amalgamating the strengths
of both CNNs and Transformers to offer a comprehensive
representation of both local and global information [14] [15].

However, a significant challenge arises when applying these
general-purpose vision models, primarily developed for con-
ventional images captured at eye level, to the domain of RS
images. RS imagery, typically acquired via satellites, aircraft,
or drones, exhibits fundamental distinctions from standard
photography, primarily due to the divergent viewpoints (Top-
view versus Eye-Level) [16]. This disparity in perspectives
necessitates a different set of features to accurately repre-
sent the same object or class across these two modalities.
Consequently, models pretrained on eye-level images do not
seamlessly transition to the RS domain, often leading to
misclassification due to the discordance in feature represen-
tation between eye-level and top-view imagery [17] [18].
Pretrained models trained on eye-level images are not always
quite suitable for RS images and can be easily prone to
misclassification. This discrepancy underscores the necessity
for developing or adapting models specifically tailored for RS
images, taking into account their unique characteristics and
challenges.

In real-world applications, RS datasets often exhibit a
marked contrast in size when compared to datasets utilized
in other image classification tasks. This discrepancy primarily
arises from the logistical challenges and financial constraints
associated with collecting RS imagery, rendering the assembly
of large-scale datasets a formidable endeavor [16]. Unlike
the extensive ImageNet database, there exists no compara-
ble, large-scale dataset tailored for RS that could facilitate
pretraining [19]. Typically, RS datasets feature 100 or fewer
samples per class, significantly impeding a model’s capacity
to learn generalization. This challenge is exacerbated as the
number of classes within a dataset increases. A case in point
is the Optimal-31 [20] dataset, characterized by its 31 classes
and a mere 60 samples per class, posing a unique set of chal-
lenges for classification models. High intra-class variation, the
appearance of ’beach’ or ’forest’ can vary widely depending
on location, season, and lighting conditions. High inter-class
similarity, ’airport’ and ’runway’ or ’parking lot’ and ”harbor”
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might share similar features, such as large, flat areas, making
them harder to distinguish. Limited Training Samples, the
diversity within some classes may not be fully captured by
60 samples, leading to a model that generalizes poorly on
those classes. Complexity of Features, distinguishing between
”chaparral” and ”meadow” might require understanding subtle
differences in vegetation patterns. These causes in some of the
classes being significantly harder to classify than others. From
Table IV we can see that even though the overall accuracy
(OA) of a model reaches around 80%, some classes have
less than 50%, even in some cases less than 30% individual
accuracy (IA).

Deep-learning vision algorithms typically necessitate sub-
stantial volumes of training data to discern the complex
features inherent to each class, thereby attaining a high overall
accuracy (OA). This requirement, however, poses a significant
challenge for RS scene classification tasks due to the scarcity
of such extensive datasets in the field. While models en-
dowed with substantial computational resources may achieve
commendable OA, their performance often skews towards the
more readily classifiable classes, leaving the more challenging
categories relatively underserved [21]. The pursuit of high
OA frequently necessitates trade-offs against efficiency and
processing speed [6] [9], thereby constraining the practical
applicability of these models in real-world scenarios. RS scene
datasets which only has RGB or spatial image information
lacks the additional cues which multi-band or hyperspectral
RS images have. To construct an efficient algorithm which
can accurately classify the challenging classes, efficient multi-
domain analysis such as frequency and texture information
could be beneficial.

Thus, we introduce the ESIF: Efficient Spectral Inception
Former architecture, a pioneering approach that processes
input data across three domains—Spatial, Texture, and Fre-
quency (Spectral)—in parallel branches. This methodology
enables simultaneous analysis of the same input, leveraging
the strengths of each domain to enhance RS image under-
standing and classification. Overall the main contributions are
as follows:

• We propose the Texture Feature Alignment Block
(TFAB), which utilizes three gray level co-occurrence
matrix (GLCM) [22] features, crucial for capturing the
nuances of image textures, enabling the model to distin-
guish between subtle variations in visual patterns effec-
tively reducing the inter-class similarity through texture
information.

• Efficient SpectroFormer Block (ESFB) is constructed
with Spectral and Large Kernel Attention (LKA) blocks
to capture frequency information through Fast Fourier
Transform (FFT) and refine it with attention mechanism,
which alleviates the high-intra class variation problem.

• Cross-Domain Fusion Block (CDFB) mechanism is de-
ployed to effectively synthesize the outputs from the
spatial, texture, and spectral branches, followed by the
incorporation of the iFormer Block in the later stages to
balance the high and low frequency components.

The rest of the article is organized as follows: Section II

details our methodology and overall building of the network
architecture, Section III discusses the experimental results and
Section IV is the conclusion of our work.

II. METHODOLOGY

A. Design Concept of ESIF

In the development of the Efficient Spectral Inception For-
mer (ESIF) architecture as showed in Fig. 1, we strategically
orchestrate the processing of input data across three distinct
domains: Spatial, Texture, and Frequency (Spectral), leverag-
ing parallel branches to concurrently analyze the same input.
Specifically, the input RGB image, denoted as S ∈ RH×W×3,
is simultaneously directed towards the Spatial Baseline and
the Efficient SpectroFormer Block (ESFB) branches. Mean-
while, the Texture Feature Alignment Block (TFAB) branch
processes the GLCM outputs: Contrast, Correlation, and An-
gular Second Moment (ASM) features extracted from S.
Cross-Domain Fusion Block (CDFB) integrates the outputs of
these three branches post the fourth stage within the Spatial
Branch, ensuring a comprehensive synthesis of spatial, texture,
and frequency information. Subsequent to the sixth stage of
the Spatial Branch, we introduce the Inception Transformer
(iFormer) Block, which further refines the spatial features.
This is followed by a 1 × 1 convolutional layer aimed at
expanding the feature map, an adaptive average pooling layer
for feature concentration, and a Classifier that delineates the
final output. This architecture design, embodying the simul-
taneous and synergistic processing across multiple domains,
exemplifies our approach to harnessing the full spectrum of
visual information for image understanding and classification.
The detailed process of each block is explained in the next
sections.

B. MBConv Based Spatial Baseline

To construct our efficient baseline, we adopt the MBConv6
block from EfficientNet [3], which is a improved version of the
mobile inverted bottleneck convolution of MobileNetV2 [4].
This architecture leverages depthwise separable convolutions
along with a squeeze-and-excitation (SE) mechanism for fea-
ture extraction efficiency and focusing on important channels.
While being slightly lower in speed than the MobileNetV2,
it is much more accurate and consistent. But, our baseline
architecture varies in a lot of ways with both MobileNetV2 and
EfficientNet-B0. The detailed architecture is illustrated in . In
our Spatial Baseline, illustrated in Fig. 1, the first stem block
consists of 3×3 convolution with stride 2 and downsamples the
input image by half, while projecting from 3 to 32 channels.
We use 6 stages of MBConv6. In a typical MBConv6 block,
the first step involves expanding the input feature map using a
1 × 1 convolution. This expansion increases the number of
channels, aiming to provide a richer representation for the
depthwise convolution to process.

Yexp = ReLU6
(
BN

(
Conv1×1, cin→cexp(X)

))
. (1)
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Fig. 1. Overall Architecture of the proposed network ESIF: Efficient Spectral Inception Former, comprised of three branches: Spatial Baseline for spatial
feature extraction, TFAB for processing Texture information, ESFB for extraction of Spectral information, and CDFB for mulit-domain fusion, followed by
iFormer Blocks for balancing

Following expansion, a k × k depthwise convolution applies
spatial filtering to each channel independently, allowing for
efficient extraction of spatial features.

Ydw = ReLU6
(
BN

(
DWConvk×k, cexp

(Yexp)
))

. (2)

The SE mechanism recalibrates channel-wise feature re-
sponses by explicitly modeling interdependencies between
channels, enhancing the representational capacity for impor-
tant features.

Yse = SE(Ydw). (3)

The expanded feature map is then projected back down to
a lower-dimensional space using another 1 × 1 convolution,
compacting the information learned from the depthwise con-
volution and SE block.

Yproj = BN
(
Conv1×1, cexp→cout

(Yse)
)
. (4)

If the input and output dimensions are the same (typically
when stride is 1 and cin = cout), a residual connection is
added from the block’s input to its output, facilitating gradient
flow and preserving identity features.

Fs = Yproj +X, (5)

where s is the stage number. MBConv6 block is designed for
efficient and effective feature extraction, balancing computa-
tional efficiency with the capacity to capture essential spatial
and channel-wise information. We set the output dimension
of the 6 stages as ci = [16, 24, 40, 80, 112, 320]. For effective
feature fusion through CDFB, c for stage-2 is aligned with
TFAB-1, ESFB-1 and c stage-4 is aligned with TFAB-2,
ESFB-2.

C. Texture Feature Alignment Block (TFAB)

For generating texture features from the input RGB image,
we incorporate characteristics derived from the well-known
Gray-Level Co-occurrence Matrix (GLCM) to augment our
texture analysis. Specifically, we utilize both the contrast ratio
and relevance metrics as supplementary texture descriptors,
leveraging inputs from GLCM. In this configuration, we
employ sub-windows of size 3 × 3 and set the number of
gray levels to eight. We consider 3 GLCM features for our
TFAB block. Contrast (CON) feature measures the intensity
contrast between a pixel and its neighbor over the whole
image. High contrast values indicate a large difference in
intensity between pixel pairs, suggesting a more textured
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Fig. 3. Detailed Architecture of ESFB: Efficient Spectro-Former Block.

and less smooth image. Low contrast values suggest minimal
intensity difference between neighboring pixels, indicating a
smoother image texture. Relevance or Correlation (CORR)
is the similarity degree of GLCM elements in directions of
line and row, which denotes the relevant degree of some gray
levels in images. Angular Second Momentum (ASM) emerges
as a valuable metric for discerning the depth of textures and

patterns. A higher ASM value signifies the presence of more
pronounced textures and deeper patterns, while a lower value
corresponds to a blurred visual representation with shallower
textures.

CON = GRAY (

N−1∑
i,j=0

Pi,j(i− j)2), (6)

CORR = GRAY (

N−1∑
i,j=0

Pi,j
(i− µi)(j − µj)√

σ2
i σ

2
j

), (7)

ASM = GRAY (

N−1∑
i,j=0

P 2
i,j), (8)

where N is the size of GLCM and P (i, j) is the probability
density of the corresponding pixel, µi, µj and σi,σj refer to
mean and variance of Px(i) and Py(j) respectively. GRAY
indicates converting to gray-level image of one channel.
Finally, three texture feature maps: xCON ∈ RH×W×1,
xCORR ∈ RH×W×1, and xASM ∈ RH×W×1 are obtained
with above equations.

TFAB have two stages, TFAB-1 and TFAB-2. The detailed
architecture is shown in Fig. 2, the three GLCM features are
concatenated to the size H × W × 3. The stem block is a
standard 3×3 convolution with stride 2 for downsampling the
input to H

2 × W
2 × 3. We employ ci(s) , cim(s) and co(s) three

dimensions indicating input channels, intermediate channels
and output channels respectively, where s is the stage number.
For a stage of TFAB it is processed by four consecutive
operations, first, a 1×1 Convolution to expand the intermediate
channels. Which acts as a pointwise linear transformation,
mixing the input channels to produce a richer set of features
and allows the network to represent a broader range of features
and textures within the image.

Y
(1)
t = Conv1×1, ci(s)→2cim(s)

(Xt). (9)

Secondly, a 5× 5 depthwise separable convolution for feature
extraction. By separating the convolution into a depthwise spa-
tial component and a pointwise channel mixing component, it
allows for detailed texture analysis with reduced computational
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cost. The depthwise component focuses on extracting spatial
texture patterns from each channel independently, emphasizing
the nuances of texture within the image. The subsequent
pointwise convolution then combines these extracted features
across channels, enhancing the model’s ability to detect and
represent diverse texture information.

Yt = DWSConv5×5, 2cim(s)→cim(s)
(Y

(1)
t ). (10)

After that, a 2 × 2 average pool is used for concentrating
important features. By averaging the values within 2 × 2
patches, this step effectively distills the most significant texture
information into a more compact representation. This process
aids in reducing noise and focusing the model’s attention
on the most relevant texture features for classification tasks.
And one MBConv6 Block (kernel size = 3) for aligning the
texture features with the corresponding spatial domain. The
MBConv6 block further processes the concentrated texture
features, aligning them with the spatial domain of the image.
This operation is crucial for integrating the extracted texture
information with the overall spatial structure of the image,
ensuring that texture features are correctly associated with
their spatial context. The whole process can be defined by:

TFAB(Xt) = MBConv63×3, cim(s)→co(s)

(
AvgPool2×2(Yt)

)
. (11)

The difference between TFAB-1 and TFAB-2 is the initial
downsampling operation, while TFAB-1 uses the stem block,
TFAB-2 utilizes a simple 2 × 2 average pool. ci(s), cim(s)

and co(s) values for TFAB-1 = (32, 16, 24) and TFAB-2 =
(24, 48, 80). The co(s) is matched with stage 2 and stage 4 of
the Spatial Baseline for aligning the respective spatial features
with texture features.

D. Efficient SpectroFormer Block (ESFB)

The detailed design of ESFB is presented in Fig. 3. For
processing image information using transformer based models,
Patch Embedding mechanism is used to patchify the input
image into smaller patches. The convolutional approach to
creating patch embeddings inherently extracts useful low-level
features from images, such as edges and textures, providing
a richer input to the Transformer block. We use a 4 × 4
convolution with stride 4 on the input image I to produce
a set of patches P (I). This effectively reducing the spatial
dimensions while increasing the depth from ci to ce. Position
encodings are added to these patches to retain spatial context
lost during dimensionality reduction, essential for maintaining
the positional relationship between patches in subsequent
processing.

P (I) = Conv4×4,stride=4,Ci→Ce
(I) + PositionEncoding. (12)

The Spectral Block, shown in Fig. 3(a), leverages the Fourier
Transform (FFT) to transform the spatial features patch em-
beddings to frequence features in the fourier domain, learning
the spectral components through element-wise multiplication
with complex weights W . The inverse Fourier Transform
(IFFT) then maps these modified components back to the
spatial domain. This process, learned with layer normaliza-
tion (LN) and a Multi-Layer Perceptron (MLP), extracts and

refines frequency-based features, facilitating detailed texture
and pattern analysis.

S(P ) = MLP (LN (IFFT (LN (FFT(P )⊗W )))) + P. (13)

The LKA mechanism which is shown in Fig. 3(b), focuses on
capturing spatial details by applying depthwise convolutions
followed by a 1 × 1 convolution to the input x, emphasizing
local features through element-wise multiplication. This oper-
ation amplifies the model’s sensitivity to spatial variations and
details, crucial for understanding visual textures and structures.

LKA(x) = (Conv1×1(DW-D-Conv(DW-Conv(x))))⊗ x. (14)

The FFN applies a series of convolutions, including a 3 × 3
depthwise convolution activated by GELU, to process the
spatial features further. This network refines the feature maps,
ensuring that the model captures both broad and nuanced
spatial information effectively.

FFN(x) = Conv1×1(GELU(DW-Conv3×3(Conv1×1(x)))). (15)

The following equation integrates the LKA’s output with the
original input X through a residual connection, fostering the
preservation of initial features while incorporating the detailed
spatial analysis performed by the LKA.

Y = LKA(BN(X)) +X. (16)

Building upon the refined features from the LKA, this step
processes Y through the FFN, enhancing the feature set with
further spatial refinement and ensuring a deep processing
capability through an additional residual connection.

LKABlock(X) = FFN(BN(Y )) + Y. (17)

The culmination of the ESFB process [see Fig. 3(c)] involves
applying two sequential Spectral Block operations on the patch
P , followed by the comprehensive spatial refinement offered
by the LKABlock. This ensures a rich, multi-dimensional
feature representation, crucial for advanced analysis and clas-
sification tasks.

ESFB(P ) = LKABlock (S2 (S1(P ))) . (18)

Through these operations, the ESFB effectively integrates
spectral, spatial, and attention-based mechanisms to process
and refine input features. To align the Spectral Domain features
with Spatial Branch and Texture Branch, we set the ce of
ESFB-1 to 24 and ESFB-2 to 80.

E. Cross-Domain Fusion Block (CDFB)

The CDFB adeptly merges spatial, texture, and spectral
features into a unified representation, shown in Fig. 1. It
leverages the strengths of each domain for enhanced scene
classification. It is simply given by:

CDFB = Norm (Concat (F4,TFAB-2,ESFB-2)) , (19)

here F4 is the output of Stage-4 MBConv6 Block. It is crucial
to place CDFB after the 4th stage, as early-stage fusion
does not benefit from unrefined cross-domain information.
Furthermore, late-stage fusion might integrate features that are
too abstract. By placing CDFB after 4th stage and aligning the
dimensions of all three branches effective feature interaction
is ensured.
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TABLE I
DETAILED PERFORMANCE COMPARISON OF PREVIOUS STATE-OF-THE-ART CLASSIFICATION MODELS ON THE OPTIMAL-31 [20] DATASET

Model Name Model
Composition

Params.
(M)

FLOPs
(G) BA AA Model

Size(MB)
Memory

Access(GB)
Training
Time(h)

Inf.
Speed(FPS) AETS

MobileNetV2 (2018) [4] CNN 2.2 0.3 79.83 77.68 18.4 1.47 0.46 240 74.78
EfficientNet-B0 (2019) [3] CNN 4.0 0.4 80.10 78.75 32.7 1.57 0.65 226 76.94

Van (2022) [5] CNN 4.1 0.9 73.11 72.75 31.1 1.43 0.87 208 68.48
EfficientNetB3 (2019) [3] CNN 10.7 1.0 79.56 78.84 86.6 1.77 1.56 186 59.00
MobileViT-S (2022) [12] Hybrid 5.0 1.8 68.81 68.63 40.4 1.71 1.06 192 58.52
FasterNet-T2 (2023) [7] CNN 13.7 1.9 76.07 75.89 110.1 1.46 0.46 200 72.87

SpectFormer-H-S (2023) [10] Transformer 20.2 3.9 80.37 78.84 171.0 1.73 1.44 163 57.33
iFormer-S (2022) [11] Hybrid 18.9 4.5 76.88 76.88 156.2 1.74 2.16 145 55.25
MaxViT-T (2022) [9] Transformer 30.3 5.4 77.15 77.15 244.4 2.05 1.60 129 54.48
SwinV2-S (2021) [8] Transformer 33.2 5.8 78.22 76.07 393.1 2.08 3.21 110 26.31

DenseNet161 (2017) [6] CNN 26.5 7.8 80.91 80.64 213.7 1.75 2.45 127 46.78

ESIF (Ours) Hybrid 9.0 1.1 86.55 85.48 75.2 1.61 1.23 153 85.78

F. Inception Transformer Block (iFB)

We adpot the iFormer Block from [11], which is utilized
to refine and synthesize the feature representations extracted
and fused from previous stages. In the original architecture,
Inception Transformer contains 4 stages, we only adopt the
4th stage to balance the local and global information before
classifier. Through its inception-inspired design, the iFormer
4th Stage emphasizes the balance between high-frequency
(detail-oriented) and low-frequency (global context) informa-
tion, ensuring that both aspects are adequately represented and
utilized in the final feature map. Positioned before the final
1× 1 convolution, which expands the feature map four times,
the iFormer block ensures that the expanded features are of
the highest quality, containing all necessary information for
the subsequent classification. In the Inception mixer, rather
than directly inputting image tokens into the Multi-Head Self-
Attention (MSA) mixer, the approach involves an initial divi-
sion of the input feature across the channel dimension. Sub-
sequently, these divided components are separately processed
by a high-frequency mixer and a low-frequency mixer. The
high-frequency mixer employs both a max-pooling operation
and a convolution operation in parallel to manage the high-
frequency aspects, whereas the processing of low-frequency
elements is handled through a self-attention mechanism.

ESIF

MaxViT-T

iFormer-S

FasterNet-T2

SpectFormer-H-S EfficientNet-B0

Swin-V2-S EfficientNet-B3
DenseNet161 Van-B0MobileViT-S
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Fig. 4. Comparison of Compound Accuracy Score (CAS) VS Compound
Efficiency Score (CES) of various models.

III. EXPERIMENTS

A. Datasets

In the evaluation of the proposed model, six RS scene
classification datasets were utilized and each dataset presens
unique challenges in terms of class diversity, image resolution,
and sample size. The datasets are detailed as follows:

1) Optimal-31 [20]: The Optimal-31 dataset comprises
1,860 images distributed across 31 classes, with each class
containing 60 images. The dataset poses significant challenges
due to the low number of samples per class, a high number of
classes, and minimal inter-class variation. Each image within
the dataset has a resolution of 256 × 256 pixels, further
complicating the classification task due to the limited spatial
information available.

2) UC Merced [24]: The UC Merced dataset includes
2,100 images, distributed equally among 21 classes, each con-
taining 100 images. With a spatial resolution of 0.3 meters per
pixel, the images (256×256 pixels) are obtained from the US
Geological Survey, providing a comprehensive view of various
US landscapes. This dataset tests the model’s performance in
classifying diverse natural and man-made features.

3) RSSCN7 [25]: Derived from Google Earth for research
purposes, the RSSCN7 dataset includes 2,800 images with
seven classes, allocating 400 images for each class. The images
are 400×400 pixels in size. The dataset is notable for its scale
variation, which presents a considerable challenge in achieving
consistent classification accuracy across all classes.

4) Siri-Whu [26]: This dataset consists of 2,400 images
across 12 classes, with 200 images per class. The images,
featuring a spatial resolution of 2 meters and dimensions of
200 × 200 pixels, predominantly cover urban areas within
China. The urban focus and uniform class distribution facilitate
focused analysis on man-made structures and their classifica-
tion from satellite imagery.

5) WHU-RS19 [27]: Comprised of high-resolution RGB
satellite images from Google Earth, the WHU-RS19 dataset
contains 19 classes with approximately 50 samples per class,
culminating in a total of 1,005 images. The dataset is charac-
terized by its class imbalance and a uniform image resolution
of 600× 600 pixels, challenging the model’s ability to gener-
alize across less-represented classes.
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Fig. 5. Eigen-Cam [23] activation maps of EfficientNet-B0 [3], FasterNet-T2 [7], MobileNetV2 [4], Van-B0 [5] and ESIF (Ours). Only samples from the
difficult classes are shown from Optimal-31 [20] dataset.

TABLE II
EVALUATION ON THE UC-MERCED, RSSCN7, SIRI-WHU, WHU-RS19 AND AID DATASETS

Model Name Params. (M) FLOPs (G) UC-Merced [24] RSSCN7 [25] SIRI-WHU [26] WHU-RS19 [27] AID [28]
BA AA BA AA BA AA BA AA BA

MobileNetV2 (2018) [4] 2.2 0.3 92.85 92.13 90.17 88.32 91.45 90.27 92.53 87.55 90.85
EfficientNet-B0 (2019) [3] 4.0 0.4 95.0 94.04 92.67 90.55 93.33 92.91 86.06 84.57 90.45

Van (2022) [5] 4.1 0.9 91.90 91.34 89.64 89.05 93.12 92.84 88.55 86.89 88.70
EfficientNet-B3 (2019) [3] 10.7 1.0 92.38 88.72 93.57 91.72 93.54 92.29 77.11 76.11 90.95
MobileViT-S (2022) [12] 5.0 1.8 90.47 90.39 90.71 90.65 92.29 92.29 87.56 87.56 87.65
FasterNet-T2 (2023) [7] 13.7 1.9 93.57 92.77 91.25 91.13 93.54 93.19 92.03 92.03 90.00

SpectFormer-H-S (2023) [10] 20.2 3.9 92.61 92.29 90.71 90.23 93.54 93.05 90.04 89.71 89.80
iFormer-S (2022) [11] 18.9 4.5 92.61 92.61 92.14 92.14 93.95 93.95 90.54 90.20 88.50
MaxViT-T (2022) [9] 30.3 5.4 93.33 92.77 93.21 92.97 94.37 94.16 91.04 91.04 93.05
SwinV2-S (2021) [6] 33.2 5.8 82.61 82.16 91.60 91.48 92.91 92.91 88.05 88.05 90.10

DenseNet161 (2017) [6] 26.5 7.8 95.47 94.75 86.70 85.86 92.50 92.08 93.53 92.70 93.15

ESIF (Ours) 9.0 1.1 95.71 95.15 94.1 93.62 95.0 94.58 94.52 93.36 93.5

6) AID [28]: As a large-scale dataset, the AID collection
features 10,000 RGB images from Google Earth, each with
a resolution of 600 × 600 pixels. It encompasses 30 diverse
classes, with images sourced globally, exhibiting spatial res-
olutions ranging between 8 to 0.5 meters. This diversity and
the variance in spatial resolution reinforce the dataset’s utility
in evaluating the robustness of classification models across a
broad spectrum of aerial imagery.

For the purpose of model evaluation, each dataset was
partitioned into training, validation, and test sets, comprising
60%, 20%, and 20% of the data, respectively. This split

ensures a balanced approach to training and evaluating the
classification model, allowing for a comprehensive assessment
of its performance across different RS scenarios.

B. Implementation Details
We use the AiTLAS toolbox to train and evaluate our mod-

els. We train and evaluate each model compared in this paper
from scratch using the same test split across all experiments for
fair comparison. The preprocessing of input images involved
resizing them to dimensions of 224 × 224 pixels. Regarding
data augmentation, the study adopted the AutoAugment [29],
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Fig. 6. Eigen-Cam [23] activation maps of ESIF 4th Stage (Last Activation Map), ESIF TFAB-2, ESIF-ESFB-2, ESIF-CDFB, ESIF 5th Stage(First Activation
Map, showcases the separate activation maps of each blocks and improved class activation maps by multi-modal fusion from 4th(2nd row) to 5th (last row).

TABLE III
ABLATION STUDY OF THE EFFECTIVENESS OF EACH PROPOSED BLOCKS

TFAB, IFB, ESFB ON THE OPTIMAL-31 [20] DATASET.

TFAB iFB ESFB Params
(M)

FLOPs
(G)

Mem.
Acc.(GB) BA AA

% % % 1.64 0.41 1.5 81.45 80.82
! % % 2.00 0.64 1.6 82.79(+1.34) 82.32(+1.5)
! ! % 8.48 0.89 1.5 83.33(+0.54) 82.79(+0.47)

!RGB ! % 8.66 1.00 1.5 80.64(-2.69) 78.63(-4.16)
!+LKA ! % 8.67 0.94 1.5 83.33(+2.69) 82.79(+4.16)
! ! MHSA 9.04 1.04 6.2 85.21(+1.88) 84.94(+2.15)

!+LKA ! LKA 9.05 1.10 1.6(-4.6) 86.55(+1.34) 85.48(+0.54)

TABLE IV
CLASS-WISE ACCURACY COMPARISON FOR CHALLENGING CLASSES IN

OPTIMAL-31 [20] DATASET.

Class Names Efficient Mobile Van Faster ESIF
Net-B0 [3] NetV2 [4] -B0 [5] Net-T2 [7] (Ours)

rectangular farmland 47.61 61.53 27.27 50.00 70.00
commercial area 55.55 63.15 66.66 60.00 50.00

church 63.63 70.58 84.21 50.00 70.58
freeway 66.66 69.56 51.85 52.17 81.48
overpass 66.66 63.63 50.00 63.15 85.71

mobile home park 69.99 66.66 46.15 63.15 73.68
lake 83.33 80.00 54.54 66.66 83.33

industrial area 80.00 75.00 55.55 69.56 86.95
runway 82.75 63.63 60.86 58.33 92.3

roundabout 85.71 74.07 64.00 71.99 92.85

alongside the implementation of RandomHorizontalFlip and
RandomVerticalFlip. These augmentations were applied to
both RGB images and GLCM texture data. Its worth noting
that exactly same augmentations should be applied to multi-
modal data for effective communication between different
modalities. For the training configurations, a batch size of
16 and 4 workers were utilized across all datasets with the
exception of the AID dataset. Given the larger scale of AID,
a batch size of 64 and 16 workers were deemed appropri-
ate to accommodate its size. The study further incorporated
the recently introduced LION (EvoLved Sign Momentum)
[30] optimizer, which has demonstrated an improvement in
training speed and convergence efficiency compared to other
optimizers in similar experimental setups. We use the standard
Cross-Entropy Loss as the loss function. The learning rate
was set to 9e−5 for models based on CNNs and adjusted to
9e−6 for those based on Transformer and Hybrid architectures.
This distinction arises from the observation that Transformer-
based models require a lower learning rate for effective con-
vergence, particularly when training from scratch. Notably, the
FasterNet-T2 [7] model, despite being CNN-based, was trained
with a learning rate of 9e−6 due to its operational similarities
with Transformer architectures in practical applications. The
learning rate was dynamically reduced by a factor of 0.1 in
response to plateaus in validation loss improvements. We train
each model for 300 epochs on all datasets except AID and 100
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epochs on AID. All models were trained on an NVIDIA Tesla
V-100 GPU equipped with 32 GB of memory.

C. Evaluation Metrics

The main evaluation metric in our experiments is the Accu-
racy or generally known as Top-1 Accuracy in classification
tasks. It can be simple defined as,

Accuracy =
TP + TN

TP + TN + FP + FN
. (20)

We use the term Best Accuracy (BA) to denote the best
possible result from that particular model and Average Ac-
curacy (AA) an average of three separate instance of results
for fair comparison. For calculating Efficiency of a model, we
utilize six metrics, Parameters (Millions) referring to the total
trainable parameters, FLOPs (Billions/Giga) or Floating Point
Operations, which represents the computation complexity of
a model, Memory Access is the GPU memory taken during
Inference measured in GB, Training time in hours, Inference
Speed is the model’s ability to process number of frames per
second during inference, the higher Inf.Speed is the better
model, and for the other 5 metrics lower is better. The
Accuracy-Efficiency Trade-off Score (AETS) for a model M ,
denoted as AETSM , is calculated as the arithmetic mean
of the Compound Accuracy Score (CAS) and the Compound
Efficiency Score (CES).

CESM =
1

6

6∑
i=1

(
SM,i −min(Si)

max(Si)−min(Si)
× 100

)
, (21)

CASM =
1

6

6∑
j=1

(
AM,j −min(Aj)

max(Aj)−min(Aj)
× 100

)
, (22)

AETSM =
CESm + CASM

2
, (23)

where, for a model M , SM,i is the best score for a given effi-
ciency metric i and AM,j is the highest AA for a given dataset
j. In this formulation, CASM represents the model’s overall
accuracy across multiple datasets, normalized and averaged to
reflect comparative performance. Similarly, CESM assesses
the model’s computational efficiency by averaging normalized
scores across various efficiency metrics. The AETS thus
encapsulates a balanced evaluation of model M ’s performance,
combining accuracy and efficiency into a single metric to
provide a comprehensive assessment of its effectiveness and
resource utilization.

D. Evaluation on Optimal-31

The detailed experimental analysis on the Optimal-31
dataset is shown in Table I. We compare our proposed network
ESIF with 11 previous state-of-the-art networks, with varying
computational efficiency. Among them, six of them are purely
CNN-based: EfficentNet-B0, EfficientNet-B3, MobileNetV2,
Van-B0, DenseNet161 and FasterNet-T2. Three are pure
transformer-based: SpectFormer-H-S, MaxViT-T and SwinV2-
S. Two networks are CNN-Transformer Hybrids: MobileViT-
S and InceptionTransformer (iFormer-S). We classifiy our
network as a Hybrid since it employs Conv. based attention

(LKA) as well as little amount of attention in the later
stages using iFormerBlock. As previously explained, Average
Accuracy (AA) is the average of three instance of training
result, and Best Accuracy (BA) is the best possible accuracy
attained by that model. Our proposed ESIF outperformed all
the compared methods by a large margin in both the AA
and BA category on Optimal-31 dataset. We achieve 86.55%
BA, while the second best DenseNet161 achieves 80.91%, a
5.64% difference, similarly ESIF achieves 85.48% AA which
is 4.84% higher than the second position of DenseNet161 at
80.64%. SpectFormer-H-S and EfficientNet-B0 models also
perform more than 80% at BA but falls short at AA. In
case of the efficiency metrics, our model is not the best
in the list, MobileNetV2 model which is designed focusing
on the efficiency comes out on top in most of the metrics-
Parameters 2.2million, FLOPs 0.3 G , Model Size 18.4 MB,
Inference Speed 240 FPS, while FasterNet-T2 is best for
Memory Access 1.46 GB and Training Time 0.46h. But, for
the Accuracy-Efficiency Trade-Off Score AETS, our model
achieves the best score of 85.78, while the trailing positions
over 70 are EfficientNet-B0 with 76.94, MobileNetV2 with
74.78 and FasterNet with 72.87. This results highlights that
ESIF maintains a high Accuracy-Efficiency Trade-Off, being
more focused on accuracy and achieving state-of-the-art result
while keeping up in the efficiency metrics as well. Fig. 5 shows
the Eigen-Cam [23] activation maps of all eleven models for
10 challenging classes of Optimal-31 dataset.

E. Evaluation on UC-Merced, RSSCN7, SIRI-WHU, WHU-
RS19 and AID

In the comprehensive evaluation presented in Table II,
our Efficient Spectral Inception Former (ESIF) model consis-
tently outperforms a broad spectrum of state-of-the-art models
across several RS image datasets. On the UC-Merced dataset,
known for its challenging urban and natural landscapes, ESIF
achieves the highest Best Accuracy (BA) of 95.71% and
Average Accuracy (AA) of 95.15%, surpassing DenseNet161
and EfficientNet-B0, which are the second and third best
performers, respectively. The RSSCN7 dataset, characterized
by a variety of scene categories, sees ESIF leading with
a BA of 94.1% and an AA of 93.62%, with MaxViT-T
and iFormer-S following closely behind. In the SIRI-WHU
evaluation, focused on complex land use and cover types,
ESIF secures the top position again with a BA of 95.0% and
an AA of 94.58%, outshining SwinV2-S and SpectFormer-H-
S. For the high-resolution satellite images in the WHU-RS19
dataset, ESIF maintains unparalleled accuracy with a BA of
94.52% and an AA of 93.36%, ahead of DenseNet161 and
EfficientNet-B3. Lastly, on the AID dataset, ESIF’s BA of
93.5% stands out against the competitive accuracies achieved
by DenseNet161 and MaxViT-T, marking it as the superior
model for aerial scene recognition. Across all datasets, ESIF
not only demonstrates its exceptional capability in integrating
spatial, texture, and spectral information for RS image analysis
but also establishes a new benchmark in classification ac-
curacy, significantly surpassing the second-best DenseNet161
and other contenders like EfficientNet-B0 in several instances.
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This remarkable performance underlines ESIF’s advanced fea-
ture processing capabilities, affirming its competitive edge and
versatility for diverse RS applications. Fig. 4 demonstrates
Accuracy-Efficiency Tradeoff of the models using CES and
CAS.

F. Ablation Study

Table III presents an ablation study conducted to scruti-
nize the contributions of different blocks within the Efficient
Spectral Inception Former (ESIF) architecture, specifically
evaluating the impact of the Texture Feature Alignment Block
(TFAB), Inception Transformer Block (iFB), and Efficient
SpectroFormer Block (ESFB) on the model’s overall perfor-
mance. Initially, the base model without TFAB, iFB, and
ESFB achieves a Best Accuracy (BA) of 81.45% and an
Average Accuracy (AA) of 80.82%, serving as a foundational
benchmark. The integration of TFAB alone improves the
model’s performance, leading to an increase of 1.34% in
BA and 1.5% in AA, which highlights the significance of
texture analysis in improving classification accuracy. Further
addition of iFB to the architecture with TFAB elevates BA
by 0.54% and AA by 0.47%, indicating the importance of
balancing local and global information through the iFB. A
variant using RGB inputs instead of TFAB with iFB resulted
in a notable decrease in performance, highlighting the in-
adequacy of raw RGB inputs in comparison to specialized
texture features for this task. Incorporating the Large Kernel
Attention (LKA) mechanism with TFAB and iFB reverses
this decline, matching the BA and AA achieved with TFAB
and iFB alone, which emphasizes the effectiveness of LKA
in processing spatial information. The substitution of ESFB
with Multi-Head Self Attention (MHSA) further propels the
model to achieve significantly higher accuracies, with a BA
of 85.21% and an AA of 84.94%, illustrating the critical
role of frequency domain processing in enhancing the model’s
capability. The final configuration, which combines TFAB with
LKA, iFB, and an LKA-based ESFB, culminates in the highest
performance boost, achieving a BA of 86.55% and an AA of
85.48%, alongside a substantial reduction in memory access.
This configuration exemplifies the synergistic effect of these
blocks, highlighting their collective importance in establishing
ESIF’s state-of-the-art performance. The study conclusively
demonstrates that while each component—TFAB, iFB, and
ESFB—individually contributes to the model’s efficiency and
accuracy, their integration yields the most significant improve-
ments, validating the architectural choices underpinning ESIF.
Fig. 6. shows the Eigen-Cam [23] activation maps of TFAB,
ESFB, CDFB, last conv activation of 4th Stage and first conv
stage of 5th Stage of ESIF to showcase the effectiveness of
each proposed block.

G. Performance Analysis on the Challenging classes of
Optimal-31 Dataset

Table IV offers a detailed class-wise accuracy comparison
for ten challenging classes within the Optimal-31 dataset,
juxtaposing the performance of our Efficient Spectral Inception
Former (ESIF) model against notable counterparts such as

EfficientNet-B0, MobileNetV2, Van-B0, and FasterNet-T2.
This granular analysis reveals the nuanced strengths and weak-
nesses of each model in recognizing specific scene types, with
ESIF consistently showcasing superior or highly competitive
performance across a majority of the classes. For classes like
’rectangular farmland’ and ’overpass’, ESIF markedly outper-
forms its competitors, achieving top accuracies of 70.00% and
85.71%, respectively, highlighting its adeptness at handling
intricate spatial patterns and textures. Notably, while ’commer-
cial area’ and ’church’ see stronger performances from Van-
B0 and itself respectively, ESIF demonstrates its robustness
with a substantial 70.58% accuracy in ’church’, closely mirror-
ing MobileNetV2’s performance. In instances where detailed
feature extraction is paramount, such as in ’freeway’ and
’runway’ categories, ESIF’s accuracy peaks at 81.48% and
92.3% respectively, significantly surpassing the alternatives.
This underscores ESIF’s exceptional ability to process and
integrate complex spatial, texture, and spectral information,
ensuring precise classification even in challenging scenarios.
Moreover, ESIF’s architecture enables it to achieve the highest
accuracies in ’mobile home park,’ ’lake’, ’industrial area’,
and ’roundabout’, with scores of 73.68%, 83.33%, 86.95%,
and 92.85%, respectively. These results not only attest to
the model’s comprehensive feature representation capabilities
but also to its versatility across diverse environmental and
architectural contexts. In contrast, certain classes like ’com-
mercial area’ see a dip in ESIF’s performance, suggesting
areas where the model’s processing strategy might benefit from
further refinement or adaptation. Nevertheless, the overarching
trend within the table solidifies ESIF’s position as a formidable
solution for RS image classification, especially in deciphering
complex scenes within the Optimal-31 dataset. The class-wise
comparison underscores ESIF’s advancements in achieving
state-of-the-art accuracy, marking significant progress in the
field and showcasing the model’s potential in navigating the
intricacies of RS data.

IV. CONCLUSION

The Efficient Spectral Inception Former (ESIF) architecture
represents a significant advancement in RS scene classifi-
cation, successfully addressing the challenges posed by the
unique characteristics of RS images. By integrating spatial,
texture, and spectral domain analyses through TFAB, ESFB,
and iFB, ESIF effectively captures the comprehensive visual
information necessary for accurate classification. The model’s
exceptional performance is validated through rigorous testing
across diverse datasets, consistently outperforming existing
state-of-the-art models. The ablation study further elucidates
the crucial role of each component, underscoring the impor-
tance of multi-domain feature fusion in enhancing classifi-
cation accuracy. Additionally, ESIF’s design considerations,
such as efficient computation and the ability to handle high
intra-class variability and low inter-class distinction, make
it particularly suited for RS applications. Future work will
explore further optimizations and applications of ESIF, po-
tentially extending its utility to other domains requiring fine-
grained image analysis. The promising results obtained thus
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far emphasize ESIF’s potential to revolutionize RS scene
classification, offering a robust tool for earth observation and
similar applications.
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