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Abstract— Remote sensing scene classification, a piv-
otal task in Earth observation, entails the categorization
of satellite or aerial imagery into distinct land-use and
land-cover classes, a process fraught with challenges due
to high intra-class variability and low inter-class distinc-
tions. Our paper delves into these complexities, we pro-
pose the Efficient Spectral Inception Former (ESIF) ar-
chitecture, which introduces a novel paradigm in remote
sensing scene classification by integrating multi-domain
feature fusion, including spatial, texture, and spectral (fre-
quency) domains. This comprehensive approach leverages
the strengths of Convolutional Neural Networks (CNNs)
for local information extraction, Transformers for global
context, and a novel Texture Feature Alignment Block
(TFAB) for nuanced texture differentiation, addressing the
limitations of general-purpose vision models when applied
to remote sensing imagery. The Efficient SpectroFormer
Block (ESFB) utilizes spectral analysis for enhanced pat-
tern recognition, while the Inception Transformer Block
(iFB) balances high and low-frequency information. ESIF
achieves state-of-the-art accuracy in all six tested bench-
mark with 86.55% on Optimal-31, 95.71% on UC-Merced,
94.1% on RSSCN7, 95% on SIRI-WHU, 94.52 on WHU-RS19
and 93.5% on AID datasets.

Index Terms— Remote Sensing, Scene Classification,
Texture Analysis, Convolutional Neural Network (CNN),
Self-Attention

I. INTRODUCTION

REMOTE sensing techniques, as employed in Earth obser-
vation, represent a pivotal area of research that involves

the acquisition of signals emanating from various physical
phenomena through instruments mounted on spaceborne and
airborne platforms. These methodologies are invaluable for
a broad spectrum of applications, ranging from the accurate
measurement and estimation of geo-bio-physical parameters
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to the identification of materials based on the analysis of
the signals captured [1] [2]. The interaction of materials
with electromagnetic radiation—through processes of reflec-
tion, absorption, and emission—is fundamentally influenced
by their molecular composition and structural characteristics.
This interaction forms the cornerstone of remote sensing,
facilitating the collection of critical information about objects
or scenes from a distance, regardless of whether the distance
is short, medium, or long [3] [4].

Scene classification from remote sensing imagery are among
the most significant tasks in this field, offering essential
insights for various applications [2]. The task of classifying
remote sensing images, however, poses some considerable
challenges, given the imperative role of land-cover and land-
use maps in multi-temporal investigations and their invaluable
contribution to diverse domains, including climate change
modeling, oceanic current analysis, arctic research, and post-
catastrophe response efforts. [5].

In recent advancements within the field of Remote Sensing
Scene Classification, deep learning-based vision algorithms
have markedly increased in prevalence and effectiveness.
Predominantly, these models are stratified into three primary
categories: Convolutional Neural Network or CNN-based [6]
[7] [8] [9] [10], Transformer-based [11] [12] [13] and Hybrid
(CNN+Transformer) [14] [15] models. CNNs are renowned
for their capacity to extract local information from the input,
synthesizing numerous local inferences to produce the final
output [16]. Conversely, Transformer models are engineered to
capture global information from the onset, though they often
lack the nuanced local contexts inherent to the input, a gap that
Hybrid models aim to bridge by amalgamating the strengths
of both CNNs and Transformers to offer a comprehensive
representation of both local and global information [17]) [18].

However, a significant challenge arises when applying these
general-purpose vision models, primarily developed for con-
ventional images captured at eye level, to the domain of
Remote Sensing (RS) images. RS imagery, typically acquired
via satellites, aircraft, or drones, exhibits fundamental dis-
tinctions from standard photography, primarily due to the
divergent viewpoints (Top-view versus Eye-Level) [19]. This
disparity in perspectives necessitates a different set of features
to accurately represent the same object or class across these
two modalities. Consequently, models pretrained on eye-level
images do not seamlessly transition to the RS domain, often
leading to misclassification due to the discordance in feature
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representation between eye-level and top-view imagery [4]
[20].Pretrained models trained on eye-level images are not
always quite suitable for RS images and can be easily prone to
misclassification. This discrepancy underscores the necessity
for developing or adapting models specifically tailored for RS
images, taking into account their unique characteristics and
challenges.

In real-world applications, remote sensing (RS) datasets
often exhibit a marked contrast in size when compared to
datasets utilized in other image classification tasks. This dis-
crepancy primarily arises from the logistical challenges and
financial constraints associated with collecting RS imagery,
rendering the assembly of large-scale datasets a formidable
endeavor [19]. Unlike the extensive ImageNet database, there
exists no comparable, large-scale dataset tailored for RS that
could facilitate pretraining [21]. Typically, RS datasets fea-
ture 100 or fewer samples per class, significantly impeding
a model’s capacity to learn generalization. This challenge
is exacerbated as the number of classes within a dataset
increases. A case in point is the Optimal-31 [22] dataset,
characterized by its 31 classes and a mere 60 samples per
class, posing a unique set of challenges for classification
models.High intra-class variation, the appearance of ”beach”
or ”forest” can vary widely depending on location, season, and
lighting conditions. High inter-class similarity, ”airport” and
”runway” or ”parking lot” and ”harbor” might share similar
features, such as large, flat areas, making them harder to
distinguish. Limited Training Samples The diversity within
some classes may not be fully captured by 60 samples,
leading to a model that generalizes poorly on those classes.
Complexity of Features, distinguishing between ”chaparral”
and ”meadow” might require understanding subtle differences
in vegetation patterns. These causes in some of the classes
being significantly harder to classify than others, from Table
IV we can see that even though the overall accuracy(OA) of a
model reaches around 80%, some classes have less than 50%,
even in some cases less than 30% individual accuracy(IA).

Deep-learning vision algorithms typically necessitate sub-
stantial volumes of training data to discern the complex
features inherent to each class, thereby attaining a high overall
accuracy (OA). This requirement, however, poses a significant
challenge for remote sensing (RS) scene classification tasks
due to the scarcity of such extensive datasets in the RS do-
main. While models endowed with substantial computational
resources may achieve commendable OA, their performance
often skews towards the more readily classifiable classes,
leaving the more challenging categories relatively underserved
[23]. The pursuit of high OA frequently necessitates trade-offs
against efficiency and processing speed, thereby constrain-
ing the practical applicability of these models in real-world
scenarios. RS scene datasets which only has RGB or spatial
image information lacks the additional cues which multi-band
or hyperspectral RS images have. To construct an efficient
algorithm which can accurately classify the challenging classes
efficient multi-domain analysis such as frequency and texture
information could be beneficial.

Thus, We introduce the ESIF: Efficient Spectral Inception
Former architecture, a pioneering approach that processes

input data across three critical domains—Spatial, Texture, and
Frequency (Spectral)—in parallel branches. This methodology
enables simultaneous analysis of the same input, leveraging
the strengths of each domain to enhance RS image under-
standing and classification. Overall the main contributions are
as follows-

• We propose the Texture Feature Alignment Block
(TFAB), which utilizes three GLCM features, crucial for
capturing the nuances of image textures, enabling the
model to distinguish between subtle variations in visual
patterns effectively reducing the inter-class similarity
through texture information.

• Efficient SpectroFormer Block (ESFB) is constructed
with Spectral and LKA blocks to capture frequency
information through FFT and refine it with attention
mechanism, which alleviates the high-intra class variation
problem.

• Cross-Domain Fusion Block (CDSB) mechanism is de-
ployed to effectively synthesize the outputs from the
spatial, texture, and spectral branches, followed by the
incorporation of the iFormer Block in the later stages to
balance the high and low frequency components.

The rest of the article is organized as follows: Section II
introduces Related Works, Section III detailes our Methodol-
ogy and overall building of the network Architecture, Section
IV discusses the Experimental Results and Section V is the
Conclusion of our work.

II. RELATED WORKS

A. Earth Observation

Satellite-based earth observation has evolved into an in-
dispensable instrument for comprehending and surveilling
global environmental transformations, encompassing phenom-
ena such as deforestation, urban expansion, and climate fluctu-
ations [24]. Within this context, satellite image classification
assumes a pivotal role, exerting a profound impact across a
spectrum of applications, notably land use and land cover
mapping, agricultural surveillance, disaster mitigation, and ur-
ban planning initiatives [5], [25]. Furthermore, satellite image
classification finds pertinence in the domain of disaster man-
agement, where it expedites damage assessment and bolsters
disaster response endeavors [26]. To augment classification
precision, amalgamating data from diverse sources, including
satellite imagery, climatic data, and ground-level observations,
proves instrumental [27]. In a comprehensive study, the au-
thors of [28] delve into an extensive examination involving 22
datasets, exploring numerous amalgamations of deep learning
models while conducting a rigorous comparative analysis of
their efficacy.

B. Efficient CNNs for Classification

In recent years, there has been a notable surge in research
interest surrounding the efficiency of convolutional neural
networks (CNNs). A pivotal milestone in this pursuit was the
introduction of Depthwise-Separable Convolution by Howard
et al. [29], which gave birth to the Xception architecture. This
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groundbreaking approach significantly reduces the parameters
and computational operations (FLOPs) associated with con-
ventional convolutions while retaining robust feature-capturing
capabilities. Subsequently, MobileNets [?] built upon this
concept, ushering in a family of efficient CNN architectures
meticulously designed for expeditious performance on mobile
and embedded devices. Another noteworthy contribution in
this domain was made by Zhang et al. [30] with the inception
of ShuffleNet. This innovative CNN architecture harnesses
channel shuffling techniques and pointwise group convolutions
to achieve commendable accuracy while maintaining a low
computational burden. EfficientNets, introduced by Tan and
Le [6], represent yet another significant advancement. These
CNN architectures leverage a novel compound scaling method
to attain state-of-the-art performance metrics, all the while
substantially reducing the number of parameters and computa-
tional expenses. SqueezeNet, pioneered by Iandola et al. [31],
offers a distinct approach. This CNN architecture employs
a combination of 1x1 and 3x3 convolutions to effectively
curtail the parameter count while upholding high precision in
classification tasks. Furthermore, Wu et al. [32] brought forth
ProxylessNAS, a groundbreaking neural architecture search
method. This approach enables the direct optimization of
CNN architectures tailored to specific hardware and tasks,
yielding highly efficient and accurate models. Additionally,
the research community witnessed innovations such as RTM-
Det [33], which introduced a modification of the renowned
darknet-53 architecture. This adaptation incorporates large-
kernel depthwise-separable convolutions, further contributing
to the realm of efficient CNN architectures.

C. Texture Analysis for Scene Classification Task

While existing CNN-based methodologies have exhibited
promise in the realm of Scene Classification tasks, they
primarily rely on pure RGB images and may fall short in
capturing intricate high-level texture attributes. To address
this limitation and augment the texture characteristics inherent
in facial expressions, classical texture features have been
harnessed as supplementary inputs within a parallel neural
network framework [34]. For instance, the Local Binary Pat-
tern (LBP) was amalgamated with features extracted from
CNN, employing an attentional selective fusion strategy [35].
Additionally, Liu et al. [36] introduced the application of the
gray-level co-occurrence matrix to preprocess facial images,
subsequently extracting deep texture features. In light of
these advancements, our study centers on the development of
a texture-aware feature enrichment module. This module is
adept at leveraging a spectrum of texture extraction techniques,
thereby providing a wealth of texture information, particularly
beneficial for the characterization of challenging land cover
classes.

III. METHODOLOGY

A. Design Concept of ESIF

In the development of the Efficient Spectral Inception
Former (ESIF) architecture, we strategically orchestrate the

processing of input data across three distinct domains: Spa-
tial, Texture, and Frequency (Spectral), leveraging parallel
branches to concurrently analyze the same input. Specifi-
cally, the input RGB image, denoted as S ∈ RHxWx3,
is simultaneously directed towards the Spatial Baseline and
the Efficient SpectroFormer Block (ESFB) branches. Mean-
while, the Texture Feature Alignment Block (TFAB) branch
processes the Gray Level Co-occurrence Matrix (GLCM)
outputs—namely, Contrast, Correlation, and Angular Second
Moment (ASM) Features—extracted from S. Cross-Domain
Fusion Block (CDSB) integrates the outputs of these three
branches post the fourth stage within the Spatial Branch,
ensuring a comprehensive synthesis of spatial, texture, and
frequency information. Subsequent to the sixth stage of
the Spatial Branch, we introduce the Inception Transformer
(iFormer) Block, which further refines the spatial features.
This is followed by a 1 × 1 convolutional layer aimed at
expanding the feature map, an Adaptive Average Pooling layer
for feature concentration, and a Classifier that delineates the
final output. This architecture design, embodying the simul-
taneous and synergistic processing across multiple domains,
exemplifies our approach to harnessing the full spectrum of
visual information for enhanced image understanding and
classification. The detailed process of each block are explained
in the next sections.

B. MBConv Based Spatial Baseline

To construct our efficient baseline we adopt the MBConv6
block from EfficientNet [6], which is a improved version of
the mobile inverted bottleneck convolution of MobileNetV2
[7] . This architecture leverages depthwise separable convolu-
tions along with a squeeze-and-excitation (SE) mechanism to
enhance feature extraction efficiency and focus. While being
slightly lower in speed than the MobileNetV2, it is much more
accurate and consistent. But, our baseline architecture varies in
a lot of ways with both MobileNetV2 and EfficientNet-B0. The
detail architecture is shown in Fig. 1. In our Spatial Baseline,
the first stem block consists of 3× 3 Convolution with stride
2 and downsamples the input image by half, while projecting
from 3 to 32 channels. We use 6 stages of MBConv6. In a
typical MBConv6 block, the first step involves expanding the
input feature map using a 1 × 1 convolution. This expansion
increases the number of channels, aiming to provide a richer
representation for the depthwise convolution to process.

Yexp = ReLU6
(
BN

(
Conv1×1, cin→cexp

(X)
))

(1)

Following expansion, a k × k depthwise convolution applies
spatial filtering to each channel independently, allowing for
efficient extraction of spatial features.

Ydw = ReLU6
(
BN

(
DWConvk×k, cexp

(Yexp)
))

(2)

The SE mechanism recalibrates channel-wise feature re-
sponses by explicitly modeling interdependencies between
channels, enhancing the representational capacity for impor-
tant features.

Yse = SE(Ydw) (3)
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Fig. 1. Overall Architecture of the proposed network ESIF: Efficient Spectral Inception Former, comprised of three branches: Spatial Baseline for
spatial feature extraction, TFAB for processing Texture information, ESFB for extraction of Spectral information, and CDSB for mulit-domain fusion,
followed by iFormer Blocks for balancing

The expanded feature map is then projected back down to
a lower-dimensional space using another 1 × 1 convolution,
compacting the information learned from the depthwise con-
volution and SE block.

Yproj = BN
(
Conv1×1, cexp→cout

(Yse)
)

(4)

If the input and output dimensions allow (typically when stride
is 1 and cin = cout, a residual connection is added from
the block’s input to its output, facilitating gradient flow and
preserving identity features.

S = Yproj +X (5)

MBConv6 block is designed for efficient and effective feature
extraction, balancing computational efficiency with the capac-
ity to capture essential spatial and channel-wise information.
The use of expansion and projection convolutions, along with
depthwise filtering and channel recalibration via squeeze-
and-excitation, exemplifies the block’s ability to process and
refine features within a compact architectural framework.
We set the output dimension of the 6 stages as ci =
[16, 24, 40, 80, 112, 320]. For effective feature fusion through
CDSB, c for stage-2 is aligned with TFAB-1,ESFB-1 and c
stage-4 is aligned with TFAB-2, ESFB-2.

C. Texture Feature Alignment Block (TFAB)

For generating texture features from the input RGB image,
we incorporate characteristics derived from the well-known
Gray-Level Co-occurrence Matrix (GLCM) to augment our
texture analysis. Specifically, we utilize both the contrast ratio
and relevance metrics as supplementary texture descriptors,
leveraging inputs from GLCM. In this configuration, we
employ sub-windows of size 3 × 3 and set the number of
gray levels to eight. We consider 3 GLCM features for our
TFAB block. Contrast (CON) feature measures the intensity
contrast between a pixel and its neighbor over the whole
image. High contrast values indicate a large difference in
intensity between pixel pairs, suggesting a more textured
and less smooth image. Low contrast values suggest minimal
intensity difference between neighboring pixels, indicating a
smoother image texture. Relevance or Correlation (CORR)
is the similarity degree of GLCM elements in directions of
line and row, which denotes the relevant degree of some gray
levels in images. Angular Second Momentum (ASM) emerges
as a valuable metric for discerning the depth of textures and
patterns. A higher ASM value signifies the presence of more
pronounced textures and deeper patterns, while a lower value
corresponds to a blurred visual representation with shallower
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Fig. 2. Detailed Architecture of TFAB: Texture Feature Alignment Block.
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textures.

CON = GRAY (

N−1∑
i,j=0

Pi,j(i− j)2) (6)

CORR = GRAY (

N−1∑
i,j=0

Pi,j
(i− µi)(j − µj)√

σ2
i σ

2
j

) (7)

ASM = GRAY (

N−1∑
i,j=0

P 2
i,j) (8)

where N is the size of GLCM and P (i, j) is the proba-
bility density of the corresponding pixel, µi,µj and σi,σj

refer to mean and variance of Px(i) and Py(j) respectively.
GRAY indicates converting to gray-level image of one chan-
nel. Finally, three texture feature maps: xCON ∈ RHxWx1,
xCORR ∈ RHxWx1, xASM ∈ RHxWx1 are obtained with
above equations.

TFAB have two stages TFAB-1 and TFAB-2. The detailed
architecture is shown in Fig.2, the three GLCM features are
concatenated to the size H × W × 3. The stem block is a
standard 3×3 convolution with stride 2 for downsampling the
input to H

2 × W
2 × 3. We employ ci(s) , cim(s) and co(s) three

dimensions indicating input channels, intermediate channels
and output channels respectively, where s is the stage no.
For, an stage of TFAB it is processed by four consecutive
operations, a 1 × 1 Convolution to expand the intermediate
channels, which acts as a pointwise linear transformation,
mixing the input channels to produce a richer set of features
and allows the network to represent a broader range of features
and textures within the image.

Y
(1)
t = Conv1×1, ci(s)→2cim(s)

(Xt) (9)

Then, a 5 × 5 Depth-Wise Separable Convolution for feature
extraction, Depth-wise separable convolution is a highly effi-
cient method for extracting spatial features from the expanded
channel space. By separating the convolution into a depth-
wise spatial component and a pointwise channel mixing com-
ponent, it allows for detailed texture analysis with reduced
computational cost. The depth-wise component focuses on
extracting spatial texture patterns from each channel indepen-
dently, emphasizing the nuances of texture within the image.
The subsequent pointwise convolution then combines these
extracted features across channels, enhancing the model’s
ability to detect and represent diverse texture information.

Yt = DWSConv5×5, 2cim(s)→cim(s)
(Y

(1)
t ) (10)

After that, a 2 × 2 Average Pool for concentrating important
features. By averaging the values within 2×2 patches, this step
effectively distills the most significant texture information into
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a more compact representation. This process aids in reducing
noise and focusing the model’s attention on the most relevant
texture features for classification tasks. And one MBConv6
Block (kernel size=3) for aligning the texture features with
the corresponding spatial domain. The MBConv6 block further
processes the concentrated texture features, aligning them with
the spatial domain of the image. This operation is crucial for
integrating the extracted texture information with the overall
spatial structure of the image, ensuring that texture features
are correctly associated with their spatial context. The whole
process can be defined by:

TFAB(Xt) = MBConv63×3, cim(s)→co(s)

(
AvgPool2×2(Yt)

)
(11)

The difference between TFAB-1 and TFAB-2 is the initial
downsampling operation, while TFAB-1 uses the stem block,
TFAB-2 uses a simple 2 × 2 AveragePool. ci(s) , cim(s)

and co(s) values for TFAB-1 = (32, 16, 24) and TFAB-2 =
(24, 48, 80). The co(s) is matched with stage 2 and stage 4 of
the Spatial Baseline for aligning the respective spatial features
with texture features.

D. Efficient SpectroFormer Block (ESFB)
For processing image information using transformer based

models, Patch Embedding mechanism is used to patchify the
input image into smaller patches.The convolutional approach
to creating patch embeddings inherently extracts useful low-
level features from images, such as edges and textures, pro-
viding a richer input to the Transformer block. We use a 4×4
convolution with stride 4 on the input image I to produce
a set of patch embeddings P (I). This effectively reducing
the spatial dimensions while increasing the depth from ci to
ce.Position encodings are added to these embeddings to retain
spatial context lost during dimensionality reduction, essential
for maintaining the positional relationship between patches in
subsequent processing.

P (I) = Conv4×4,stride=4,Ci→Ce
(I) + PositionEncoding (12)

The Spectral Block leverages the Fourier Transform (FFT)
to analyze the patch embeddings in the frequency domain,
modifying the spectral components through element-wise mul-
tiplication with weights W . The inverse Fourier Transform
(IFFT) then maps these modified components back to the
spatial domain. This process, enhanced with layer normaliza-
tion (LN) and a Multi-Layer Perceptron (MLP), extracts and
refines frequency-based features, facilitating detailed texture
and pattern analysis.

S(P ) = MLP (LN (IFFT (LN (FFT(P )⊗W )))) + P (13)

The LKA mechanism focuses on capturing spatial details
by applying depth-wise convolutions followed by a 1 ×
1 convolution to the input x, emphasizing local features
through element-wise multiplication. This operation enhances
the model’s sensitivity to spatial variations and details, crucial
for understanding complex visual textures and structures.

LKA(x) = (Conv1×1(DW-D-Conv(DW-Conv(x))))⊗ x (14)

The FFN applies a series of convolutions, including a 3 × 3
depth-wise convolution activated by GELU, to process the

spatial features further. This network refines the feature maps,
ensuring that the model captures both broad and nuanced
spatial information effectively.

FFN(x) = Conv1×1(GELU(DW-Conv3×3(Conv1×1(x)))) (15)

This equation integrates the LKA’s output with the original
input X through a residual connection, fostering the preserva-
tion of initial features while incorporating the detailed spatial
analysis performed by the LKA.

Y = LKA(BN(X)) +X (16)

Building upon the refined features from the LKA, this step
processes Y through the FFN, enhancing the feature set with
further spatial refinement and ensuring a deep processing
capability through an additional residual connection.

LKABlock(X) = FFN(BN(Y )) + Y (17)

The culmination of the ESFB process involves applying two
sequential Spectral Block operations on the patch embeddings
P , followed by the comprehensive spatial refinement offered
by the LKABlock. This ensures a rich, multi-dimensional
feature representation, crucial for advanced analysis and clas-
sification tasks.

ESFB(P ) = LKABlock (S2 (S1(P ))) (18)

Through these operations, the ESFB effectively integrates
spectral, spatial, and attention-based mechanisms to process
and refine input features. To align the Spectral Domain features
with Spatial Branch and Texture Branch, we set the ce of
ESFB-1 to 24 and ESFB-2 to 80.

E. Inception Transformer Block (iFB)

We adpot the iFormer Block from [14], which is utilized
to refine and synthesize the feature representations extracted
and fused from previous stages. In the original architecture,
Inception Transformer contains 4 stages, we only adopt the
4th stage to balance the local and global information before
classifier. Through its inception-inspired design, the iFormer
4th Stage emphasizes the balance between high-frequency
(detail-oriented) and low-frequency (global context) informa-
tion, ensuring that both aspects are adequately represented and
utilized in the final feature map. Positioned before the final
1x1 convolution, which expands the feature map four times,
the iFormer block ensures that the expanded features are of
the highest quality, containing all necessary information for the
subsequent classification. This strategic placement maximizes
the impact of the final feature expansion on the network’s per-
formance. In the Inception mixer, rather than directly inputting
image tokens into the Multi-Head Self-Attention (MSA) mixer,
the approach involves an initial division of the input feature
across the channel dimension. Subsequently, these divided
components are separately processed by a high-frequency
mixer and a low-frequency mixer. The high-frequency mixer
employs both a max-pooling operation and a convolution
operation in parallel to manage the high-frequency aspects,
whereas the processing of low-frequency elements is handled
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through a self-attention mechanism. The overall process of the
iFormerBlock are detailed below:

Yh1 = FC(MaxPool(Xh1) (19)

Yh2 = DwConv(FC(Xh2) (20)

Yl = Upsample(MSA(AvePoool(Xl))) (21)

Yc = Concat(Yl, Yh1, Yh2) (22)

ITM(Y ) = FC(Yc +DwConv(Yc) (23)

X = X + ITM(LN(X)) (24)

H = X + FFN(LN(X)) (25)
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Fig. 4. Comparison of Compound Accuracy Score (CAS) VS Com-
pound Efficiency Score (CES) of various models.

IV. EXPERIMENTS

A. Datasets
In the evaluation of the proposed model, six remote sensing

scene classification datasets were utilized, each presenting
unique challenges in terms of class diversity, image resolution,
and sample size. The datasets are detailed as follows:

1) Optimal-31 [22]: The Optimal-31 dataset comprises 1,860
images distributed across 31 classes, with each class contain-
ing 60 images. The dataset poses significant challenges due
to the low number of samples per class, a high number of
classes, and minimal inter-class variation. Each image within
the dataset has a resolution of 256 × 256 pixels, further
complicating the classification task due to the limited spatial
information available.

2) UC Merced [38]: The UC Merced dataset includes 2,100
images, distributed equally among 21 classes, each containing
100 images. With a spatial resolution of 0.3 meters per pixel,
the images (256 × 256 pixels) are obtained from the US
Geological Survey, providing a comprehensive view of various
US landscapes. This dataset tests the model’s performance in
classifying diverse natural and man-made features.

3) RSSCN7 [39]: Derived from Google Earth for research
purposes, the RSSCN7 dataset includes 2,800 images with
seven classes, allocating 400 images for each class. The images
are 400×400 pixels in size. The dataset is notable for its scale
variation, which presents a considerable challenge in achieving
consistent classification accuracy across all classes.

4) Siri-Whu [40]: This dataset consists of 2,400 images
across 12 classes, with 200 images per class. The images,
featuring a spatial resolution of 2 meters and dimensions of
200 × 200 pixels, predominantly cover urban areas within
China. The urban focus and uniform class distribution facilitate
focused analysis on man-made structures and their classifica-
tion from satellite imagery.

5) WHU-RS19 [41]: Comprised of high-resolution RGB
satellite images from Google Earth, the WHU-RS19 dataset
contains 19 classes with approximately 50 samples per class,
culminating in a total of 1,005 images. The dataset is charac-
terized by its class imbalance and a uniform image resolution
of 600× 600 pixels, challenging the model’s ability to gener-
alize across less-represented classes.

6) AID [42]: As a large-scale dataset, the AID collection
features 10,000 RGB images from Google Earth, each with
a resolution of 600 × 600 pixels. It encompasses 30 diverse
classes, with images sourced globally, exhibiting spatial reso-
lutions ranging between 8 to 0.5 meters. This diversity and the
variance in spatial resolution underscore the dataset’s utility
in evaluating the robustness of classification models across a
broad spectrum of aerial imagery.

For the purpose of model evaluation, each dataset was
partitioned into training, validation, and test sets, comprising
60%, 20%, and 20% of the data, respectively. This split
ensures a balanced approach to training and evaluating the
classification model, allowing for a comprehensive assessment
of its performance across different remote sensing scenarios.

B. Implementation Details

We use the AiTLAS toolbox to train and evaluate our
models. We train and evaluate each model compared in
this paper from scratch using the same Test split across all
experiments for fair comparison. The preprocessing of input
images involved resizing them to dimensions of 224 × 224
pixels. Regarding data augmentation, the study adopted the
AutoAugment(Policy:CIFAR10) [43], alongside the imple-
mentation of RandomHorizontalFlip and RandomVerticalFlip.
These augmentations were applied to both RGB images and
GLCM texture data. Its worth noting that exactly same aug-
mentations should be applied to multi-modal data for effective
communication between different modalities.For the training
configurations, a batch size of 16 and 4 workers were utilized
across all datasets with the exception of the AID dataset. Given
the larger scale of AID, a batch size of 64 and 16 workers
were deemed appropriate to accommodate its size. The study
further incorporated the recently introduced LION(EvoLved
Sign Momentum) [44] optimizer, which has demonstrated
an enhancement in training speed and convergence efficiency
compared to other optimizers in similar experimental setups.
We use the standard Cross-Entropy Loss as the loss function.
The learning rate was set to 9e−5 for models based on CNNs
and adjusted to 9e−6 for those based on Transformer and
Hybrid architectures. This distinction arises from the observa-
tion that Transformer-based models require a lower learning
rate for effective convergence, particularly when training from
scratch. Notably, the FasterNet-T2 [10] model, despite being
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Fig. 5. Eigen-Cam [37] activation maps of EfficientNet-B0[Rf.], FasterNet-T2[Rf.], MobileNetV2[Rf.], Van-B0 and ESIF (Ours). Only samples from
the difficult classes are shown from Optimal-31 [22] dataset.

TABLE I
DETAILED PERFORMANCE COMPARISON OF PREVIOUS STATE-OF-THE-ART CLASSIFICATION MODELS ON THE OPTIMAL-31 [22] DATASET

Model Name Model
Composition

Params.
(M)

FLOPs
(G) BA AA Model

Size(MB)
Memory

Access(GB)
Training
Time(h)

Inf.
Speed(FPS) AETS

MobileNetV2 (2018) [7] CNN 2.2 0.3 79.83 77.68 18.4 1.47 0.46 240 74.78
EfficientNet-B0 (2019) [6] CNN 4.0 0.4 80.10 78.75 32.7 1.57 0.65 226 76.94

Van (2022) [8] CNN 4.1 0.9 73.11 72.75 31.1 1.43 0.87 208 68.48
EfficientNetB3 (2019) [6] CNN 10.7 1.0 79.56 78.84 86.6 1.77 1.56 186 59.00
MobileViT-S (2022) [15] Hybrid 5.0 1.8 68.81 68.63 40.4 1.71 1.06 192 58.52
FasterNet-T2 (2023) [10] CNN 13.7 1.9 76.07 75.89 110.1 1.46 0.46 200 72.87

SpectFormer-H-S (2023) [13] Transformer 20.2 3.9 80.37 78.84 171.0 1.73 1.44 163 57.33
iFormer-S (2022) [14] Hybrid 18.9 4.5 76.88 76.88 156.2 1.74 2.16 145 55.25
MaxViT-T (2022) [12] Transformer 30.3 5.4 77.15 77.15 244.4 2.05 1.60 129 54.48
SwinV2-S (2021) [11] Transformer 33.2 5.8 78.22 76.07 393.1 2.08 3.21 110 26.31

DenseNet161 (2017) [9] CNN 26.5 7.8 80.91 80.64 213.7 1.75 2.45 127 46.78

ESIF(Ours) Hybrid 9.0 1.1 86.55 85.48 75.2 1.61 1.23 153 85.78

CNN-based, was trained with a learning rate of 9e−6 due
to its operational similarities with Transformer architectures
in practical applications. The learning rate was dynamically
reduced by a factor of 0.1 in response to plateaus in validation
loss improvements. We train each model for 300 epochs on
all datasets except AID and 100 epochs on AID. All models
were trained on an NVIDIA Tesla V-100 GPU equipped with
32 GB of memory.

C. Evaluation Metrics

The main evaluation metric in our experiments is the Accu-
racy or generally known as Top-1 Accuracy in Classification
tasks. It can be simple defined as,

Accuracy =
TP + TN

TP + TN + FP + FN
(26)

We use the term Best Accuracy(BA) to denote the best possible
result from that particular model and Average Accuracy(AA)
an average of three separate instance of results for fair
comparison. For calculating Efficiency of a model, we utilize
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Fig. 6. Eigen-Cam [37] activation maps of ESIF 4th Stage(Last Activation Map), ESIF TFAB-2, ESIF-ESFB-2, ESIF-CDSB, ESIF 5th Stage(First
Activation Map, showcases the separate activation maps of each blocks and improved class activation maps by multi-modal fusion from 4th(2nd
row) to 5th.(last row)

TABLE II
EVALUATION ON THE UC-MERCED, RSSCN7, SIRI-WHU, WHU-RS19 AND AID DATASETS

Model Name Params. (M) FLOPs (G) UC-Merced [38] RSSCN7 [39] SIRI-WHU [40] WHU-RS19 [41] AID [42]
BA AA BA AA BA AA BA AA BA

MobileNetV2 (2018) [7] 2.2 0.3 92.85 92.13 90.17 88.32 91.45 90.27 92.53 87.55 90.85
EfficientNet-B0 (2019) [6] 4.0 0.4 95.0 94.04 92.67 90.55 93.33 92.91 86.06 84.57 90.45

Van (2022) [8] 4.1 0.9 91.90 91.34 89.64 89.05 93.12 92.84 88.55 86.89 88.70
EfficientNet-B3 (2019) [6] 10.7 1.0 92.38 88.72 93.57 91.72 93.54 92.29 77.11 76.11 90.95
MobileViT-S (2022) [15] 5.0 1.8 90.47 90.39 90.71 90.65 92.29 92.29 87.56 87.56 87.65
FasterNet-T2 (2023) [10] 13.7 1.9 93.57 92.77 91.25 91.13 93.54 93.19 92.03 92.03 90.00

SpectFormer-H-S (2023) [13] 20.2 3.9 92.61 92.29 90.71 90.23 93.54 93.05 90.04 89.71 89.80
iFormer-S (2022) [14] 18.9 4.5 92.61 92.61 92.14 92.14 93.95 93.95 90.54 90.20 88.50
MaxViT-T (2022) [12] 30.3 5.4 93.33 92.77 93.21 92.97 94.37 94.16 91.04 91.04 93.05
SwinV2-S (2021) [9] 33.2 5.8 82.61 82.16 91.60 91.48 92.91 92.91 88.05 88.05 90.10

DenseNet161 (2017) [9] 26.5 7.8 95.47 94.75 86.70 85.86 92.50 92.08 93.53 92.70 93.15

ESIF(Ours) 9.0 1.1 95.71 95.15 94.1 93.62 95.0 94.58 94.52 93.36 93.5

six metrics, Parameters(Millions) referring to the total total
trainable parameters, FLOPs (Billions/Giga) or Floating Point
Operations, which represents the computation complexity of a
model, higher FLOPs indicate computationally heavy models.

D. Evaluation on Optimal-31

The detailed Experimental analysis on the Optimal-31
dataset is shown in Table I. We compare our proposed net-
work ESIF with 11 previous state-of-the-art networks, with
varying computational efficiency. Among them, 6 of them

are purely CNN-based EfficentNet-B0, EfficientNet-B3, Mo-
bileNetV2, Van, DenseNet161 and FasterNet-T2. 3 are pure
transformer-based SpectFormer-H-S, MaxViT-T and SwinV2-
S. 2 networks are CNN-Transformer Hybrids: MobileViT-
S and InceptionTransformer (iFormer-S). We classifiy our
network as a Hybrid since it employs Conv. based attention
(LKA) as well as little amount of attention in the later
stages using iFormerBlock. As previously explained, Average
Accuracy (AA) is the average of three instance of training
result, and Best Accuracy (BA) is the best possible accuracy
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TABLE III
ABLATION STUDY OF THE EFFECTIVENESS OF EACH PROPOSED

BLOCKS TFAB, IFB, ESFB ON THE OPTIMAL-31 [22] DATASET.

TFAB iFB ESFB Params
(M)

FLOPs
(G)

Mem.
Acc.(GB) BA AA

% % % 1.64 0.41 1.5 81.45 80.82
! % % 2.00 0.64 1.6 82.79(+1.34) 82.32(+1.5)
! ! % 8.48 0.89 1.5 83.33(+0.54) 82.79(+0.47)

!RGB ! % 8.66 1.00 1.5 80.64(-2.69) 78.63(-4.16)
!+LKA ! % 8.67 0.94 1.5 83.33(+2.69) 82.79(+4.16)
! ! MHSA 9.04 1.04 6.2 85.21(+1.88) 84.94(+2.15)

!+LKA ! LKA 9.05 1.10 1.6(-4.6) 86.55(+1.34) 85.48(+0.54)

TABLE IV
CLASS-WISE ACCURACY COMPARISON FOR CHALLENGING CLASSES IN

OPTIMAL-31 [22] DATASET.

Class Names Efficient Mobile Van Faster ESIF
Net-B0 [6] NetV2 [7] -B0 [8] Net-T2 [10] (Ours)

rectangular farmland 47.61 61.53 27.27 50.00 70.00
commercial area 55.55 63.15 66.66 60.00 50.00

church 63.63 70.58 84.21 50.00 70.58
freeway 66.66 69.56 51.85 52.17 81.48
overpass 66.66 63.63 50.00 63.15 85.71

mobile home park 69.99 66.66 46.15 63.15 73.68
lake 83.33 80.00 54.54 66.66 83.33

industrial area 80.00 75.00 55.55 69.56 86.95
runway 82.75 63.63 60.86 58.33 92.3

roundabout 85.71 74.07 64.00 71.99 92.85

attained by that model. Our proposed ESIF outperformed all
the compared methods by a large margin in both the AA
and BA category on Optimal-31 dataset. We achieve 86.55%
BA, while the second best DenseNet161 achievs 80.91%, a
5.64% difference, similarly ESIF achieves 85.48% AA which
is 4.84% higher than the second position of DenseNet161 at
80.64%. SpectFormer-H-S and EfficientNet-B0 models also
perform more than 80% at BA but falls short at AA. In case
of the efficiency metrics, our model is not the best in the
list, MobileNetV2 model which is designed focusing on the
efficiency comes out on top in most of the metrics- Parameters
2.2million, FLOPs 0.3G , Model Size 18.4 MB, Inference
Speed 240FPS, while FasterNet-T2 is best for Memory Access
1.46GB and Training Time 0.46h. But, for the Accuracy-
Efficiency Trade-Off Score AETS, our model achieves the
best score of 85.78, while the trailing positions over 70
are EfficientNet-B0 with 76.94, MobileNetV2 with 74.78
and FasterNet with 72.87. This results highlights that ESIF
maintains a high Accuracy-Efficiency Trade-Off, being more
focused on accuracy and achieving state-of-the-art result while
keeping up in the efficiency metrics as well. Fig. 5 shows the
Eigen-Cam [37] activation maps of all eleven models for 10
challenging classes of Optimal-31 dataset.

E. Evaluation on UC-Merced, RSSCN7, SIRI-WHU,
WHU-RS19 and AID

In the comprehensive evaluation presented in Table II, our
Efficient Spectral Inception Former (ESIF) model consistently
outperforms a broad spectrum of state-of-the-art models across

several remote sensing image datasets. On the UC-Merced
dataset, known for its challenging urban and natural land-
scapes, ESIF achieves the highest Best Accuracy (BA) of
95.71% and Average Accuracy (AA) of 95.15%, surpassing
DenseNet161 and EfficientNet-B0, which are the second and
third best performers, respectively. The RSSCN7 dataset, char-
acterized by a variety of scene categories, sees ESIF leading
with a BA of 94.1% and an AA of 93.62%, with MaxViT-T
and iFormer-S following closely behind. In the SIRI-WHU
evaluation, focused on complex land use and cover types,
ESIF secures the top position again with a BA of 95.0% and
an AA of 94.58%, outshining SwinV2-S and SpectFormer-H-
S. For the high-resolution satellite images in the WHU-RS19
dataset, ESIF maintains unparalleled accuracy with a BA of
94.52% and an AA of 93.36%, ahead of DenseNet161 and
EfficientNet-B3. Lastly, on the AID dataset, ESIF’s BA of
93.5% stands out against the competitive accuracies achieved
by DenseNet161 and MaxViT-T, marking it as the superior
model for aerial scene recognition. Across all datasets, ESIF
not only demonstrates its exceptional capability in integrating
spatial, texture, and spectral information for remote sensing
image analysis but also establishes a new benchmark in
classification accuracy, significantly surpassing the second-
best DenseNet161 and other contenders like EfficientNet-B0
in several instances. This remarkable performance underscores
ESIF’s advanced feature processing capabilities, affirming its
competitive edge and versatility for diverse remote sensing
applications.

F. Ablation Study

Table 3 presents an ablation study conducted to scruti-
nize the contributions of different blocks within the Efficient
Spectral Inception Former (ESIF) architecture, specifically
evaluating the impact of the Texture Feature Alignment Block
(TFAB), Inception Transformer Block (iFB), and Efficient
SpectroFormer Block (ESFB) on the model’s overall perfor-
mance. Initially, the base model without TFAB, iFB, and
ESFB achieves a Best Accuracy (BA) of 81.45% and an
Average Accuracy (AA) of 80.82%, serving as a foundational
benchmark. The integration of TFAB alone enhances the
model’s performance, leading to an increase of 1.34% in
BA and 1.5% in AA, which underscores the significance of
texture analysis in improving classification accuracy. Further
addition of iFB to the architecture with TFAB elevates BA
by 0.54% and AA by 0.47%, indicating the importance of
balancing local and global information through the iFB. A
variant using RGB inputs instead of TFAB with iFB resulted
in a notable decrease in performance, highlighting the in-
adequacy of raw RGB inputs in comparison to specialized
texture features for this task. Incorporating the Large Kernel
Attention (LKA) mechanism with TFAB and iFB reverses
this decline, matching the BA and AA achieved with TFAB
and iFB alone, which emphasizes the effectiveness of LKA
in processing spatial information. The substitution of ESFB
with Multi-Head Self Attention (MHSA) further propels the
model to achieve significantly higher accuracies, with a BA
of 85.21% and an AA of 84.94%, illustrating the critical
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role of frequency domain processing in enhancing the model’s
capability. The final configuration, which combines TFAB with
LKA, iFB, and an LKA-based ESFB, culminates in the highest
performance boost, achieving a BA of 86.55% and an AA of
85.48%, alongside a substantial reduction in memory access.
This configuration exemplifies the synergistic effect of these
blocks, highlighting their collective importance in establishing
ESIF’s state-of-the-art performance. The study conclusively
demonstrates that while each component—TFAB, iFB, and
ESFB—individually contributes to the model’s efficiency and
accuracy, their integration yields the most significant improve-
ments, validating the architectural choices underpinning ESIF.
Fig. 6. Shows the Eigen-Cam [37] activation maps of TFAB,
ESFB, CDSB, last conv activation of 4th Stage and first conv
stage of 5th Stage of ESIF to showcase the effectiveness of
each proposed block.

G. Performance Analysis on the Challenging classes of
Optimal-31 Dataset

Table 4 offers a detailed class-wise accuracy comparison
for ten challenging classes within the Optimal-31 dataset,
juxtaposing the performance of our Efficient Spectral Inception
Former (ESIF) model against notable counterparts such as
EfficientNet-B0, MobileNetV2, Van-B0, and FasterNet-T2.
This granular analysis reveals the nuanced strengths and weak-
nesses of each model in recognizing specific scene types, with
ESIF consistently showcasing superior or highly competitive
performance across a majority of the classes.For classes like
”rectangular farmland” and ”overpass,” ESIF markedly out-
performs its competitors, achieving top accuracies of 70.00%
and 85.71%, respectively, highlighting its adeptness at han-
dling intricate spatial patterns and textures. Notably, while
”commercial area” and ”church” see stronger performances
from Van-B0 and itself respectively, ESIF demonstrates its
robustness with a substantial 70.58% accuracy in ”church,”
closely mirroring MobileNetV2’s performance. In instances
where detailed feature extraction is paramount, such as in
”freeway” and ”runway” categories, ESIF’s accuracy peaks
at 81.48% and 92.3% respectively, significantly surpassing
the alternatives. This underscores ESIF’s exceptional abil-
ity to process and integrate complex spatial, texture, and
spectral information, ensuring precise classification even in
challenging scenarios. Moreover, ESIF’s architecture enables
it to achieve the highest accuracies in ”mobile home park,”
”lake,” ”industrial area,” and ”roundabout,” with scores of
73.68%, 83.33%, 86.95%, and 92.85%, respectively. These
results not only attest to the model’s comprehensive feature
representation capabilities but also to its versatility across
diverse environmental and architectural contexts. In contrast,
certain classes like ”commercial area” see a dip in ESIF’s
performance, suggesting areas where the model’s processing
strategy might benefit from further refinement or adaptation.
Nevertheless, the overarching trend within the table solidifies
ESIF’s position as a formidable solution for remote sensing
image classification, especially in deciphering complex scenes
within the Optimal-31 dataset. The class-wise comparison
underscores ESIF’s advancements in achieving state-of-the-
art accuracy, marking significant progress in the field and

showcasing the model’s potential in navigating the intricacies
of remote sensing data.

V. CONCLUSION

The Efficient Spectral Inception Former (ESIF) architec-
ture represents a significant advancement in remote sensing
scene classification, successfully addressing the challenges
posed by the unique characteristics of remote sensing images.
By integrating spatial, texture, and spectral domain analyses
through TFAB, ESFB, and iFB, ESIF effectively captures
the comprehensive visual information necessary for accurate
classification. The model’s exceptional performance is vali-
dated through rigorous testing across diverse datasets, where
it consistently outperforms existing state-of-the-art models.
The ablation study further elucidates the crucial role of each
component, underscoring the importance of multi-domain fea-
ture fusion in enhancing classification accuracy. Additionally,
ESIF’s design considerations, such as efficient computation
and the ability to handle high intra-class variability and low
inter-class distinction, make it particularly suited for remote
sensing applications. Future work will explore further opti-
mizations and applications of ESIF, potentially extending its
utility to other domains requiring fine-grained image analysis.
The promising results obtained thus far underscore ESIF’s
potential to revolutionize remote sensing scene classification,
offering a robust tool for Earth observation and beyond.

Appendixes, if needed, appear before the acknowledgment.
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