Efficient Vision Transformers for Object Recognition

Xuan-Thuy Vo xthuy@islab.ulsan.ac.kr November 17, 2023

Publications

Journals:

- Xuan-Thuy Vo and Kang-Hyun Jo, Accurate Bounding Box Prediction for Single-Shot Object Detection, IEEE Transactions on Industrial Informatics, Vol.18, No.9, pp.5961-5971, 12 2021. (IF 12.3)
- Xuan-Thuy Vo and Kang-Hyun Jo, A Review on Anchor Assignment and Sampling Heuristics in Deep Learning-based Object Detection, Neurocomputing, Vol.506, pp. 96-116, 7 2022. (IF 6.0)
- Van-Dung Hoang, Xuan-Thuy Vo and Kang-Hyun Jo, Categorical Weighting Domination for Imbalanced Classification With Skin Cancer in Intelligent Healthcare Systems, IEEE Access, Vol.11, pp. 105170 - 105181, 9 2023. (IF 3.9)

Conferences:

<u>34 papers</u> (3 Awards)

UNIVERSITY OF ULSAN

Publications

Under-Review Works:

Xuan-Thuy Vo, Duy-Linh Nguyen, Adri Priadana, and Kang-Hyun Jo, Exchange Information across Non-overlapped Local Self-Attentions via Mixing Abstract Tokens, AAAI Conference on Artificial Intelligence, (Second Round) (h5-index: 212)

Xuan-Thuy Vo, Duy-Linh Nguyen, Adri Priadana, and Kang-Hyun Jo, Efficient Vision Transformers with Partial Attention, IEEE/CVF Computer Vision and Pattern Recognition Conference-CVPR, (*First Round*) (h5-index: 422)

Xuan-Thuy Vo, Duy-Linh Nguyen, Adri Priadana, and Kang-Hyun Jo, Efficient Multiscale Spatial Interactions for Object Recognition, IEEE Transactions on Industrial Informatics, (To Submit) (IF: 12.3, h5-index: 162)

Contents

Introduction

Main Contributions:

- Efficient Multi-scale Spatial Interactions (EMSNet)
- Mixing Abstract Tokens (MAT Transformer)
- Partial Transformer (PartialFormer)
- Video Demos
- Conclusion

General Pipeline of Object Recognition:

CNNs: Convolutional Neural Networks; ViTs: Vision Transformers

UNIVERSITY OF ULSAN

Modern networks: focus on the improvements of the token mixer

- 1) Convolution: $\mathbf{Y}_i \leftarrow Conv(\mathbf{X}_i, \mathbf{M}_i^{conv})$

 $\mathbf{M}_{i}^{conv} \in \mathbb{R}^{k imes k}$

$$\mathbf{M}_{i}^{att} \in \mathbb{R}^{HW imes HW}, \mathbf{W} \in \mathbb{R}^{d_{m} imes d_{m}}$$

3) MLP operation:

 $\mathbf{Y} \leftarrow \mathbf{M}^{mlp} \mathbf{X} \ \mathbf{M}_{i}^{mlp} \in \mathbb{R}^{HW imes HW}$

Comparisons of Token Mixers:

UNIVERSITY OF ULSAN

I.

Т.

UOU

			#Params				
		Computational Cost O()	#Params	Input dependent weight	Global receptive field	Relative positions	
High resolution → Huge costs	Depthwise Convolution	k²HWd _m <i>linear</i>	k²d _m	×	×	\checkmark	2D input
	Self-Attention	H²W²d _m + HWd² _m <i>quadratic</i>	4d _m ²	\checkmark	\checkmark	×	Flatten input
	Spatial MLP	H ² W ² d _m quadratic	H ² W ²	×	\checkmark	×	
	Window Self- Attention	HWw²d _m + HWd² _m <i>linear</i>	4d _m ²	\checkmark	×	\checkmark	
	w: window size, k: k H, W, d _m : Height, W	kernel size /idth, and #channels	l	Unified all prop	perties \rightarrow bette	r performance)

8

Efficient Multi-Scale Spatial Interactions (EMSNet)

Motivation

Proposed EMSNet

Experimental Results

Motivation

Single-scale Spatial Interaction (SSI) versus Multi-scale Spatial Interactions (MSI):

Overview of EMSNet:

- ✓ PE1_1-1_4: 4 patch embeddings with different scales
- ✓ Channel MLP (Multi-Layer Perceptron) Interaction:
 - 2 Fully Connected Layers
- H, W, C: Height, Width, and number of channels

- ✓ PE: patch embedding with patch size **p**
 - Implemented by depthwise (dw) conv with kernel p and stride p
- Propagation: distribute mixed information of represented tokens to its neighborhood
 - Implemented by transposed convolution
- G-MHSA: Global Multi-Head Self-Attention: capture global features
 - Adopt G-MHSA from ViT model
- ✓ C-MHSA: Convolution-based Multi-Head Self-Attention

Convolution-based Multi-Head Self-Attenion (C-MHSA):

JNIVERSITY OF ULSAN

M, N: learnable matrices k: kernel size h: number of heads

EMSNet Variants:

Stack more blocks in stage 3 inspired by EdgeViT, Swin Transformer

Model	[C ₁ , C ₂ , C ₃ , C ₄]	[L ₁ , L ₂ , L ₃ , L ₄]	MLP ratio	GFLOPs	#param (M)
EMSNet-XXTiny	[32, 64, 128, 192]	[2, 2, 4, 2]	[8, 8, 4, 4]	0.5	2.5
EMSNet-XTiny	[32, 64, 96, 128]	[3, 3, 10, 2]	[8, 8, 4, 4]	0.7	3.0
EMSNet-Tiny	[64, 96, 128, 256]	[3, 3, 10, 2]	[8, 8, 4, 4]	1.9	5.4

Experimental Setup

Image Classification:

Dataset: ImageNet-1K (1.2M training and 50K validation images with 1K classes)

Configurations:

UNIVERSITY OF ULSAN

- Epochs: 300, Batch size: 512
- Optimizer: Adam
- Learning rate: 1e⁻³
- Image size: 224×224

Comparison with lightweight networks:

UNIVERSITY OF ULSAN

UI

Method	Туре	Image Size	#param (M)	GFLOPs	Top-1 Accuracy (%)
MobileViTv1-XXS	Hybrid	256 ²	1.3	0.4	69.0
MobileViTv2-0.5	Hybrid	256 ²	1.4	0.5	70.2
PVTv2-B0	Hybrid	224 ²	3.7	0.6	70.5
MobileViTv3-0.5	Hybrid	256 ²	1.4	0.5	72.3
ResNet-18	Conv	224 ²	11.7	1.8	69.8
TNT-Ti	Attn	224 ²	6.1	1.4	73.9
EdgeViT-XXS	Hybrid	256 ²	4.1	0.6	74.4
Swin-0.7G	Attn	224 ²	4.4	0.7	74.4
PVTv1-T	Attn	224 ²	13.2	1.9	75.1
PoolFormerS12	Hybrid	224 ²	11.9	1.8	77.2
ParC-Net-S	Conv	256 ²	5.0	3.5	78.6
EMSNet-XXTiny	Hybrid	224 ²	2.5	0.5	73.1
EMSNet-XTiny	Hybrid	224 ²	3.0	0.7	77.1
EMSNet-Tiny	Hybrid	224 ²	5.4	1.9	79.3

16

Experimental Setup

Object Detection and Instance Segmentation:

- Dataset: MS-COCO
 - 115K training images, 5K validation images with 80 categories
- Baseline detectors: RetinaNet and Mask R-CNN
 Replace backbone ResNet-50 with pretrained EMSNet
 Neck, Head is kept same as baseline

Configurations:

- Epochs: 12, Batch size: 4
- Optimizer: Adam
- Learning rate: 1e⁻⁴
- Image size: 1333×800

Object Detection and Instance Segmentation Results

Object Detection with RetinaNet:

Instance Segmentation with Mask R-CNN:

Backbone	#param (M)	GFLOPs	APbox	AP ⁵⁰	AP ⁷⁵
ResNet-18	21.3	188.7	31.7	49.6	33.4
ResNet-50 (baseline)	37.7	250.3	36.3	55.4	39.1
PVTv1-T	23.0	183.3	36.6	56.6	38.8
PVTv2-B0	13.0	160.4	37.1	57.2	39.2
EdgeViT-XXS	13.7	162.2	38.7	59.0	41.0
EMSNet-XXTiny	11.7	162.1	37.3	57.3	39.4
EMSNet-XTiny	12.4	167.9	39.0	59.1	41.4
EMSNet-Tiny	14.7	190.3	41.2	61.3	44.2

UNIVERSITY OF ULSAN

Backbone	#param (M)	GFLOPs	AP mask	AP ⁵⁰	AP ⁷⁵
ResNet-18	31	207	31.2	51.0	32.7
ResNet-50 (baseline)	44	260	34.4	55.1	36.7
PVTv1-T	33	208	35.1	57.6	37.3
PVTv2-B0	24	179	36.2	57.8	38.6
EMSNet-XTiny	23	186	37.1	58.5	40.0
EMSNet-Tiny	25	209	39.0	62.1	41.9

18

Ablation Study

Importance of each component in EMS Block:

Component		#param (M)	GFLOPs	Top-1 (%)
	Baseline	2.09	0.48	70.2
Static branch	+Mean	2.24	0.51	70.5
	+CoordDW w/ patch size=2	2.41	0.53	70.9
	+CoordDWw/patch size=4	2.38	0.53	71.1
	+Gated Aggregation	2.68	0.59	71.9
	+C-MHSA	3.10	0.55	72.7
Dynamic branch	+G-MHSA	2.56	0.54	73.1

Comparison with Other Token Mixers

Latency comparison:

CPU: Intel(R) Xeon(R) Gold 5220R@2.20GHz
GPU: Tesla V100 32GB

Method	Token Mixer	#param (M)	GFLOPs	Latency (ms)		Top-1 Accuracy
				CPU	GPU	
PVTv2-B0	Spatial Reduction Attention	3.7	0.6	67.3	0.46	70.5
Swin-0.7G	Window+Shifted Attention	4.4	0.7	67.3	0.76	74.4
ConvNeXt-XT	7×7 Depthwise Convolution	4.4	0.7	37.6	0.78	75.1
HaloNet	Local Attention	4.4	0.7	83.7	1.03	75.8
EMSNet-XTiny	Ours	3.0	0.7	70.3	0.57	77.1

Investigation of EMSNet

Amplitude Spectrum:

 ✓ Tend to weaken highfrequency component

 ✓ Tend to enhance highfrequency component

 Tend to balance the range of frequencies

Mixing Abstract Tokens (MAT Transformers)

Bottleneck of Swin Transformer

Proposed MAT

Experimental Results

Bottleneck of Swin Transformer

23

MLP

LN

W-MSA

LN

 $\hat{\mathbf{z}}^l$

JNIVERSITY OF ULSAN

This work efficiently exchanges information across non-overlapped windows \rightarrow Mixing Abstract Tokens (MAT)

MLP

LN

SW-MSA

LN

Two Successive Swin Transformer Block

ISLab

[✓] Contain matrix multiplication

Proposed MAT Block

Mixing Abstract Tokens (MAT):

UNIVERSITY OF ULSAN

24

Proposed MAT Block

The role of abtract token:

UNIVERSITY OF ULSAN

- Learnable and a bridge between non-overlapped windows
- Capturing the information of each window by a weighted sum of all tokens in each window via query-key matrix multiplication

UNIVERSITY OF ULSAN

Stem Block: two successive 3×3 convolution with stride 2

Bilinear PE (Patch Embedding): sample relevant regions of input feature based on learned offsets and grid of pixel locations

MAT Transformer Configuration

MAT block:

Capture long-range dependencies from the input token

lnsert MAT blocks into stages $(3, 4) \rightarrow$ better trade-offs between accuracy and costs

Model		Stage		age		Top-1 GFLOPs	#param(M)	Variant	#dim	#blocks	#heads	GFLOPs	#param(M)
-	1	2	3	4	(/0)			MAT-1	24	2, 2, 6, 6	12, 24	0.389	6.714
Model 1	\checkmark	\checkmark	\checkmark	\checkmark	78.9	0.783	10.874	MAT-2	32	2, 2, 6, 6	8, 16	0.666	10.767
Model 2	×	\checkmark	\checkmark	\checkmark	78.8	0.707	10.852	MAT-3	36	2, 2, 8, 8	8, 16	1.042	17.008
Model 3	×	×	\checkmark	\checkmark	79.0	0.666	10.767	MAT-4	48	3, 3, 8, 8	12, 24	1.933	29.057
Model 4	×	×	×	\checkmark	78.5	0.568	9.767	MAT-5	64	2, 2, 8, 8	16, 32	3.156	50.108

Positions of MAT blocks

- \checkmark MAT blocks used in this stage
- ✗ Only MLP is used

Detailed configurations of 5 MAT Transformers

- #dim: number of base channels and duplicated in the next stage
- #blocks: number of stacked MAT blocks
- #heads: number of heads

Experimental Setup - Image Classification

Image Classification:

- Dataset: ImageNet-1K
 - 1.2M training images, 50K validation images with 1K categories

Configurations:

- Epochs: 300, Batch size: 4096
- Optimizer: Adam
- Learning rate: 1e⁻³
- Image size: 224×224

Image Classification Results

CPU Latency:

UNIVERSITY OF ULSAN

Device: CPU-Intel(R) Xeon(R) Gold 5220R@2.20GHz

Experimental Setup - Object Detection, Instance Segmentation

Object Detection and Instance Segmentation:

- Dataset: MS-COCO
 - 115K training images, 5K validation images with 80 categories

Baseline detectors: RetinaNet and Mask R-CNN
 Replace original backbone with pretrained MAT Transformers
 Neck, Head is kept same as baseline

Configurations:

- Epochs: 12
- Batch size: 16 (RetinaNet, Mask R-CNN)
- Optimizer: Adam
- Learning rate: 1e⁻⁴
- Image size: 1333×800 (RetinaNet, Mask R-CNN)

Object Detection and Instance Segmentation Results

Baseline: RetinaNet

Backbone	#param (M)	GFLOPs	APbox
ResNet-18	21	189	31.8
ResNet-50	38	250	36.3
PVT-T	23	183	36.7
PVTv2-B0	13	160	37.1
PoolFormer-S12	22	207	36.2
EMO-2M	12	167	36.2
EMO-5M	15	207	38.9
PVT-S	34	167	40.4
LIT-S	39	178	41.6
Swin-T	38	273	41.5
MAT-2 (Ours)	18	164	38.1
MAT-3 (Ours)	25	172	39.6
MAT-4 (Ours)	37	191	41.9
MAT-5 (Ours)	58	217	42.8

Baseline: Mask R-CNN

Backbone	#param (M)	GFLOPs	APbox	AP mask
ResNet-18	31	207	34.0	31.2
ResNet-50	44	260	38.0	34.4
ResNet-101	63	336	40.4	36.4
PVTv2-B0	23	196	38.2	36.2
PVT-T	33	208	36.7	35.1
PVT-S	44	245	40.4	37.8
PVT-M	64	302	42.0	39.0
PVT-L	81	364	42.9	39.5
LIT-S	48	324	42.0	39.1
Swin-T	48	264	42.2	39.1
MAT-2 (Ours)	29	182	39.4	36.7
MAT-3 (Ours)	35	190	41.2	38.1
MAT-4 (Ours)	47	209	43.2	39.6
MAT-5 (Ours)	68	235	43.8	40.0

Experimental Setup - Semantic Segmentation

Semantic Segmentation:

- Dataset: ADE20K
 - 20K training images, 2K validation images

Baseline segmentor: Semantic FPN
 Replace original backbone with pretrained MAT Transformers
 Neck, Head is kept same as baseline

Configurations:

- Iterations: 80K
- Batch size: 16
- Optimizer: Adam
- Learning rate: 2e⁻⁴
- Image size: 512×512

Semantic Segmentation Results

Baseline: Semantic FPN

Backbone	#param (M)	GFLOPs	mloU (%)
ResNet-50 (original)	29	183	36.7
ResNet-101	48	260	38.8
PVT-S	28	161	39.8
PVT-M	48	219	41.6
PVT-L	65	283	42.1
Swin-T	32	182	41.5
MAT-2 (Ours)	13	98	40.0
MAT-3 (Ours)	19	107	41.9
MAT-4 (Ours)	31	127	43.3
MAT-5 (Ours)	52	154	44.1

Ablation Study

MAT Attention and Bilinear Patch Embedding:

Throughput is measured on one GPU Tesla V100 32GB

Module		Top-1 Accuracy	#param (M)	GFLOPs	Throughput (images/second)
Pure MLP		58.4	5.699	0.461	10303
	+Window Attention	76.9	7.802	0.659	4353
Token Mixer	+MAT Attention (Ours)	79.0	10.767	0.666	4333
	3×3 Conv, stride 2	78.7	11.107	0.703	4432
Patch Embed	Patch Merging	78.5	10.892	0.679	4944
	Bilinear PE (Ours)	79.0	10.767	0.666	4333

Qualitative Results: Mask R-CNN with MAT-2

Partial Transformers (PartialFormer)

Computation Redundancy

Proposed Partial Attention

Experimental Results

Computation Redundancy

key/value point

Improvement of self-attention:

★ ★ Query

window

key/value

(b) Spatial reduction attention

(c) Window attention

- all regions (a)
- down-sampled regions (b)
- local windows (c, d)
- shifted windows (e)
- \rightarrow attention patterns have high similarities

(d) Cross-shaped window attention

(e) Deformable attention

(f) Partial attention (Ours)

- Partial attention: \checkmark
 - only foreground queries attend to relevant ٠ regions
- \rightarrow reduce computation redundancy of querykey interactions

Computation Redundancy

Observation - Visualization of trained DeiT model on ImageNet-1K

Attention maps for foreground/background queries are almost the same

 $\checkmark\,$ Interacting each query with the full set of keys/values \rightarrow suboptimal, computation redundancy

DeiT: Training data-efficient image transformers & distillation through attention, ICML`2021

Proposed Partial Attention

- Token separation: seperate image tokens into foreground and background sets based on context scores
 Mean() + Sort() + Gather()
- **Mixed Multi-Head Self-Attention (MMSA):** fully capture informative features from foreground set
- **Single-Query Attention (SQA):** squeeze the information of the most background tokens
- **Learnable token Q_A**: a bridge between to two sets

Proposed Partial Attention

Detailed structure of MMSA and SQA:

Model Configuration

CPVT: learn local features implemented by 3×3 depthwise convolution

Detailed configurations of five PartialFormers:

Model	С	L	#heads	#param (M)	GFLOPs
PartialFormer-B0	24	2, 2, 6, 6	2, 4, 8, 16	5.3	0.4
PartialFormer-B1	32	2, 2, 6, 6	2, 4, 8, 16	8.2	0.7
PartialFormer-B2	48	2, 2, 8, 8	3, 6, 12, 24	21.1	1.9
PartialFormer-B3	64	2, 2, 8, 8	4, 8, 16, 32	36.1	3.4
PartialFormer-B4	96	2, 2, 8, 6	6, 12, 24, 48	64.5	6.8

Experimental Setup - Image Classification

Image Classification:

- Dataset: ImageNet-1K
 - 1.2M training images, 50K validation images with 1K categories

Configurations:

- Epochs: 300, Batch size: 4096
- Optimizer: Adam
- Learning rate: 1e⁻³
- Image size: 224×224

Image Classification Results

Trade-off between accuracy and cost:

UOU

Semantic Segmentation Results

Comparison with other backbones:

Backbone		Semantic FPN	80K	UperNet 160K			
	#param(M)	GFLOPs	mloU	#param(M)	GFLOPs	mloU	
ResNet-50 (Original)	25.8	183	36.7	66.5	951	42.0	
ResNet-101 (Original)	47.5	260	38.8	86.0	1029	43.8	
PVT-S	28.2	161	39.8	—	—	—	
PVT-M	48.0	219	41.6	—	—	—	
Swin-T	31.9	182	41.5	59.9	945	44.5	
Focal-T	—	—	—	62.0	998	45.8	
MixFormer-B3	—	—	—	44.0	880	44.5	
DAT-T	32.0	198	42.6	60.0	957	45.5	
Swin-S	53.2	274	45.2	81.0	1038	47.6	
PartialFormer-B1 (Ours)	10.8	101	40.2	34.8	856	43.3	
PartialFormer-B2 (Ours)	23.5	131	42.3	48.6	887	45.9	
PartialFormer-B3 (Ours)	38.4	166	43.5	64.5	923	47.0	
PartialFormer-B4 (Ours)	66.6	246	45.0	94.7	1005	48.3	

Object Detection and Instance Segmentation Results

Baseline: RetinaNet and Mask R-CNN

Backbone	Re	RetinaNet 1×			Mask R-CNN 1×				
	#param(M)	GFLOPs	APbox	#param(M)	GFLOPs	APbox	AP ^{mask}		
ResNet-18	21	189	31.8	31	207	34.0	31.2		
ResNet-50	38	250	36.3	44	260	38.0	34.4		
ResNet-101	57	315	38.5	63	336	40.4	36.4		
PVT-T	23	183	36.7	33	208	36.7	35.1		
PVT-S	34	273	40.4	44	245	40.4	37.8		
PVT-M	54	384	41.9	64	367	42.0	39.0		
LIT-S	39	305	41.6	48	324	42.9	39.6		
Swin-T	38	251	41.5	48	270	42.2	39.1		
Twin-S	34	225	43.0	44	244	43.4	40.3		
DAT-T	38	253	42.8	48	272	44.4	40.4		
PartialFormer-B1 (Ours)	16	167	40.2	26	185	41.2	38.2		
PartialFormer-B2 (Ours)	29	196	43.5	39	214	44.1	40.4		
PartialFormer-B3 (Ours)	44	230	44.1	54	248	45.0	40.9		

Object Detection and Keypoint Detection

Object detection: SSD

Keypoint detection: SimpleBaseline

Backbone	Image size	GFLOPs	#param(M)	APbox	Backbone	Crop size	GFLOPs	#param(M)	AP keypoint
MobileViTv1-XXS	320 ²	0.9	1.7	19.9	RSN-18	256×192	2.3	9.1	70.4
MobileViTv2-0.5	320 ²	0.9	2.0	21.2	ResNet-50 (original)	256×192	5.5	34.0	71.8
MobileNetv3	320 ²	0.6	5.0	22.0	ResNet-101	256×192	9.1	53.0	72.8
MobileNetv2	320 ²	0.8	4.3	22.1	PVT-S	256×192	4.1	28.2	71.4
MobileNetv1	320 ²	1.3	5.1	22.2	Swin-T	256×192	6.1	32.8	72.4
MobileViTv2-0.75	320 ²	1.8	3.6	24.6	PartialFormer-B1	256×192	1.7	9.8	70.6
ResNet-50	320 ²	20.2	22.9	25.2	PartialFormer-B2	256×192	2.9	23.0	72.7
PartialFormer-B0	320 ²	0.9	5.0	24.3	PartialFormer-B3	256×192	4.4	38.4	73.2
PartialFormer-B1	320 ²	1.5	8.0	27.1					

Conclusion

Develop efficient vision Transformers for image classification and dense prediction tasks

- Mitigate computational bottlenecks in Transformer encoder
- Enhance modeling ability of window self-attention
- Reduce computation redundancy in global self-attention
- The proposed methods can outperform other state-of-the-art methods in both accuracy and speed

Future works

UNIVERSITY OF ULSAN

- Make models smaller and faster for real-time application and deploying on embedded devices
- Integrate additional information from other modalities (a pair of image+text) into feature learning

47

Thank you for your attention!

Appendix

Conferences

- Xuan-Thuy Vo, Duy-Linh Nguyen, Adri Priadana, and Kang-Hyun Jo, Hierarchical Vision Transformers with Shuffled Local Self-Attentions, IWIS, Korea, 2023.
- Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, and Kang-Hyun Jo, Simultaneous Person, Face, and Hand Detector Based on Improved YOLOv5, IWIS, Korea, 2023.
- Adri Priadana, Muhamad Dwisnanto Putro, Jinsu An, Duy-Linh Nguyen, XuanThuy Vo, and Kang-Hyun Jo, Gender Recognizer based on Human Face using CNN and Bottleneck Transformer Encoder, IWIS, Korea, 2023.
- Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, and Kang-Hyun Jo, Vehicle Detector Based on YOLOv5 Architecture for Traffic Management and Control Systems, IECON, Singapore, 2023.
- Adri Priadana, Muhamad Dwisnanto Putro, Jinsu An, Duy-Linh Nguyen, XuanThuy Vo, and Kang-Hyun Jo, Facial Attribute Recognition using Lightweight Multi-Label CNN-Transformer Architecture for Intelligent Advertising, IECON, Singapore, 2023.
- Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, and Kang-Hyun Jo, Car Detector Based on YOLOv5 for Parking Management, CITA, Vietnam, 2023.
- Xuan-Thuy Vo, Jehwan Choi, Duy-Linh Nguyen, Adri Priadana, and KangHyun Jo, Unifying Local and Global Fourier Features for Image Classification, ISIE, Finland, 2023.
- Adri Priadana, Muhamad Dwisnanto Putro, Duy-Linh Nguyen, Xuan-Thuy Vo, and Kang-Hyun Jo, Age Group Recognizer based on Human Face Supporting Smart Digital Advertising Platforms, ISIE, Finland, 2023.
- Adri Priadana, Muhamad Dwisnanto Putro, Duy-Linh Nguyen, Xuan-Thuy Vo, and Kang-Hyun Jo, Human Face Detector with Gender Identification by Split-Based Inception Block and Regulated Attention Module, IW-FCV, 2023.
- Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, and Kang-Hyun Jo, YOLO5PKLot: A Parking Lot Detection Network Based on Improved YOLOv5 for Smart Parking Management System, IW-FCV, 2023.
- Xuan-Thuy Vo, Duy-Linh Nguyen, Adri Priadana, and Kang-Hyun Jo, Dynamic Circular Convolution for Image Classification, IW-FCV, Korea, 2023.
- > Tien-Dat Tran, Xuan-Thuy Vo, Duy-Linh Nguyen, and Kang-Hyun Jo, Combination of Deep Learner Network and Transformer for 3D Human Pose Estimation, ICCAS, Korea, 2022.
- Adri Priadana, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, and Kang-Hyun Jo, A Facial Gender Detector on CPU using Multi-dilated Convolution with Attention Modules, ICCAS, Korea, 2022.
- Xuan-Thuy Vo, Tien-Dat Tran, Duy-Linh Nguyen, Adri Priadana, and KangHyun Jo, Balancing Multiple Object Tracking Objectives based on Learned Weighting Factors, MAPR, Vietnam, 2022.
- Adri Priadana, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, and Kang-Hyun Jo, An Efficient Face-based Age Group Detector on a CPU using Two Perspective Convolution with Attention Modules, MAPR, Vietnam, 2022.
- Duy-Linh Nguyen, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, Tien-Dat Tran, and Kang-Hyun Jo, Fire Warning Based on Convolutional Neural Network and Inception Mechanism, MAPR, Vietnam, 2022.

Conferences

- Xuan-Thuy Vo, Tien-Dat Tran, Duy-Linh Nguyen, and Kang-Hyun Jo, A Study on Efficient Multi-task Networks for Multiple Object Tracking, IWIS, Korea, 2022.
- Duy-Linh Nguyen, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, Tien-Dat Tran, and Kang-Hyun Jo, Robust Hand Detection Based on Convolutional Neural Network and Attention Module, IWIS, Korea, 2022.
- Fien-Dat Tran, Xuan-Thuy Vo, Duy-Linh Nguyen, and Kang-Hyun Jo, Efficient High-Resolution Network for Human Pose Estimation, IWIS, Korea, 2022.
- Van-Dung Hoang, Xuan-Thuy Vo, Khac-Anh Phu, and Kang-Hyun Jo, Fusion of Segmentation and Classification for Improving Skin Disease Diagnosis, GTSD, Vietnam, 2022.
- Xuan-Thuy Vo, Tien-Dat Tran, Duy-Linh Nguyen, Kang-Hyun Jo, Multi-level Feature Reweighting and Fusion for Instance Segmentation, INDIN, Australia, 2022.
- Tien-Dat Tran, Xuan-Thuy Vo, Duy-Linh Nguyen, and Kang-Hyun Jo, HighResolution Network with Attention Module for Human Pose Estimation, ASCC, Korea, 2022.
- Xuan-Thuy Vo, Van-Dung Hoang, Duy-Linh Nguyen, and Kang-Hyun Jo, Pedestrian Head Detection and Tracking via Global Vision Transformer, IW-FCV, Japan, 2022.
- Duy-Linh Nguyen, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, and KangHyun Jo, Convolutional Neural Network Design for Eye Detection Under LowIllumination, IW-FCV, Japan, 2022.
- Duy-Linh Nguyen, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, and KangHyun Jo, Light-weight Convolutional Neural Network for Distracted Driver Classification, IECON, Canada, 2021.
- Xuan-Thuy Vo, Tien-Dat Tran, Duy-Linh Nguyen, and Kang-Hyun Jo, Dynamic Multi-loss Weighting for Multiple People Tracking in Video Surveillance Systems, INDIN, Spain, 2021.
- Duy-Linh Nguyen, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, and KangHyun Jo, Triple Detector based on Feature Pyramid Network for License Plate Detection and Recognition System in Unusual Conditions, ISIE, Japan, 2021.
- Xuan-Thuy Vo, Tien-Dat Tran, Duy-Linh Nguyen, and Kang-Hyun Jo, RegressionAware Classification Feature for Pedestrian Detection and Tracking in Video Surveillance Systems, ICIC, China, 2021.
- Xuan-Thuy Vo, Tien-Dat Tran, Duy-Linh Nguyen, and Kang-Hyun Jo, Stairstep Feature Pyramid Networks for Object Detection, IW-FCV, Korea, 2021.
- Tien-Dat Tran, Xuan-Thuy Vo, Duy-Linh Nguyen, and Kang-Hyun Jo, Efficient Spatial-Attention Module for Human Pose Estimation, IW-FCV, Korea, 2021.
- Tien-Dat Tran, Xuan-Thuy Vo, Moahamammad-Ashraf Russo, and Kang-Hyun Jo, Simple Fine-tuning Attention Modules for Human Pose Estimation, ICCCI, Vietnam, 2020.
- Lihua Wen, Xuan-Thuy Vo, and Kang-Hyun Jo, 3D SaccadeNet: A Single-Shot 3D Object Detector for LiDAR Point Clouds, ICCAS, Korea, 2020.
- Xuan-Thuy Vo, and Kang-Hyun Jo, Enhanced Feature Pyramid Networks by Feature Aggregation Module and Refinement Module, HSI, Japan, 2020.
- Xuan-Thuy Vo, Lihua Wen, Tien-Dat Tran, and Kang-Hyun Jo, Bidirectional Non-local Networks for Object Detection, ICCCI, Vietnam, 2020.

Introduction

Dominant Networks in Computer Vision: powered architectures ranging from AlexNet, ResNet, ViT, to Swin, and all the modern vision backbones

ISLab

EMSNet - Mean()

Elimination of global features for static branch:

Tend to capture local feature

EMSNet - Coordinate Conv

Full capture semantic information of strip objects:

Coordinate Conv

Common square convolution

Ground truth

Prediction w/square convolution

Prediction w/coordinate conv

Туре	#params	GFLOPs
Square convolution	$k^2 imes C$	$k^2 imes C imes H imes W$
Coordinate convolution	2k imes C	2 imes k imes C imes H imes W

Detailed Visualization of EMS Block across Layers

- ✓ Static branch: DWConv, PE, CoordinateDWConv \rightarrow high frequency components
- $\checkmark~$ Dynamic branch: G-MHSA \rightarrow low frequency components
- \checkmark Combine \rightarrow balance the range of frequencies

EMSNet - Addtional Results

TABLE I

ABLATION STUDY ON CHANNEL SPLITTING OF THE STATIC BRANCH

Channel ratios	#params (M)	GFLOPs	Top-1
{1/4:1/2:1/4}	2.56	0.54	73.1
{1/2:1/4:1/4}	2.59	0.55	73.2
{1/4:1/4:1/2}	2.59	0.55	73.2

TABLE III LATENCY OF EACH OPERATOR IN THE EMS BLOCK

	Branch	Operations	#p	G	Latenc	Top-1	
		- 1	(M)	-	CPU	GPU	(%)
Baseline	e Identity()			0.48	33.2	0.24	70.2
	Static branch	CoordDW	2.68	0.59	43.6	0.41	71.9
Channel Splitting	Domania harak	+C-MHSA	3.10	0.55	45.4	0.39	72.7
	Dynamic branch	+G-MHSA	2.56	0.54	50.1	0.43	73.1
w/o fusion	All		2.12	0.52	43.8	0.41	72.2
w/o channel splitting	All		4.45	0.81	90.3	0.82	74.3

Window shifting and sliding

(d) Slide Attention

Method	Information exchange	Implementation	Test GPU	Latency(ms)		P(M)	G	Top-1
Wiethou	across windows	Implementation	Mem. (MB)	CPU	GPU			(%)
Swin(baseline)	window shifting	torch.roll()	8880	67.3	0.76	4.4	0.7	74.4
HaloNet	window sliding	Unfold() & Padding	16934	83.7	1.03	4.4	0.7	75.8
MAT(Ours)	mixing abstract token	Q,K,V Matrix Mul	8482	52.1 (-15.2 ↓)	0.23(-0.53 ↓)	10.8	0.7	79.0 (+4.4 ↑)

Method	#param↓	GEL OPs	Test GPU	Latenc	cy(ms)	Top-1
Wiethou	(M)	ULUI S4	Mem. (MB)↓	CPU↓	GPU↓	(%)↑
PVT-T	13.2	1.6	21236	74.79	0.55	75.1
PVT-S	24.5	3.8	21370	214.13	0.93	79.8
PVTv2-B0	3.7	0.6	14774	37.36	0.17	70.5
PVTv2-B1	13.1	2.1	24370	90.10	0.32	78.7
PVTv2-B2	25.4	4.0	24424	164.20	0.55	82.0
Swin-0.7G	4.4	0.7	8880	67.30	0.76	74.4
Swin-1G	7.3	1.0	14926	78.37	0.37	77.3
Swin-2G	12.8	2.0	18060	118.61	0.45	79.2
Swin-T	28.3	4.5	24408	188.68	0.60	81.3
MAT-1	6.7	0.4	6604	40.71	0.19	76.3
MAT-2	10.8	0.7	8482	52.10	0.23	79.0
MAT-3	17.0	1.0	8996	73.91	0.32	80.2
MAT-4	29.1	1.9	10812	120.35	0.47	81.0
MAT-5	50.1	3.2	13801	164.78	0.57	81.9

Image Classification Results - MAT

Top-1 (%)

69.0

70.2

71.5

74.3

77.1

74.4

76.3

79.0

80.2

Comparison of MAT 1-3 and other efficent methods:

Method	Image Size	#param (M)	FLOPs G	Top-1 (%)	Method	lmage Size	#param (M)	FLOPs G
MobileViTv1-XXS	256 ²	1.3	0.4	69.0	MobileFormer	256 ²	1.3	0.4
MobileViTv2-0.5	256 ²	1.4	0.5	70.2	VAN-B0	256 ²	1.4	0.5
EMO-1M	224 ²	1.3	0.3	71.5	LVT	224 ²	1.3	0.3
EfficientViT-M4	224 ²	8.8	0.3	74.3	Swin-1G	224 ²	8.8	0.3
EfficientViT-M5	224 ²	12.4	0.5	77.1	EMO-5M	224 ²	12.4	0.5
PVTv2-B0	224 ²	3.7	0.6	70.5	DFvT-S	224 ²	4.4	0.7
Swin-0.7G	224 ²	4.4	0.7	74.4	MAT-1 (Ours)	224 ²	6.7	0.4
DFvT-T	224 ²	4.0	0.3	73.0	MAT-2 (Ours)	224 ²	10.8	0.7
MobileViTv1-XS	256 ²	2.3	1.0	74.8	MAT-3 (Ours)	224 ²	17.0	1.0
MobileViTv2-0.75	256 ²	2.9	1.0	75.6				
EdgeViT-XXS	256 ²	4.1	0.6	74.4				
tiny-MOAT-0	224 ²	3.4	0.8	75.5				
EMO-2M	224 ²	2.3	0.4	75.1				
ConvNext-XT	224 ²	7.4	0.6	77.5				

Image Classification Results - MAT

Comparison of MAT 4-5 and recent methods:

Method	lmage Size	#param (M)	FLOPs G	Top-1 (%)	Method	lmage Size	#param (M)	FLOPs G	Top (%
PVT-T	224 ²	13.2	1.6	75.1	PoolFormer-S24	224 ²	21.3	3.4	80
tiny-MOAT-1	224 ²	5.1	1.2	78.3	ParC-Net-S	256 ²	5.0	3.5	78.
ResT-Lite	224 ²	10.5	1.4	77.2	PVT-S	224 ²	24.5	3.8	79.
ResT-Small	224 ²	13.7	1.9	79.6	ResT-Base	224 ²	30.3	4.3	81.
EdgeViT-XS	256 ²	6.7	1.1	77.5	LITv1-Ti	224 ²	19.0	3.6	81.
MobileViTv1-S	256 ²	5.6	2.0	78.4	LITv1-S	224 ²	27.0	4.1	81.
MobileViTv2-1.0	256 ²	4.9	1.9	78.1	LITv2-S	224 ²	28.0	3.7	82.
PoolFormer-S12	224 ²	11.9	1.8	77.2	ConvNeXt-T	224 ²	28.0	4.5	82.
Slide-PVT-T	224 ²	12.2	2.0	78.0	Swin-T	224 ²	28.3	4.5	81.
PVTv2-B1	224 ²	13.1	2.1	78.7	MAT-5 (Ours)	224 ²	50.1	3.2	81.
Slide-PVTv2-B1	224 ²	13.0	2.2	79.5					
Swin-2G	224 ²	12.8	2.0	79.2					
MAT-4 (Ours)	224 ²	29.1	1.9	81.0					

Object Detection and Instance Segmentation Results - MAT

Baseline: SSD [11]

Backbone	#params (M)	GFLOPs	APbox
MobileViTv1-XXS	1.7	0.9	19.9
MobileViTv2-0.5	2.0	0.9	21.2
MobileNetv2	4.3	0.8	22.1
EMO-1M	2.3	0.6	22.0
EMO-2M	3.3	0.9	25.2
MobileViTv2-0.75	3.6	1.8	24.6
MobileViTv1-S	5.7	3.4	27.7
MobileViTv2-1.25	8.2	4.7	27.8
EMO-5M	6.0	1.8	27.9
MobileViTv2-1.75	14.9	9.0	29.5
ResNet-50	26.6	8.8	25.2
MAT-1 (Ours)	6.4	0.8	23.3
MAT-2 (Ours)	10.5	1.5	26.3
MAT-3 (Ours)	16.7	2.3	28.2

Visualization of Attention Maps - MAT

Earlier blocks:

> abstract tokens → learn object boundaries
 > mixing abstract tokens → larger regions

Later blocks:

▶ abstract tokens → capture key parts of objects
 ▶ mixing abstract tokens → focus on target regions

Qualitative Results: Mask R-CNN with MAT-2

Detailed Configurations of Five MAT Models

Stage	Out	Layer Name	MAT-1	MAT-2	MAT-3	MAT-4	MAT-5
-			3×3 conv, stride 2, 12	3×3 conv, stride 2, 16	3×3 conv, stride 2, 18	3×3 conv, stride 2, 24	3×3 conv, stride 2, 32
Stem	56^{2}	Patch Embed	3×3 DWconv, stride 1, 12	3×3 DWconv, stride 1, 16	3×3 DWconv, stride 1, 18	3×3 DW conv, stride 1, 24	3×3 DWconv, stride 1, 32
			3×3 conv, stride 2, 24	3×3 conv, stride 2, 32	3×3 conv, stride 2, 36	3×3 conv, stride 2, 48	3×3 conv, stride 2, 64
Stage 1	56^{2}	Pure MLP	[MLP, exp=4] $\times 2$	[MLP, exp=4] $\times 2$	[MLP, exp=4] $\times 2$	[MLP, exp=4] $\times 3$	[MLP, exp=4] $\times 2$
9 9 - 699 - 69			3×3 DW conv, stride 2, 24	3×3 DWconv, stride 2, 32	3×3 DWconv, stride 2, 36	3×3 DW conv, stride 2, 48	3×3 DW conv, stride 2, 64
Stora 2	202	Bilinear PE	1×1 conv, stride 1, 48	1×1 conv, stride 1, 64	1×1 conv, stride 1, 72	1×1 conv, stride 1, 96	1×1 conv, stride 1, 128
Stage 2	20		bilinear interpolation				
		Pure MLP	[MLP, exp=4] $\times 2$	[MLP, exp=4] $\times 2$	[MLP, exp=4] $\times 2$	[MLP, exp=4] $\times 3$	[MLP, exp=4] $\times 2$
	14 ²	^{4²} Bilinear PE	3×3 DWconv, stride 2, 48	3×3 DWconv, stride 2, 64	3×3 DWconv, stride 2, 72	3×3 DW conv, stride 2, 96	3×3 DWconv, stride 2, 128
Stage 2			1×1 conv, stride 1, 96	1×1 conv, stride 1, 128	1×1 conv, stride 1, 144	1×1 conv, stride 1, 192	1×1 conv, stride 1, 256
Stage 5			bilinear interpolation				
		Tanafamaan	MATAttn $h = 12$	MATAttn $h = 8$	MATAttn $h = 8$	MATAttn $h = 12$	MATAttn $h = 16$
		Transformer	MLP $exp = 4 \times 6$	MLP $exp = 4 \times 6$	MLP $exp = 4 \times 8$	MLP $exp = 4 \times 8$	MLP $exp = 4$ × 8
			3×3 DWconv, stride 2, 96	3×3 DWconv, stride 2, 128	3×3 DW conv, stride 2, 144	3×3 DWconv, stride 2, 192	3×3 DWconv, stride 2, 256
Stage 4	7^2	2 Bilinear PE	1×1 conv, stride 1, 192	1×1 conv, stride 1, 256	1×1 conv, stride 1, 288	1×1 conv, stride 1, 384	1×1 conv, stride 1, 512
			bilinear interpolation				
		Transformer	$\begin{bmatrix} \text{MATAttn} & h = 24 \\ \text{MLP} & ern = 4 \end{bmatrix} \times 6$	$\begin{bmatrix} \text{MATAttn} & h = 16 \\ \text{MLP} & ern - 4 \end{bmatrix} \times 6$	$\begin{bmatrix} \text{MATAttn} & h = 16 \\ \text{MLP} & ern - 4 \end{bmatrix} \times 8$	$\begin{bmatrix} \text{MATAttn} & h = 24 \\ \text{MLP} & ern = 4 \end{bmatrix} \times 8$	$\begin{bmatrix} \text{MATAttn} & h = 32 \\ \text{MLP} & ern - 4 \end{bmatrix} \times 8$
			$\begin{bmatrix} mm \\ cxp - 4 \end{bmatrix}$	cap = 4	[min cap - 4]		$\begin{bmatrix} mm \\ cxp - 4 \end{bmatrix}$

PartialFormer - Cosine Similarity

Attention map

Image Classification Results - PartialFormer

Top-1(%)

75.1

78.0

78.7

79.2

79.6

79.8

79.9

80.0

80.8

80.9

81.0

81.0

81.2

81.4

82.0

LOPs

Params

13.0

12.2

13.1

12.8

13.7

11.5

12.0

13.6

15.6

12.1

9.8

11.1

15.6

13.1

21.1

PartialFormer B0-B2 and recent methods:

Method	Im. Size	GFLOPs	Params	Top-1(%)	Method		lm. Size	GFLO
MobileViTv1-XXS	256 ²	0.4	1.3M	69.0	PVT-T		224 ²	1.8
MobileViTv2-0.5	256 ²	0.5	1.4M	70.2	Slide-PV	/T-T	224 ²	2.0
PVTv2-B0	224 ²	0.6	3.7M	70.5	PVTv2-E	31	224 ²	2.1
DFvT-T	224 ²	0.3	4.0M	73.0	Swin-2G	6	224 ²	2.0
EfficientViT-M4	224 ²	0.4	8.8M	74.3	ResT-Sr	nall	224 ²	1.9
EdgeViT-XXS	256 ²	0.6	4.1M	74.4	Shunted	I-T	224 ²	2.1
SwiftFormer-XS	224 ²	0.6	3.5M	75.7	GC ViT-2	ХХТ	224 ²	2.1
PartialFormer-B0	224 ²	0.4	5.3M	76.7	QuadTre	ee-B1	224 ²	2.3
DeiT-T	224 ²	1.3	6.0M	72.2	ConvNe	XtV1-N	224 ²	2.5
LVT	224 ²	0.9	3.4M	74.8	SwiftFor	mer-T	224 ²	1.6
ConvNeXtV1-A	224 ²	0.6	3.7M	75.7	tiny-MO	AT-2	224 ²	2.3
ConvNeXtV2-A	224 ²	0.6	3.7M	76.2	EdgeViT	-S	256 ²	1.9
ResT-Lite	224 ²	1.4	10.5M	77.2	ConvNe	XtV2-N	224 ²	2.5
SwiftFormer-S	224 ²	1.0	6.1M	78.5	BiForme	er-T	224 ²	2.2
PartialFormer-B1	224 ²	0.7	8.2M	79.3	PartialF	ormer-B2	224 ²	1.9

Image Classification Results - PartialFormer

PartialFormer B3-B4 and recent methods:

Method	lm. Size	GFLOPs	Params	Top-1(%)
ResNet-50	224 ²	4.1	26	76.1
PVT-S	224 ²	3.8	25	79.8
DeiT-S	224 ²	4.6	22	79.9
PaCa-Tiny	224 ²	3.2	12	80.9
Swin-T	224 ²	4.5	29	81.3
LIT-S	224 ²	4.1	27	81.5
ResT-Base	224 ²	4.3	30	81.6
Slide-PVT-S	224 ²	4.0	23	81.7
PVTv2-B2	224 ²	4.0	25	82.0
DAT-T	224 ²	4.5	29	82.0
LITv2-S	224 ²	3.7	28	82.0
ConvNeXt-T	224 ²	4.5	29	82.1
Focal-T	224 ²	4.9	29	82.2
ResTv2-T	224 ²	4.1	30	82.3
PartialFormer-B3	224 ²	3.4	36	83.0

Method	lm. Size	GFLOPs	Params	Top-1(%)
PVT-M	224 ²	6.7	44	81.2
PVT-L	224 ²	9.8	61	81.7
Swin-S	224 ²	8.7	50	83.0
Twins-SVT-B	224 ²	8.6	56	83.2
PVTv2-B3	224 ²	6.9	45	83.2
LITv2-M	224 ²	7.5	49	83.3
Focal-S	224 ²	9.1	51	83.6
CSWin-S	224 ²	6.9	35	83.6
DAT-S	224 ²	9.0	50	83.6
PVTv2-B4	224 ²	10.1	63	83.6
ResTv2-B	224 ²	7.9	56	83.7
PartialFormer-B4	224 ²	6.8	64	83.9

Experimental Setup - Semantic Segmentation

Semantic Segmentation:

- Dataset: ADE20K
 - 20K training images, 2K validation images

Baseline segmentors: Semantic FPN, UperNet Replace original backbone with pretrained MAT Transformers Neck, Head is kept same as baseline

Configurations:

- Iterations: 80K (Semantic FPN), 160K (UPerNet)
- Batch size: 16
- Optimizer: Adam
- Learning rate: 2e⁻⁴
- Image size: 512×512

Experimental Setup - Object Detection, Instance Segmentation

Object Detection and Instance Segmentation:

- Dataset: MS-COCO
 - 115K training images, 5K validation images with 80 categories

Baseline detectors: SSD, RetinaNet, Mask R-CNN, SimpleBaseline (keypoint detection)

- Replace original backbone with pretrained MAT Transformers
- Neck, Head is kept same as baseline

Configurations:

- Epochs: 12 (SSD, RetinaNet, Mask R-CNN), 210 (SimpleBaseline)
- Batch size: 16 (RetinaNet, Mask R-CNN), 192 (SSD)
- Optimizer: Adam
- Learning rate: 1e⁻⁴
- Image size: 1333×800 (RetinaNet, Mask R-CNN), 320×320 (SSD), 256×192 (SimpleBaseline)

Ablation Study - PartialFormer

Importance of each component in Partial Transformer Block:

Model	Module	#params(M)	GFLOPs	Тор-1 Асс
	Full	8.264	0.734	79.3
PartialFormer-B1	-No exchange	8.262	0.734	78.8
	-MMSA	8.261	0.706	77.2
	-SQA	6.213	0.536	76.5

Ratio between N/N_F across 4 stages: only MMSA used in partial attention

Model	N/N _F	#params(M)	GFLOPs	Тор-1 Асс
	[64, 16, 4, 1]	8.232	0.653	78.5
PartialFormer-B1	[4, 4, 4, 4]	8.232	0.699	77.3
with MMSA	[8, 8, 8, 8]	8.232	0.589	77.1
	[16, 16, 16, 16]	8.232	0.556	77.0
	[64, 32, 16, 8]	8.232	0.553	77.0

Head MLP in MMSA: only MMSA used in partial attention

Model	Head MLP	#params	GFLOPs	Тор-1 Асс
-	No	8.230	0.647	78.3
PartialFormer- B1 with MMSA	e=1	8.232	0.653	78.5
	e=2	8.239	0.668	78.6

Channel Reduction in SQA: only MMSA used in partial attention

Model	Head MLP	#params	GFLOPs	Тор-1 Асс
	r=1	8.344	0.707	77.4
PartialFormer- B1 with SQA	r=4	8.289	0.706	77.2
	r=8	8.261	0.706	77.2
	r=16	8.248	0.706	77.1

Application of Partial Attention

Replace existing attentions with our partial attention:

Method	#params	GFLOPs	Тор-1 Асс
DeiT-T	6.0M	1.3	72.2
DeiT-T with partial attention	5.7M (-0.3M)	0.9 (-0.4)	74.2 (+2.0)
PVT-T	13.0M	1.8	75.1
PVT-T with partial attention	11.0M (-2M)	1.6 (-0.2)	77.3 (+2.2)

Throughput Comparison - PartialFormer

Device: CPU-Intel(R) Xeon(R) Gold 5220R@2.20GHz; GPU-Tesla V100

Method	Attention	Туре	FLOPs G	Params M	Top-1 Acc %	Throughput (images/second)	
						CPU	GPU
PVT	Spatial reduction attention	М	6.7	44	81.2	6.9	1071
		L	9.8	61	81.7	4.6	781
Swin	Window attention	Т	4.5	29	81.3	5.2	1665
		S	8.7	50	83.0	3.2	710
Focal	Multi-scale attention	Т	4.9	29	82.1	3.4	515
		S	9.1	51	83.6	2.3	316
CSWin	Cross-shaped window attention	Т	4.5	23	82.7	7.4	1464
		S	6.9	35	83.6	4.6	907
DAT	Deformable attention	Т	4.5	29	82.0	5.6	1176
		S	9.0	50	83.6	3.1	686
PartialFormer(Ours)	Partial attention	B3	3.4	36	83.0	5.5	1353
		B4	6.8	64	83.9	3.7	847

References

- [1] AlexNet: ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS`2015
- [2] ResNet: Deep Residual Learning for Image Recognition, CVPR`2016
- [3] ViT: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR`2021
- [4] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV`2021
- [5] MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR`2018
- [6] ConvNeXt: A ConvNet for the 2020s, CVPR`2022
- [7] PVT: Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions, ICCV`2021
- [8] EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision Transformers, ECCV`2022
- [9] RetinaNet: Focal Loss for Dense Object Detection, ICCV`2017
- [10] Mask R-CNN, ICCV`2017
- [11] SSD: Single Shot MultiBox Detector, ECCV`2016
- [12] Semantic FPN: Panoptic Feature Pyramid Networks, CVPR`2019
- [13] CSWin Transformer: A General Vision Transformer Backbone With Cross-Shaped Windows, CVPR`2022
- [14] Vision Transformer with Deformable Attention, CVPR`2022
- [15] Unified Perceptual Parsing for Scene Understanding, ECCV²⁰¹⁸
- [16] Simple Baselines for Human Pose Estimation and Tracking, ECCV`2018

2D Convolution

Formula:

$$(fst h)(x,y) = \sum_m \sum_n f(m,n) st h(x-m,y-n)$$

f(m, n): the pixel value of the input image at position (m, n)

h(x-m, y-n): the value of convolution kernel at shifted positions (x-m, y-n)

(f*h)(x, y): the result of convolution at the point (x, y)

https://github.com/vdumoulin/conv_arithmetic/tree/master

2D Convolution

w1[: 0 0 1	0 1	, 0] -1	•[: -2	3	0]	
0 0 1	0 1	-1	-2	3	6	
0	1	0			~	
1		0	1	0	9	
	-1	-1	-2	3	7	
w1[:	, :	,1]	0[:	,:,	1]	
0	0	-1	0	-3	0	
-1	-1	1	-9	-12	2	
0	0	-1	-8	-9	-2	
w1[:	.,:	,2]				
0	-1	-1				
0	-1	0				
1	-1	1				
Bias b1[: 0	b1 (1x1x1) ,0]				

https://cs231n.github.io/convolutional-networks/

Example of the Convolution Filters

Features

Visualization of the CNN filters -> Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

VGG Feature Maps

Visualizing and Comparing Convolutional Neural Networks, ICLR'2015

Normalization

ISLab

Input: Values of x over a mini-t Parameters to be learned	patch: $\mathcal{B} = \{x_{1m}\};$
Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$	177
$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$	// mini-batch mean
$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$	// mini-batch variance
$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$	// normalize
$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$	// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Batch Normalization

Ioffe, Sergey and Christian Szegedy (2015). "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". ICML, pp. 448–456.

UNIVERSITY OF ULSAN

81

Normalization

https://yonghyuc.wordpress.com/2020/03/04/batch-norm-vs-layer-norm/

Activation Functions

Introducing non-linearity into models:

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Activation function - GELU

GELU: Gaussian Error Linear Unit

https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29

Sigmoid vs. Softmax

Figure 1: Sigmoid and Softmax activation functions

Depth-wise Convolution

https://gaussian37.github.io/dl-concept-dwsconv/

UNIVERSITY OF ULSAN

Convolution vs. Depth-wise Seperable Convolution

Figure 3: Standard convolution and depthwise separable convolution.

UNIVERSITY OF ULSAN

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

Convolution vs. Transposed Convolution

3×3 convolution

UNIVERSITY OF ULSAN

✓ Transpose of convolving a 3×3 kernel over a 4×4 input \leftrightarrow convolving a 3×3 kernel over a 2×2 input padded with a 2×2 border of zeros.

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv`16

ISLab

Global Average Pooling

https://underflow101.tistory.com/41

UNIVERSITY OF ULSAN

Cross entropy of distribution p and q:

$$H(p,q) = \mathbb{E}_{p}[-logq]$$

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

$$\frac{10^{-1} \log \log x}{\log q(x)}$$

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

$$\frac{10^{-1} \log \log x}{\log q(x)}$$

$$-((\ln(0.3)^{*0}) + (\ln(0.4)^{*1})) = -\ln(0.4)$$

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

Example :

UNIVERSITY OF ULSAN

UOU

computed			targets					
0.3	0.3	0.4		0	0	1	(democrat)	
0.3	0.4	0.3	Ì	0	1	0	(republican)	
0.1	0.2	0.7	I	1	0	0	(other)	

Step Learing Rate

Optimizer

SGD optimization on loss surface contours

Optimizer

SGD optimization on saddle point

Preliminary - Steepest Descent Method

- **Remarks on** $\frac{\partial f(x)}{\partial x}$:
 - Represent the direction of slope.

 - \blacktriangleright for the right side.
 - Minus sign is added to drive the function to its minimum value.

Mathematical Explanation (1/2)

We want to update w as:

- So: $\Delta E = E_1 E_0$
 - We want to drive E to its minimum.
 - → ΔE should be \bigcirc .
 - And we have:

$$\Delta E = E(w_0 + \eta \vec{v}) - E(w_0)$$

Mathematical Explanation (2/2)

- Using Taylor series:
 - → Centered at w_0 .

$$\Delta E = E(w_0 + \eta \vec{v}) - \underline{E(w_0)}$$

 $a = w_0$

UNIVERSITY OF ULSAN

$$= E(w_0) + \nabla E(w_0)(w_0 + \eta \vec{v} - w_0) - \{E(w_0) + \nabla E(w_0)(w_0 - w_0)\}$$

$$\Delta E = \eta \nabla E(w_0) \vec{v}$$
In which case this value will be \bigcirc ?
 ψ
When their direction are opposite (dot product rule).
 $\nabla E(w_0)$

So, \vec{v} should be $\vec{v} = \frac{|\nabla E(w_0)|}{|\nabla E(w_0)|}$ Normalize its value since \vec{v} is a normal vector. Thu $w_1 = w_0 - \eta \nabla E(w_0)$ S:

Taylor series:

$$f(x) = f(a) + f'(a)(x - a) + HOT$$

gradient descent ignores the high order term

Gradient descent

 $w = w - \eta \nabla J(w)$

Gradient descent with momentum

 $\Delta w = \gamma \Delta w_{t-1} - \eta \nabla J(w) \implies w = w + \Delta w$

SGD without momentum

UNIVERSITY OF ULSAN

http://ruder.io/optimizing-gradient-descent/

SGD with momentum

GD versus **GD** with momentum

Function with 2 minimums:

$$f(x) = x^2 + 10\sin(x)$$

https://www.d2l.ai/chapter_optimization/momentum.html

4

6

Gradient Descent-based Algorithms

Gradient descent

 $w = w - \eta \nabla J(w)$

RMS prop (gradient direction and moving average)

Adapts the learning rate to the parameters

$$w = w - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \nabla J(w) \qquad \qquad E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma)g_t^2$$

http://ruder.io/optimizing-gradient-descent/

Gradient Descent-based Algorithms

Gradient descent

$$w = w - \eta \nabla J(w)$$

Gradient descent with momentum

$$\Delta w = \beta \Delta w_{t-1} - \eta \nabla J(w) \longrightarrow w = w + \Delta w \qquad \beta = 0.9$$

RMS prop (gradient direction and moving average)

$$w = w - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \nabla J(w)$$
$$g = \nabla J(w) \qquad \beta_2 = 0.9$$

Adam

RMS prop + momentum

$$w = w - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} E[g]_t$$

$$E[g^{2}]_{t} = \beta_{2}E[g^{2}]_{t-1} + (1 - \beta_{2})g_{t}^{2}$$
$$E[g]_{t} = \beta_{1}E[g]_{t-1} + (1 - \beta_{1})g_{t}$$
$$g = \nabla J(w) \qquad \beta_{1} = 0.9, \beta_{2} = 0.999$$

http://ruder.io/optimizing-gradient-descent/

https://johnchenresearch.github.io/demon/

Derivative

Derivative is a slope of the tangent line

$$m = \frac{\Delta f(a)}{\Delta a} = \frac{f(a+h) - f(a)}{(a+h) - (a)} = \frac{f(a+h) - f(a)}{h}$$

The slope is when $\Delta x \to 0$ $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

UNIVERSITY OF ULSAN

https://en.wikipedia.org/wiki/Derivative

Chain Rule (1/3)

F(x) = f(g(x))recall $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ Derivative at a $F'(a) = \lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h}$ Let a + h = x $F'(a) = \lim_{x-a\to 0} \frac{f(g(x)) - f(g(a))}{x-a}$ Multiply by $\frac{g(x) - g(a)}{g(x) - g(a)}$ and re-arrange $F'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \frac{g(x) - g(a)}{x - a}$

Chain Rule (2/3)

Chain Rule (3/3)

Chain Rule ... details

105

Chain Rule- Graphical Illustration

UNIVERSITY OF ULSAN

UD

Chain Rule- Graphical Illustration

∂f	$\partial f \partial g \partial h$	df dz dh
∂a	$\overline{\partial g} \overline{\partial h} \overline{\partial a}^{T}$	$\overline{\partial z \partial h} \overline{\partial a}$

ResNet (1/)

- shortcut mapping: h = identity
- after-add mapping: f = ReLU
- What if *f* = identity?

ResNet (2/)

UNIVERSITY OF ULSAN

ResNet (3/)

Very smooth forward propagation

$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i)$$

- Any x_l is directly forward-prop to any x_L, plus residual.
- Any x_L is an additive outcome.

UNIVERSITY OF ULSAN

• in contrast to multiplicative: $x_L = \prod_{i=l}^{L-1} W_i x_l$

ResNet (4/)

ave po of

Very smooth backward propagation

ResNet (5/)

Very smooth backward propagation

$$\frac{\partial E}{\partial x_l} = \frac{\partial E}{\partial x_L} \left(1 + \frac{\partial}{\partial x_l} \sum_{i=1}^{L-1} F(x_i)\right)$$

- Any $\frac{\partial E}{\partial x_L}$ is directly back-prop to any $\frac{\partial E}{\partial x_l}$, plus residual.
- Any $\frac{\partial E}{\partial x_l}$ is additive; unlikely to vanish

UNIVERSITY OF ULSAN

• in contrast to multiplicative: $\frac{\partial E}{\partial x_l} = \prod_{i=l}^{L-1} W_i \frac{\partial E}{\partial x_L}$

ResNet (6/)

Residual for every layer

forward:
$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i)$$

UO

UNIVERSITY OF ULSAN

Enabled by:

shortcut mapping: h = identity

backward:
$$\frac{\partial E}{\partial x_l} = \frac{\partial E}{\partial x_L} (1 + \frac{\partial}{\partial x_l} \sum_{i=1}^{L-1} F(x_i))$$

Vision Transformer

(b) Self-Attention

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." ICLR 2021

Token Embedding

Transformer Encoder

Self-attention Example

Self-Attention: capture global dependencies from tokens

UNIVERSITY OF ULSAN

Example: input has 4 tokens and each token has 3 channels

117

ISLab

Why do we need to scale attention matrix?

Self-attention:

$$egin{aligned} Q^{'} \in \mathbb{R}^{N imes d_{h}}, & ext{a vector } q^{'}_{i} \in \mathbb{R}^{d_{h}}, d_{h} \in d_{m}/h \ K^{'} \in \mathbb{R}^{N imes d_{h}}, & ext{a vector } k^{'}_{j} \in \mathbb{R}^{d_{h}} \ q^{'}_{i}k^{'T}_{j} &= \sum_{n=1}^{d_{h}} q^{'}_{i,n}k^{'}_{j,n} = q^{'}_{i,1}k^{'}_{j,1} + q^{'}_{i,2}k^{'}_{j,2} + \dots \ ext{Assume that } q^{'}_{i}, k^{'}_{j} ext{ are independent random variables with mean 0 and variance 1} \ \mathbb{E}(q^{'}_{i}k^{'T}_{j}) &= \mathbb{E}(q^{'}_{i})\mathbb{E}(k^{'T}_{j}) = 0 \ ext{Var}(q^{'}_{i}k^{'T}_{j}) &= Var(q^{'}_{i,1}k^{'}_{j,1} + q^{'}_{i,2}k^{'}_{i,2} + \dots) = 1 + 1 + \dots = d_{h} = d_{m}/h \ ext{Std}(q^{'}_{i}k^{'T}_{j}) &= \sqrt{Var(q^{'}_{i}k^{'T}_{j})} = \sqrt{d_{m}/h} \end{aligned}$$

Max versus Softmax

x

 $y = e^x$

UNIVERSITY OF ULSAN

- \checkmark turn values into probability distribution
- ✓ dependencies between elements

≜У

2D Dicrete Fourier Transform

- **>** One-to-one mapping: spatial domain \rightarrow complex frequency domain.
- Preserve all the information of the input.
- **The output features has a wide range of the frequencies**
- **Goal:** extract helpful frequencies from Fourier features --> increase representation ability.

$$\mathcal{X}[:, u, v] = \mathcal{F}(X) = \sum_{m}^{H_P - 1} \sum_{n}^{W_P - 1} X[:, m, n] e^{-j2\pi(\frac{um}{H_P} + \frac{vn}{W_P})}$$

> There has a conjugate symmetry of the complex tensor.

A half of complex tensor needs to be computed and restored.

Example - Amplitude Spectrum

-0.5	1.2	2.5	2.2	1.5				44.0	-9.0+j7.4	3.8-j1	.1 3.8+j1.1	-9.0-j7.4
3.4	-1.9	2.3	4.1	5.3			$\frac{2D \text{ DFT}}{H-1 W-1} = -i2\pi(\frac{um}{m} + \frac{vm}{m})$	2.1+j	0.5+j13.1	2.1+j5	i.4 2.2-j4.4	-1.2-j9.5
-0.8	2.6	1.1	2.5	-2.1		$\succ \qquad \mathcal{X}[u,v]$	$=\sum_{m=0}\sum_{n=0}^{\infty}X[m,n]e^{-j2\pi(H^{+}W^{+})}$ $2\pi m$ $2\pi m$	-6.9-j9.7	-4.2-j17.3	- <mark>2.2-j</mark> 0).9 -12.0+j5.4	-3.3+j12.2
1.3	4.4	3.2	1.4	0.9		frequence	cies: $\omega_m = \frac{1}{H}$, $\omega_n = \frac{1}{W}$	-6.9+j9.7	-3.3-j12.2	-12.0-j:	5.4 -2.2+j0.9	-4.2+j17.3
3.3	-2.4	0.9	4.2	3.4	$\mathcal{X}[0,0]$	$] = \sum_{m=0}^{n-1} \sum_{n=0}^{w-1} \sum_{n=0}^{w-1} \sum_{n=0}^{w-1} \sum_{m=0}^{w-1} \sum_{n=0}^{w-1} \sum_{m=0}^{w-1} \sum_{n=0}^{w-1} \sum_{m=0}^{w-1} \sum_{n=0}^{w-1} \sum_{m=0}^{w-1} \sum_{n=0}^{w-1} \sum_{m=0}^{w-1} \sum_{m=0}^{w$	$\sum_{n=0}^{-1} X[m,n] e^0 = 44.0$	2.1-j	-1.2+j9.5	2.2+j4	.4 2.1-j5.4	0.5-j13.1
_	X :	$[5 \times 5]$			$\mathcal{X}[2,1]$ $\mathcal{X}[u,v]$	$] = \sum_{m=0}^{n-1} \sum_{n=1}^{m} \sum_{n=1}^{n} \sum_{l=1}^{n} \sum_{l=1}^{n$	$\sum_{k=0}^{n} X[m,n] e^{-j2\pi(rac{2m}{4}+rac{n}{4})} = -4.2 - j17.3 onumber \ -u, W-v]$		X : [5	× 5]	shifting	1
	2.4	17.8		11.9	12.7	13.2		-2.2+j0.9	-4.2+j17.3	-6.9+j9	9.7 -3.3-j12.2	-12.0-j5.4
	5.8	13.1		2.3	9.6	4.9		2.1-j5.4	0.5-j13.1	2.1-j	-1.2+j9.5	2.2+j4.4
	3.9	11.7	•	44.0	11.7	3.9	$\checkmark \qquad \qquad$	3.8+j1.1	-9.0-j7.4	<mark>44.</mark> 0	-9.0+j7.4	3.8-j1.1
	4.9	<mark>9.6</mark>		2.3	13.1	5.8	$r = \sqrt{u} + v$	2.2-j4.4	-1.2-j9.5	2.1+j	j 0.5+j13.1	2.1+j5.4
	13.2	12.7		11.9	17.8	2.4		-12.0+j5.4	-3.3+j12.2	-6.9-j9	0.7 -4.2-j17.3	-2.2-ј0.9

Amplitude spectrum

Amplitude and Phase Spectrum

Amplitude spectrum

Phase spectrum

UOU

RetinaNet

Focal Loss for Dense Object Detection, ICCV`2017

Mask R-CNN

Mask RCNN

https://towardsdatascience.com/computer-vision-instance-segmentation-with-mask-r-cnn-7983502fcad1

SSD: Single Shot MultiBox Detector, ECCV`2016

UNIVERSITY OF ULSAN

UU

Semantic FPN

Panoptic Feature Pyramid Networks, CVPR`2019

UPerNet

Pyramid Pooling Module (PPM)

Fig. 4. UPerNet framework for Unified Perceptual Parsing. Top-left: The Feature Pyramid Network (FPN) [31] with a Pyramid Pooling Module (PPM) [16] appended on the last layer of the back-bone network before feeding it into the top-down branch in FPN. Top-right: We use features at various semantic levels. Scene head is attached on the feature map directly after the PPM since image-level information is more suitable for scene classification. Object and part heads are attached on the feature map fused by all the layers put out by FPN. Material head is attached on the feature map in FPN with the highest resolution. Texture head is attached on the Res-2 block in ResNet [1], and fine-tuned after the whole network finishes training on other tasks. Bottom: The illustrations of different heads. Details can be found in Section 3.

UNIVERSITY OF ULSAN

Unified Perceptual Parsing for Scene Understanding, ECCV'2018

UPerNet

ISLab

UOU

Simple Baseline

(c) Our Network

129

Simple Baselines for Human Pose Estimation and Tracking, ECCV²⁰¹⁸

UNIVERSITY OF ULSAN

Keypoint Heatmaps

Stacked Hourglass Networks for Human Pose Estimation, ECCV²⁰¹⁶

Prediction Formatting

Object Detection AP (1/6)

https://github.com/rafaelpadilla/Object-Detection-Metrics

15 ground truth boxes and 26 predicted boxes

Object Detection AP (2/6)

Images	Detections	Confidences	TP or FP
Image 1	A	88%	FP
Image 1	В	70%	TP
Image 1	С	80%	FP
Image 2	D	71%	FP
Image 2	E	54%	TP
Image 2	F	74%	FP
Image 3	G	18%	TP
Image 3	н	67%	FP
Image 3	1	38%	FP
Image 3	J	91%	TP
Image 3	к	44%	FP
Image 4	L	35%	FP
Image 4	м	78%	FP

45% 14%	FP FP
14%	FP
62%	TP
44%	FP
95%	TP
23%	FP
45%	FP
84%	FP
43%	FP
48%	TP
95%	FP
	62% 44% 95% 23% 45% 84% 43% 48% 95%

Object Detection AP (3/6)

134

20	1	(A)	ž
2	ME)Ř	3
La		H	N
-	H.	H	20

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Y	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	A	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	М	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	71%	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	Н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	x	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	ĸ	44%	0	1	6	11	0.3529	0.4

UNIVERSITY OF ULSAN

$$P = \frac{\text{TP}}{\text{TP} + \text{FP}} = \frac{\text{TP}}{\text{all detections}},$$
$$R = \frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{\text{TP}}{\text{all ground truths}}$$

TP if **IoU**(pred, gt) >= threshold else FPs

- ✓ mask: IoU based on binary masks and logical operations
- ✓ keypoint: IoU based on L2 distance term

Object Detection AP (4/6)

Precision x Recall curve 1.0 R 0.9 0.8 0.7 precision 0.6 Y A 0.5 U Ν Е т C 0.4 G В М F ν 0.3 P D н 0.2 -S 0 0.0 0.1 0.2 0.3 0.4 recall

Object Detection AP (5/6)

Reference Points and Image Content

UNIVERSITY OF ULSAN

UI

Bilinear Interpolation

+ Given A, B

+ Target position x_l . Find y_l ?

Assume that the function behaves linearly between two known points

NIVERSITY OF ULSAN

Bilinear Interpolation

Given intensity values at four pixel locations $I_{11}, I_{12}, I_{21}, I_{22}$

Find intensity value $I_{x_by_b}$ at given point (x_b, y_b)

Compute linear interpolation for $B'_{x_by_1}, B''_{x_by_2}$

$$egin{aligned} B'_{x_by_1} &= rac{x_2 - x_b}{x_2 - x_1} * I_{11} + rac{x_b - x_1}{x_2 - x_1} * I_{12} \ & x_2 - x_1 \end{aligned}$$

$$B_{x_by_2}^{''}=rac{x_2-x_b}{x_2-x_1}st I_{21}+rac{x_b-x_1}{x_2-x_1}st I_{22}$$

Compute linear interpolation for $I_{x_b y_b}$

$$I_{x_by_b} = rac{y_2 - y_b}{y_2 - y_1} st B'_{x_by_1} + rac{y_b - y_1}{y_2 - y_1} st B''_{x_by_2}$$

In our Bilinear PE, (x_b, y_b) is learned by small network where parameters are conditioned on the image content.

$$(x_b,y_b)=(x_i,y_j)+N(I)$$

 $N(I)=(\Delta_x,\Delta_y)$: offsets

Bilinear Interpolation

Anchor Boxes & Object Queries

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

UNIVERSITY OF ULSAN

object queries are *learnable* and *interacted with image features* to reason about box prediction

PVT-Pyramid Vision Transformer

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction Without Convolutions, ICCV²⁰²¹

Focal ViT

Focal ViT: *multi-scale self-attentions*

142

FocalViT` NeurIPS`2021

UNIVERSITY OF ULSAN

1

ISLab Since 1888

CSWin Transformer

Dynaic Stripe Window + Parallel Grouing Heads = CSWin

CSWin Transformer: A General Vision Transformer Backbone With Cross-Shaped Windows, CVPR`2022

DAT - Deformable Attention

Vision Transformer With Deformable Attention, CVPR²⁰²²

MobileViT Architecture

(b) **MobileViT**. Here, Conv- $n \times n$ in the MobileViT block represents a standard $n \times n$ convolution and MV2 refers to MobileNetv2 block. Blocks that perform down-sampling are marked with $\downarrow 2$.

Figure 1: Visual transformers vs. MobileViT

MobileViTv1

Layer	Output size	Output stride	Repeat	Output channels		
				XXS	XS	S
Image	256×256	1				
$\begin{array}{c} \text{Conv-}3 \times 3, \downarrow 2 \\ \text{MV2} \end{array}$	128×128	2	1	16	16	16
			1	16	32	32
MV2, ↓ 2 MV2	64×64	4	1	24	48	64
			2	24	48	64
$MV2, \downarrow 2$	20 20	8	1	48	64	96
MobileViT block $(L = 2)$	32×32		1	48 (d = 64)	64 (d = 96)	96 (d = 144)
$MV2, \downarrow 2$	$\downarrow 2$ leViT block ($L = 4$) 16×16	16	1	64	80	128
AobileViT block $(L = 4)$			1	64 (d = 80)	80 (<i>d</i> = 120)	128 ($d = 192$)
$MV2, \downarrow 2$			1	80	96	160
MobileViT block ($L = 3$)	8×8	32	1	80 (d = 96)	96 ($d = 144$)	160 (d = 240)
$\text{Conv-1} \times 1$			1	320	384	640
Global pool	11	256	1			
Linear	1 X 1	200	1	1000	1000	1000
Network Parameters				1.3 M	2.3 M	5.6 M

Table 4: **MobileViT architecture.** Here, d represents dimensionality of the input to the transformer layer in MobileViT block (Figure 1b). By default, in MobileViT block, we set kernel size n as three and spatial dimensions of patch (height h and width w) in MobileViT block as two.

MobileViTv2 Block

Figure 6: MobileViTv2 block. Here, depth-wise convolution uses a kernel size of 3×3 to encode local representations. Similar to [4], unfolding and folding operations uses a patch height and width of two respectively. The separable self-attention and feed-forward layers are repeated $B \times$ before applying the folding operation.

Transformer vs. Linear Transformer

(b) Linear Transformer in MobileViTv2 [2]

[1] Vaswani, Ashish, et al. "Attention is all you need." NeurIPS`2017

UNIVERSITY OF ULSAN

[2] Mehta, Sachin, and Mohammad Rastegari. "Separable Self-attention for Mobile Vision Transformers." arXiv 2022

ISLab

MobileViTv2

Table 5: MobileViTv2 architecture. Here, d represents dimensionality of the input to the separable self-attention layer, B denotes the repetition of transformer block with separable self-attention inside the MobileViTv2 block (Fig. 6), and MV2 indicates MobileNetv2 block. Similar to MobileViTv1 block, we set kernel size as three and spatial dimensions of patch (height h and width w) as two in the MobileViTv2 block.

Layer	Output size	Output stride	Repeat	Output channels
Image	256×256	1		
$\text{Conv-}3 \times 3, \downarrow 2$	128×128	2	1	32α
MV2	120 × 120	2	1	64α
$MV2, \downarrow 2$	64×64	4	1	128α
MV2	04 × 04		2	128α
$MV2, \downarrow 2$	20 × 20	0	1	256α
MobileViTv2 block (Fig. 6; $B = 2$)	32 × 32	0	1	$256 * \alpha \ (d = 128\alpha)$
$MV2, \downarrow 2$	16×16	16	1	384α
MobileViTv2 block (Fig. 6; $B = 4$)	10×10	10	1	$384\alpha \ (d=192\alpha)$
$MV2, \downarrow 2$			1	512α
MobileViTv2 block (Fig. 6; $B = 3$)	8×8	32	1	$512\alpha \ (d=256\alpha)$
Global pool	1×1	256	1	512α
Linear		230		1000

MobileNetV2

Figure 4: Comparison of convolutional blocks for different architectures. ShuffleNet uses Group Convolutions [20] and shuffling, it also uses conventional residual approach where inner blocks are narrower than output. ShuffleNet and NasNet illustrations are from respective papers.

EdgeViT

Instance and Semantic Segmentation

https://nirmalamurali.medium.com/image-classification-vs-semantic-segmentation-vs-instance-segmentation-625c33a08d50

