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I. INTRODUCTION

EARTH observation via remote sensing techniques consti-
tutes a research domain that encompasses the measure-

ment of signals originating from diverse physical phenomena,
acquired by instruments deployed on both spaceborne and
airborne platforms. This technology offers versatile utilization
prospects, serving either for the precise quantification and
estimation of geo-bio-physical parameters or for material
identification through the analysis of acquired signals. These
objectives can be realized due to the fundamental behavior of
materials within a scene, where they interact with electromag-
netic radiation by reflecting, absorbing, and emitting radiation
contingent on their molecular composition and geometric
characteristics. Remote sensing strategically leverages these
fundamental principles, enabling the acquisition of information
pertaining to a scene or specific object situated at varying
proximities from the sensor, spanning short, medium, or
long distances [1]–[3]. Among the multitude of data prod-
ucts derivable from remote sensing imagery, classification
maps represent a notably consequential category [4], [5]. The
problem of remote sensing image classification stands as a
formidable challenge, given the imperative role of land-cover
and land-use maps in multitemporal investigations and their
invaluable contribution to diverse domains, including climate
change modeling, oceanic current analysis, arctic research, and
post-catastrophe response efforts.
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In the realm of machine learning (ML), historical ap-
proaches to addressing these tasks have predominantly adhered
to two paradigms: pixel-level [6] and object-level classification
[7]. Pixel-level classification pertains to the assignment of
a semantic label to each individual pixel within an image.
While effective for certain applications, these approaches often
exhibit limitations when applied to high-resolution imagery.
More critically, they may struggle to capture higher-level
spatial patterns spanning multiple pixels. In contrast, object-
level classification methods center their analysis on discernible
and meaningful objects within an image, considering them
as collections of pixels rather than isolated entities. This
paradigm generally offers enhanced scalability and perfor-
mance; however, it can encounter difficulties when faced with
images containing diverse and less distinguishable objects, a
common scenario in high-resolution remote sensing data. Ap-
proaches based on both pixel-level and object-level paradigms
have demonstrated commendable performance and remain the
subject of active research, often manifesting as instances of
image segmentation and object detection tasks. More recently,
a novel paradigm of scene-level classification [8], [9] has
emerged, showcasing notable performance enhancements. This
paradigm emphasizes the acquisition of semantically meaning-
ful representations for intricate patterns within an image by
harnessing the capabilities of deep learning.

Remote sensing images exhibit distinctive characteristics
compared to conventional images, primarily attributable to
their unique acquisition mode. These images typically en-
compass extensive geographical areas, offering an overhead
perspective that incorporates a diverse array of objects and
features. As illustrated in Fig. 1, it becomes evident that not
all spatial information within these images holds equal signif-
icance. Consequently, the task of discerning and prioritizing
critical image components while disregarding less informative
ones assumes paramount importance. Regrettably, the prevail-
ing approach in many prior studies has been to construct
a global representation of the entire image, affording equal
weight to all regions [10], [11], [12]. This approach neglects
the detrimental impact of redundant and inconsequential areas,
undermining the potential to extract meaningful insights.

In general, remote sensing scenes can be categorized into
specific thematic classes, such as segments of a forest, parking
lots, agricultural fields, and more. For such classification tasks,
supervised learning techniques are commonly employed [13].
This approach involves the initial representation of a scene im-
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age as a feature vector, which is subsequently utilized for both
training and testing a learning machine, as depicted in Fig.
1(c). Within the context of feature-based image representation,
beyond the pivotal steps of feature extraction and feature
coding, the process of feature selection assumes considerable
significance. The application of an effective feature-selection
method can yield substantial improvements in the ultimate
performance outcomes [14], [15]. Consequently, the research
and development of proficient feature-selection methodologies
hold significant import.

II. RELATED WORKS

A. Earth Observation
Satellite-based earth observation has evolved into an in-

dispensable instrument for comprehending and surveilling
global environmental transformations, encompassing phenom-
ena such as deforestation, urban expansion, and climate fluctu-
ations [16]. Within this context, satellite image classification
assumes a pivotal role, exerting a profound impact across a
spectrum of applications, notably land use and land cover
mapping, agricultural surveillance, disaster mitigation, and
urban planning initiatives [17], [18]. Furthermore, satellite
image classification finds pertinence in the domain of disas-
ter management, where it expedites damage assessment and
bolsters disaster response endeavors [19]. To augment classi-
fication precision, amalgamating data from diverse sources,
including satellite imagery, climatic data, and ground-level
observations, proves instrumental [20]. In a comprehensive
study, the authors of [21] delve into an extensive examination
involving 22 datasets, exploring numerous amalgamations of
deep learning models while conducting a rigorous comparative
analysis of their efficacy.

B. Efficient CNNs for Classification
In recent years, there has been a notable surge in research

interest surrounding the efficiency of convolutional neural
networks (CNNs). A pivotal milestone in this pursuit was the
introduction of Depthwise-Separable Convolution by Howard
et al. [22], which gave birth to the Xception architecture. This
groundbreaking approach significantly reduces the parameters
and computational operations (FLOPs) associated with con-
ventional convolutions while retaining robust feature-capturing
capabilities. Subsequently, MobileNets [23] built upon this
concept, ushering in a family of efficient CNN architectures
meticulously designed for expeditious performance on mobile
and embedded devices. Another noteworthy contribution in
this domain was made by Zhang et al. [24] with the inception
of ShuffleNet. This innovative CNN architecture harnesses
channel shuffling techniques and pointwise group convolutions
to achieve commendable accuracy while maintaining a low
computational burden. EfficientNets, introduced by Tan and
Le [25], represent yet another significant advancement. These
CNN architectures leverage a novel compound scaling method
to attain state-of-the-art performance metrics, all the while
substantially reducing the number of parameters and computa-
tional expenses. SqueezeNet, pioneered by Iandola et al. [26],
offers a distinct approach. This CNN architecture employs

a combination of 1x1 and 3x3 convolutions to effectively
curtail the parameter count while upholding high precision in
classification tasks. Furthermore, Wu et al. [27] brought forth
ProxylessNAS, a groundbreaking neural architecture search
method. This approach enables the direct optimization of
CNN architectures tailored to specific hardware and tasks,
yielding highly efficient and accurate models. Additionally,
the research community witnessed innovations such as RTM-
Det [28], which introduced a modification of the renowned
darknet-53 architecture. This adaptation incorporates large-
kernel depthwise-separable convolutions, further contributing
to the realm of efficient CNN architectures.

C. Texture Analysis for Scene Classification Task

While existing CNN-based methodologies have exhibited
promise in the realm of Scene Classification tasks, they
primarily rely on pure RGB images and may fall short in
capturing intricate high-level texture attributes. To address
this limitation and augment the texture characteristics inherent
in facial expressions, classical texture features have been
harnessed as supplementary inputs within a parallel neural
network framework [29]. For instance, the Local Binary Pat-
tern (LBP) was amalgamated with features extracted from
CNN, employing an attentional selective fusion strategy [30].
Additionally, Liu et al. [31] introduced the application of the
gray-level co-occurrence matrix to preprocess facial images,
subsequently extracting deep texture features. In light of
these advancements, our study centers on the development of
a texture-aware feature enrichment module. This module is
adept at leveraging a spectrum of texture extraction techniques,
thereby providing a wealth of texture information, particularly
beneficial for the characterization of challenging land cover
classes.

III. METHODOLOGY

A. Efficient SpectroFormer Block (ESFB)

B. Texture Feature Alignment Block (TFAB)

Initially, we introduce the Local Binary Pattern (LBP) op-
erator as a means to characterize the local texture attributes of
an image. LBP offers notable advantages, including rotational
and grayscale invariance. Specifically, we employ a 3 × 3
sliding window to traverse the entirety of the facial image,
extracting texture features. Within this window, the central
pixel serves as the threshold against which the other eight
neighboring pixels are compared. In this context, a value of
”1” signifies a pixel intensity higher than the threshold, while
”0” designates a lower intensity. Subsequently, an eight-bit
binary number is derived by encoding these comparisons in a
clockwise manner, commencing from the top-left corner. To
encapsulate the texture information within this window, we
further convert the binary representation into a decimal pixel
value.

In addition to LBP, we incorporate characteristics derived
from the Gray-Level Co-occurrence Matrix (GLCM) to aug-
ment our texture analysis. Specifically, we utilize both the
contrast ratio and relevance metrics as supplementary texture
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Fig. 1. Overall Architecture of the proposed Network comprised of the following modules-TAFEM,EAAM,FEM and CM.

descriptors, leveraging inputs from GLCM. In this configu-
ration, we employ sub-windows of size 3 × 3 and set the
number of gray levels to eight. Angular Second Momentum
(ASM) emerges as a valuable metric for discerning the depth
of textures and patterns. A higher ASM value signifies the
presence of more pronounced textures and deeper patterns,
while a lower value corresponds to a blurred visual repre-
sentation with shallower textures. The calculation of ASM is
outlined as follows:

ASM =

N−1∑
i,j=0

P 2
i,j (1)

where N is the size of GLCM and P (i, j) is the probability
density of the corresponding pixel. Relevance is the similarity
degree of GLCM elements in directions of line and row,
which denotes the relevant degree of some gray levels in facial
images. The relevance value will be larger with equal matrix
element values and can be defined by:

CORR =

N−1∑
i,j=0

Pi,j
(i− µi)(j − µj)√

σ2
i σ

2
j

(2)

where µi,µj and σi,σj refer to mean and variance of Px(i)
and Py(j) respectively. Finally, three texture feature maps:

xLBP ∈ RHxW , xASM ∈ RHxW , xCORR ∈ RHxW are
obtained with above equations. The final output of the TAFEM
is produced by:

TAFEM(irgb) = MBConv4(CAT (xLBP , xCORR, xASM ) (3)

C. Inception Transformer Block (iFB)

We propose an Inception mixer that combines the powerful
capability of Convolutional Neural Networks (CNNs) for
extracting high-frequency representations with Transformers.
The detailed architecture of the mixer is depicted in Figure 3.
We use the name “Inception” since the token mixer is highly
inspired by the Inception module with multiple branches.
Instead of directly feeding image tokens into the Multi-Head
Self-Attention (MSA) mixer, the Inception mixer first splits
the input feature along the channel dimension and then respec-
tively feeds the split components into a high-frequency mixer
and a low-frequency mixer. Here, the high-frequency mixer
consists of a max-pooling operation and a parallel convolution
operation, while the low-frequency mixer is implemented by
a self-attention mechanism.

Yh1 = FC(MaxPool(Xh1) (4)

Yh2 = DwConv(FC(Xh2) (5)
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Yl = Upsample(MSA(AvePoool(Xl))) (6)

Yc = Concat(Yl, Yh1, Yh2) (7)

ITM(Y ) = FC(Yc +DwConv(Yc) (8)

X = X + ITM(LN(X)) (9)

H = X + FFN(LN(X)) (10)

Technically, given the input feature map X ∈ RN×C , we
factorize X into Xh ∈ RN×Ch and Xl ∈ RN×Cl along
the channel dimension, where Ch + Cl = C. Then, Xh

and Xl are assigned to the high-frequency mixer and the
low-frequency mixer, respectively. The high-frequency mixer
is designed to learn the high-frequency components of the
input feature map. Considering the sharp sensitiveness of
the maximum filter and the detail perception of convolution
operation, we propose a parallel structure to learn the high-
frequency components. We divide the input Xh into Xh1 ∈
RN×Ch/2 and Xh2 ∈ RN×Ch/2 along the channel. As shown
in Figure 3, Xh1 is embedded with a max-pooling and a
linear layer , and Xh2 is fed into a linear and a depthwise
convolution layer. The outputs of the high-frequency mixers
are denoted by Yh1 and Yh2. Finally, the outputs of the low-
and high-frequency mixers are concatenated along the channel
dimension. The upsample operation in Eq. (7) selects the
value of the nearest point for each position to be interpolated
regardless of any other points, which results in excessive
smoothness between adjacent tokens. We design a fusion
module to elegantly overcome this issue, i.e., a depthwise
convolution exchanging information between patches, while
keeping a cross-channel linear layer that works per location
like in previous Transformers. Like the vanilla Transformer,
our iFormer is equipped with a feed-forward network (FFN),
and differently it also incorporates the above Inception token
mixer (ITM); LayerNorm (LN) is applied before ITM and
FFN. Low-frequency mixer. We use the vanilla multi-head
self-attention to communicate information among all tokens
for the low-frequency mixer. Despite the strong capability
of the attention for learning global representation, the large
resolution of feature maps would bring large computation cost
in lower layers. We therefore simply utilize an average pooling
layer to reduce the spatial scale of Xl before the attention
operation and an upsample layer to recover the original spatial
dimension after the attention. This design largely reduces the
computational overhead and makes the attention operation
focus on embedding global information. Here, Yl is the output
of low-frequency mixer. Note that the kernel size and stride
for the pooling and upsample layers are set to 2 only at the
first two stages.

D. MBConv Based ESIF Baseline
E. ESIF: Efficient Spectral Inception Former

IV. EXPERIMENTS

A. Implementation and Dataset Details
We evaluate our proposed model in two remote sensing

scene classification datasets- WHU-RS19 and Optimal-31.
WHU-RS19 contains 19 classes of satellite images of 600x600

dimension, each class containing at least 50 images and in a
total of 1005 images. Optimal-31 is also a scene classification
dataset, but it’s more difficult as it contains 31 classes and an
image dimension of 256x256. Each class has at least 60 images
and the total number of images is 1860. Evaluation metrics
for WHU-RS19 are accuracy, precision, and F1 score, and for
Optimal-31 accuracy, F1 score and mean IoU is used. All the
ablation experiments are done in the WHU-RS19 dataset. We
utilize the AITLAS toolbox for Earth Observation from [1]
to train and evaluate our models. Training Split is 60% for
training, 20% for validation, and 20% for testing, for both
datasets. All models are trained on one NVIDIA Tesla V-100
GPU with 32 GB of memory. The batch size was set to 64
for training. Rectified Adam or RAdam [27] is used as the
optimizer. We use learning rate .0001 for WHU-RS19 and
.001 for Optimal-31, learning is reduced by factor of 0.1 when
validation loss stops improving. Each model is trained for 300
epochs, as we train models from scratch higher iterations were
necessary. We use input size of 224x224 by default as “1x”
in Table 1 and 2. Inputs are first resized to 256x256 and then
center-cropped to 224x224, horizontal and vertical flips are
used as data augmentations.

B. Evaluation on Optimal-31
Table.2 shows the evaluation details on the Optimal-31

dataset. In a similar fashion as the previous dataset, Den-
sNet161 the baseline performs better than ResNet152 and
ResNet50. Here, our EITF Network already outperforms the
baseline at 1x input by increasing the accuracy by almost
1% while having similar F1, mIoU scores, and training time.
At 1.14x input accuracy improves by around 2% and at 2x
accuracy is improved by 4.5%, F1 and mIoU also improve by
a similar amount. One disadvantage of the larger input size
is the training time increase, which is a much bigger jump in
this case than in the previous dataset.

C. Evaluation on WHURS-19
We use the baseline DenseNet161, ResNet152,

ResNet50[28], and the proposed EITF in three input
settings to evaluate the WHU-RS19 dataset. The experimental
results are shown in Table. 1, DenseNet161 contains 26.51m
parameters and 7.82 GFlops at input size 224x224. The
baseline has much better accuracy than ResNet152 and
ResNet50, while ResNet152 has much higher parameters
and Flops, it suffers from overfitting, ResNet50 the smaller
variant performs better. At 1x input, the proposed EITF has
20% fewer parameters and 79% fewer GFlops, but it performs
very close to the baseline only decreasing the accuracy by
1.7%. The training time is also lower than baseline. At 1.5x
input size while still having 53% fewer GFlops our model
can already outperform the baseline. And, at 2x input, it
improves the accuracy by more than 4%

D. Evaluation on AID
E. Evaluation on UC-MERCED
F. Evaluation on RSSCN
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Model Name Model
Composition

Params.
(M)

FLOPs
(G) BA AA

Model
Size
(MB)

Memory
Access
(GB)

Training
Time(h)

Inf.
Speed
(FPS)

AETS

MobileNetV2 (2018) CNN 2.2 0.3 79.83 77.68 18.4 1.47 0.46 240 73.25
EfficientNet-B0 (2019) CNN 4 0.4 80.1 78.75 32.7 1.57 0.65 226 78.33

Van (2022) CNN 4.1 0.9 73.11 72.75 31.1 1.43 0.87 208 70.62
EfficientNetB3 (2019) CNN 10.7 1 79.56 78.84 86.6 1.77 1.56 186 60.92
MobileViT-S (2022) Hybrid 5 1.8 68.81 68.63 40.4 1.71 1.06 192 63.77
FasterNet-T2 (2023) CNN 13.7 1.9 76.07 75.89 110.1 1.46 0.46 200 75.51

SpectFormer-H-S (2023) Transformer 20.2 3.9 80.37 78.84 171 1.73 1.44 163 59.33
iFormer-S (2022) Hybrid 18.9 4.5 76.88 76.88 156.2 1.74 2.16 145 61.12
MaxViT-T (2022) Transformer 30.3 5.4 77.15 77.15 244.4 2.05 1.6 129 54.94
SwinV2-S (2021) Transformer 33.2 5.8 78.22 76.07 393.1 2.08 3.21 110 29.15

DenseNet161 (2017) CNN 26.5 7.8 80.91 80.64 213.7 1.75 2.45 127 39.4
ESIF(Ours) Hybrid 9 1.1 85.21 84.67 75.2 1.61 1.23 144 85.24

UC-Merced RSSCN7 SIRI-WHU WHU-RS19 AIDModel Name Params.
(M)

FLOPs
(G) BA AA BA AA BA AA BA AA BA

MobileNetV2 (2018) 2.2 0.3 92.85 92.13 90.17 88.32 91.45 90.27 92.53 87.55
EfficientNet-B0 (2019) 4 0.4 95 94.04 92.67 90.55 93.33 92.91 86.06 84.57 92.4

Van (2022) 4.1 0.9 91.9 91.34 89.64 89.05 93.12 92.84 88.55 86.89
EfficientNet-B3 (2019) 10.7 1 92.38 88.72 93.57 91.72 93.54 92.29 77.11 76.11

MobileViT-S (2022) 5 1.8 90.47 90.39 90.71 90.65 92.29 92.29 87.56 87.56
FasterNet-T2 (2023) 13.7 1.9 93.57 92.77 91.25 91.13 93.54 93.19 92.03 92.03 90

SpectFormer-H-S (2023) 20.2 3.9 92.61 92.29 90.71 90.23 93.54 93.05 90.04 89.71
iFormer-S (2022) 18.9 4.5 92.61 92.61 92.14 92.14 93.95 93.95 90.54 90.20
MaxViT-T (2022) 30.3 5.4 93.33 92.77 93.21 92.97 94.37 94.16 91.04 91.04
SwinV2-S (2021) 33.2 5.8 82.61 82.16 91.6 91.48 92.91 92.91 88.05 88.05 90.1

DenseNet161 (2017) 26.5 7.8 95.47 94.75 86.7 85.86 92.5 92.08 93.53 92.7
ESIF(Ours) 9 1.1 95.71 95.15 94.1 93.62 95 94.58 94.02 93.02 93.4
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TFAB iFB ESFB Params
(M)

FLOPs
(G)

Mem.
Access BA AA

x x x 1.64 0.41 81.45 80.82
Tick x x 2 0.64 82.79(+1.34) 82.32(+1.5)
Tick Tick x 8.48 0.89 83.33(+0.54) 82.79(+0.47)

8.57 0.94
Tick MHSA 85.21 84.94

Tick +LKA Tick LKA 9 1.1 85.21 84.67

V. CONCLUSION

Appendixes, if needed, appear before the acknowledgment.
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