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Synthetic to Realistic Imbalanced Domain
Adaption for Urban Scene Perception

Yining Hua and Dewei Yi , Member, IEEE

Abstract—Deep neural networks technique has achieved
impressive performance on semantic segmentation, while
its training process requires a large amount of pixel-wise
labeled data. Domain adaptation, as a promising solution,
can break the restriction by training the model on synthetic
data, and generalizing it in real-world data. However, there
is still a lack of attention paid to the imbalance problems
on semantic segmentation adaptation, including the im-
balance problem between 1) source and target data and
2) different classes. To solve these problems, a progressive
hierarchical feature alignment method is proposed in this
article. To alleviate the data imbalance problem, the net-
work is progressively trained by the data from multisource
domains, so as to obtain domain-invariant features. To ad-
dress the class imbalance problem, the features are aligned
hierarchically across domains. According to the experimen-
tal results, our method shows the competitive adapted seg-
mentation performance on three benchmark datasets.

Index Terms—Convolution neural networks, deep
learning, domain adaptation, image segmentation.

I. INTRODUCTION

D EEP neural networks (DNNs) have achieved remarkable
performance in computer vision, especially in semantic

segmentation [1]. Semantic segmentation is to assign the predic-
tion of each pixel in an image. However, a recent work [2] shows
that DNNs cannot generalize well in unseen environments.
One intuitive idea is to train a segmentation model with more
labeled data from the unseen environment. This straightforward
idea is not very realistic in practice due to the high cost of
obtaining pixel-wise manual annotations. To tackle the issue,
unsupervised domain adaptation algorithms are introduced into
semantic segmentation tasks for moving one step closer to real-
world practice. The purpose of domain adaptation for semantic
segmentation is to train a segmentation network on the data and
labels in the source domain and generalize well in the target
domain.
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Most of the works on semantic segmentation adaptation at-
tempt to minimize the discrepancy of data distribution across
domains. Two main-stream methods are identified for this task.
In the first stream, many existing studies align two domains by
minimizing the distribution discrepancy from various aspects.
Pixel-wise alignment between source and target domains is
investigated in [3]–[5]. Feature-level alignment across domains
is explored in [6]–[8]. In addition, the work of [9], [10] is to
align semantic classes from the source domain to the target
domain. Despite the great success this stream has achieved
so far, the work of this stream cannot guarantee an optimal
solution due to the neglect of domain-specific knowledge. In the
second stream, many methods attempt to extract the knowledge
of unlabeled target domain data. Specifically, the methods of
this stream usually adopt a two-step pipeline, which is similar to
the traditional semi-supervised framework [11]. The first step is
to predict pseudo-labels by utilizing the knowledge learnt from
the labeled data, e.g., the model trained on the source domain.
The second step is to minimize the loss on the pseudo-labels
of the unlabeled target domain data. In the training process,
pseudo-labels are usually regarded as accurate annotations to
optimize the model. However, this arises one inherent problem.
Pseudo-labels usually suffer from the noise caused by the model
trained on different data distributions. To deal with this problem,
Zou et al. [12] ignore pseudo-labels below a specific confidence
threshold. Our method takes full advantage of both streams
above. The discrepancy is minimized at different levels and
domain-specific knowledge of unlabeled target data is fully
exploited through self-learning learning.

As discussed in [13], although unsupervised domain adap-
tation algorithms do not need labels of target domain data, to
achieve promising performance, it requires a large number of
unlabeled data from the target domain for the training purpose.
However, it is hard to guarantee that there are enough target
domain data available. This can be formulated as a few-shot
unsupervised domain adaptation problem, where there are a
large amount of data in the source domain, and only a few shots
of data are available in the target domain. To deal with this issue,
we propose a progressive hierarchical feature alignment method
on domain adaptation for semantic segmentation. The data
from multisource domains are trained progressively to obtain
domain-invariant features. A more comprehensive cross-domain
alignment is realized by a hierarchical feature alignment scheme,
where all the objects, categories, and images are taken into
account to achieve better alignment from the source domain
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to the target domain. The main contributions of this article are
summarized as follows.

1) To learn domain-invariant features, a progressive multi-
source adversarial domain adaptation method is adapted
to extract domain-invariant by using synthetic data from
different simulators (e.g., GTA5, Unity).

2) In practice, it is difficult to guarantee the availability of
sufficient data from the target domain, where there are a
large number of data in the source domain while only a
few shots of data are available for the target domain. To the
best of our knowledge, in urban driving scene, this is the
first attempt to tackle the few-shot unsupervised domain
adaptation for semantic segmentation.

3) A hierarchical feature alignment scheme is proposed to
align object-level, category-level, and image-level features
across domains along with self-supervised learning to
enhance the performance of adapted segmentation.

4) To evaluate the performance of our proposed method, ex-
tensive experiments are conducted to adapt from synthetic
GTA5 and SYNTHIA datasets to real-world Cityscapes
dataset. Many advanced methods are compared with our
proposed method on the scenario that only a few shots
of data are available for the target domain. The experi-
mental results demonstrate the superiority of our proposed
method along with competing with other existing methods.

II. RELATED WORK

In this section, important work about the three most related
tasks are broadly discussed, i.e., 1) domain adaptation for se-
mantic segmentation, 2) the imbalanced problems in domain
adaptation, and 3) multisource domain adaptation.

A. Domain Adaptation for Semantic Segmentation

Since labeling a large amount of pixel-level data is a labor-
intensive work, training networks on automatically labeled vir-
tual data become a promising solution to alleviate the efforts
of manual annotation. However, there exists a gap between
virtual data and real-world data, which makes the segmentation
networks trained on the virtual data cannot generalize well in
real-world data. To this end, domain adaptation is introduced
to semantic segmentation, to obtain better generalization ability
when human intervention is reduced. By minimizing the dis-
crepancy between source and target domains, adapted semantic
segmentation can achieve promising performance in the target
data after training a model with labeled source data along with
unlabeled target data.

Recently, methods related to adversarial learning are treated as
a promising way to bridge the gap across domains, such as [3],
[5], [14]–[17]. Studies on [14] and [3] achieve the alignment
of feature space latent representations across domains. In [5]
and [15], input-level adaption is enforced for minimizing the
visual difference of different domains. The work of [9] adapts
the semantic predictions across domains by using output-feature
space discriminators. As mentioned [18], previous GAN-style
methods focus on minimizing the appearance difference be-
tween generated features and target domain features. One insight
is observed that the appearance of background classes is similar

to each other. This should be noticed during adversarial domain
adaptation. The naïve combination of the image-transferring
model and segmentation model is insufficient to minimize the
gap across domains. This is because the quality of segmentation
is impaired a lot when there exist the failures of image style
translation across domains. To further improve the general-
ization of cross-domain semantic segmentation, Li et al. [18]
introduce bidirectional learning to help CycleGAN retain local
semantic information when carrying out the unpaired image
style translation and also propose a self-training approach to
generate pseudo-labels for target data. The work of [19] attempts
to align different domains by both considering the local regions
of an image and the entire image. Tao et al. [20] enhance the
performance of semantic segmentation by taking the predictions
of multiscales into account. However, the alignments of different
feature levels, e.g., object-level, category-level, and image-level,
are not being paid enough attention. Therefore, we propose a
hierarchical feature alignment scheme to generalize well from
source to target data.

B. Imbalanced Problems in Domain Adaptation

In this article, we focus on two kinds of imbalanced problems:
1) the class imbalance problem and 2) the imbalance between
source and target data. The class imbalance problem occurs
when the respective numbers of data for different classes are
imbalanced. The imbalanced dataset is with a long-tailed class
distribution. This problem is more severe for the pixel-level cat-
egory prediction of an image, which is known as semantic seg-
mentation. For the perception of urban scenes, Cityscapes [21] is
a commonly used dataset to assess the performance of semantic
segmentation. This dataset has many samples on the classes of
road and sky, which are defined as head classes in the class
distribution, while there are significantly fewer samples for
traffic signs, which are defined as one of the tail classes in the
class distribution. If a model is trained on an imbalanced dataset,
it will be skewed to the head classes [22]. When there is a large
amount of data available from the source domain but much fewer
from the target domain, the imbalance between source and target
data occurs, which would bring a big challenge in source to target
domain alignment.

To handle the class imbalance issue, some approaches have
been proposed to rebalance the classes [22], [23]. For example,
for each class, Cui et al. [22] use an effective number of samples
to calculate the class-balanced loss and then rebalance such a
loss. In [23], a cut-and-paste approach is proposed to increase
the amount of tail-class training data. However, without target
labels, these methods cannot be applied directly to unsupervised
semantic segmentation. In our method, the class imbalance prob-
lem is alleviated by introducing maximum square loss. More-
over, we attempt to make pioneering efforts on the cross-domain
data imbalance issue. It is because there is not much related work
done in the literature.

C. Multisource Domain Adaptation

By using multisource data, multisource to single target adap-
tion can achieve better generalization in the target domain data.
For example, in the literature [24], the distribution shifts are
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adjusted by a generalization bound, which is found by lever-
aging heuristic algorithms. Zhao et al. [25] propose a certain
ad hoc scheme, which combines coefficients α to implement
multisource domain adaption. Additionally, multiple domain-
matching network in [26] computes domain similarities on both
source-to-target domain and within-the-source domain based
on the Wasserstein-like measure. Nonetheless, calculating such
pairwise weights can be computationally demanding, especially
when there are a lot of source domains. Their bound requires
additional smooth assumptions on the labeling functions fSi

and
fT . Thus, unlike existing work, multisource data in this article
are learnt progressively to obtain auxiliary information, which
helps extract the domain-invariant features.

III. PROGRESSIVE HIERARCHICAL FEATURE ALIGNMENT

This section introduces the details of our proposed progressive
hierarchical feature alignment method on the domain adaptation
for semantic segmentation. To bridge the gap between the source
domain and target domain, we first enforce the progressive ad-
versarial domain adaptation by multisource data. Consequently,
auxiliary information can be obtained to enable preliminary
domain alignment and extract domain-invariant features. A de-
tailed description of progressive adversarial domain adaptation
is provided in Section III-B. Second, features from different
domains are aligned hierarchically to carry out a more subtle
alignment. Cross-domain features are aligned from low level
to high level. In Section III-C, a hierarchical feature align-
ment scheme is elaborated. Third, Section III-D describes a
self-guidance framework, which is introduced into our proposed
method to achieve the label-level transferring. Finally, the full
objective and the entire framework of our proposed method are
presented in Section III-E and Fig. 1, respectively.

A. Problem Formulation

We consider the unsupervised multisource domain adaptation
with only a few shots of data available in the target domain.
In this case, there are multiple labeled source domains. Source
domains X1

S , X
2
S , . . . , X

M
S and the corresponding ground truth

YS are given, where the ith image of the source domain XS is
defined as xi

s. In addition, only a few shots of target domain
images are given without labels from a small target set XT . The
aim is to learn a generative model G for transferring knowledge
from the source domain to the target domain so that G can
correctly predict semantic labels (e.g., road, building, sign, etc.)
at the pixel level in the target domain. That is, an adaptation
model trained onXM

S , Y M
S , andXT can assign the correct labels

for the target domain data.

B. Progressive Adversarial Domain Adaptation With
Auxiliary Information

The progressive adversarial domain adaptation targets on
learning domain-invariant feature representations. To achieve
this, multisource domain data are involved in the adversarial
learning of domain adaptation. First, the preliminary source data
are used to train the domain adaptation model and proceed initial

Fig. 1. Framework of the proposed progressive hierarchical feature
alignment method.

alignment from synthetic data to realistic data. In this way, basic
feature representations are extracted, and they are used as the
auxiliary information for more subtle alignment. Second, the
primary source data are used to learn domain-invariant feature
representation. This is a sequential learning process, so named
“progressive learning.”

C. Hierarchical Feature Alignment Scheme

Due to the diversity and complexity of data distribution of
different domains, cross-domain feature alignment is a chal-
lenging task. To achieve a holistic representation of the mapping
from the source domain to the target domain, it is not enough
if we only conduct global-level alignment. The cross-domain
mapping is required to be in different levels, e.g., object level for
objects and foreground, category level for semantic classes and
background, and image level for image style translation. Thus,
we propose a novel hierarchical feature alignment scheme to
map feature representation from source domain to target domain
in a better manner, where the bottom-top alignment is conducted.
In the low level, objects (e.g., cars or persons) of source and
target domains are aligned individually. In the medium level,
different categories of semantic classes are aligned to achieve
better probability balance, the so-called category-level align-
ment, where class-balanced weighting factor is adopted for the
sake of balancing the number of classes. In the high level, the
image of source domains is transferred to the target domain
image style through CycleGAN [18].

1) Object-Level Alignment: The object-level alignment fo-
cuses on the objects of foreground classes. These objects come
from the classes of cars, persons, etc. Since the object-level
annotations are not available, we follow [27] to generate the
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foreground object mask. In a label map, the foreground objects
are found through identifying the disconnected regions of each
foreground class. By using such a coarse segmentation, objects
can be identified from intraclass semantic regions. Subsequently,
various object-level feature representations can be extracted
from an image by using (1).

Lobj =

∑
i

∑
k∈K

1
|T t

k|
∑
rt∈T t

k

min
j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
h,w

I
(h,w)
t F (xt

i)
(h,w)

max(ε,
∑

(h,w) I
(h,w)
t )

− xs
j.k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

1
(1)

where i ∈ 1, . . . , |XT | and T t
k = {Ik1 , Ik2 , Iki

, . . . , Ikm
}. Iki

is
the binary mask of the connected region with regard to ith target
domain image xt

i on class k, k ∈ K. T t
k is the set of objects

on kth class in the target domain. xs
j,k is the averaged features

of kth class denoted in (1). With minimizing the loss of in (1),
the object features of the closest intraclass sample in the source
domain can be pushed to get closer to the object features of the
target domain.

2) Category-Level Alignment and Balancing: Category-level
alignment is to align the various semantic classes across do-
mains. Entropy minimization method is one of the most popular
approaches in semi-supervised learning, which is promising
to be used in the semantic segmentation adaptation. However,
conventional entropy minimization method has a problem that
the gradient of entropy is overly concerned with easy-to-transfer
classes. Adequate attention is not paid to the hard-to-transfer
classes. As a result, the gradients of easy-to-transfer classes
are much larger than the hard-to-transfer classes during the
training process. To avoid the training process dominated by
easy-to-transfer classes, the maximum square loss is adopted for
balancing the probabilities of different classes. The maximum
square loss has linear growth of gradient, which makes areas with
higher confidence keep larger gradients while their dominant
effects are suppressed for letting hard-to-transfer classes obtain
training gradients. As a consequence, the alignment of various
classes is conducted in a more balanced manner. In addition,
there are more pixels about the easy-to-transfer classes on the
label map and this situation causes an imbalance in quantity.
Since labels are not available for target domain data in the unsu-
pervised domain adaptation task, the class frequency of the target
domain cannot be obtained, so the conventional weighting-based
methods are not appropriate for this case.

To tackle the problem of missing the target domain label, each
target image is used to compute the class frequency rather than
using the whole data of target domain as given in (2).

L
(h,w)
t,P ∗ =

{
1 if P ∗ = argc maxL

(h,w)
t,Pi

0 otherwise

N c =

W∑
w=1

H∑
h=1

L
(h,w)
t,P ∗ . (2)

Taking the inaccurate predictions into account, the aver-
age loss of a target image relies on both the total number
of pixel samples (W ×H) and the number of classes N c as
shown in (3).

Lclass(xt) = −
W∑

w=1

H∑
h=1

C∑
c=1

(L
(h,w)
t,P ∗ )2

2(N c)α × (W ×H)(1−α)
(3)

where α is a hyperparameter and set as 0.2 as suggested in [28].
In addition, the feature representations of background seman-

tic classes are extracted for enforcing category-level alignment.
In contrast to foreground classes, the appearance of background
classes is inclined to be invariant and occupying a big part of
an image. The overlap of the predictions and ground truth is
leveraged to generate the label map with corrected predictions,
which is given in (4).

Ls
Ci

= Ls
Gi

∩ {argk∈N max(G(xs
i )

(h,w))(k)} (4)

where the map of correct predictions is denoted by Ls
Ci

. It is
calculated by the overlap between the ground truth label map
Ls
Gi

and the predicted label map, where the prediction of each
pixel in an image is obtained by G(xs

i ). The height and width
of the feature map are denoted as h and w, respectively. k is the
class type for the corresponding position in the feature map. The
averaged features of the same background class are defined as
the representations of background classes in (5)

xs
j,b =

∑
h,w Δ(L

(h,w)
s,Ci

− b)F (xs
i )

(h,w)

max(τ,
∑

h,w Δ(L
(h,w)
s,Ci

− b))
(5)

where xs
j,b is the jth semantic feature sample of class b in the

source domain. The Dirac delta function is denoted as Δ(•).
If xs

j,b �= 0, then j = imod ζ, b ∈ B, i ∈ {1, . . . , |XS |}. The ζ
represents the number of stored feature samples of each class and
τ is the regularizing term. We minimize the distance between
the features of each background class in the target domain and
its closest intraclass features in the source domain. The feature
representation of each background class is obtained by using the
predicted label map due to the lack of the ground truth on the
target images. The source-to-target domain adaptation of back-
ground class feature representations is realized by minimizing
the loss function defined in (6) during the training process.

Lback =

∑
i

∑
b

min
j

∣∣∣∣∣
∣∣∣∣∣
∑

h,w δ(L
(h,w)
t,Pi

− b)F (xs
i )(t,i)

(h,w)

max(ε,
∑

h,w δ(L
(h,w)
t,Pi

− b))
− xs

j,b

∣∣∣∣∣
∣∣∣∣∣
1

1
(6)

where i ∈ 1, . . . , |XT | and b ∈ L(h,w)t,Pi ∩B.
3) Image-Level Alignment: The image-level alignment is to

transfer the image style from the source domain to the target
domain. To alleviate the effect of failing alignment on image-
to-image translation, this article adopts bidirectional learning to
retain local semantic information when carrying out the unpaired
image style translation. The observation from [18] clarifies that
“source data and image translated source data” or “target data
and image translated target data” have the same labels when
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we obtain an ideal segmentation adaptation model. The per-
ceptual loss is introduced to measure the difference between
source data and image-translated source data or target data and
image-translated target data, which is used to guide the training
process for obtaining an ideal segmentation adaptation model.
The perceptual loss (lppl) is given in (7).

Lppl = λpplEXS
||I(XS)− I(G(XS))||1

+ λpplreconEXS
||I(F (XS))− I(XS)||1 (7)

where I is the segmentation network. G is the image-to-image
translation network from XS → XT . F is the translation net-
work from XT → XS . Lppl and λpplrecon are the weighted
factors for constructing and reconstructing paths. Due to the
symmetry, theLppl ofXT andF (XT ) is similar as shown above.

D. Self-Guidance With Our Proposed Method

In the semantic segmentation adaptation, the labels of target
data are not available. The segmentation loss is computed by
using the ground truth annotations from source domains. Such
a manner neglects the discrepancy of the distribution for ground
truth labels in the source and target domains. Taking this into ac-
count, our proposed method is combined with a self-supervised
learning framework to alleviate misalignment of ground truth
labels from source and target domains.

There are two stages for self-guidance training. First, a model
is trained on the source domain images XS and their corre-
sponding ground-truth annotations YS along with the target
domain images XT . Second, the model obtained from the first
step is applied to produce pseudo-labels. More specifically, the
pseudo-labels of the training set images XT are generated by
using the pixels with high predicted confidence scores as shown
in (8).

σk(G(xt
i)) > ykt ⇒ ŷti = argmax

k∈N
G(xt

i)
(k) (8)

where σk(•) returns the confidence score of class k, which is
generated by generative network G(xt

i). The confidence thresh-
old of class k is denoted as ykt . Then, our model is retrained
by using the semantic segmentation loss of the target domain
images, which is given in (9).

LT
seg(F (xt)) = −

∑
i,h,w

∑
k∈K

ŷ
(h,w)
i log(σk(G(xt

i)
(h,w))). (9)

With the help of pseudo-labels, the generated features of
corresponding classes are pushed closer to the corresponding
intraclass features of the source domain. As a result, adapted
segmentation performance can be further enhanced for hierar-
chical feature alignment.

E. Full Objective

Following [18], [27], a two-stage training pipeline is enforced
to make trained model generalize better in the target domain
dataset on semantic segmentation. The former step is to train
our model without the pseudo-labels. The target function is

optimized through an adversarial training strategy given in (10).

min
G,D

Lformer = min
G

(λsegL
S
former + λadvLadv

+ Lhierarchy +min
D

λDLD) (10)

where λseg, λadv, and λD are the weights of segmentation loss,
adversarial loss, and discriminator loss. After obtaining the
pseudo-labels of the target domain from the former step, latter
step is to repeat the training process with reinitializing the
weights of the network and using pseudo-labels to guide the
optimization of minimizing the loss function in (11)

min
G,D

Llatter = min
G

(λS
seg(L

S
seg + LT

seg) + λadvLadv

+ L̃hierarchy +min
D

λDLD) (11)

where L̃hierarchy is augmented with predicted ŷti according to (8).

IV. EXPERIMENTAL EVALUATION

A. Datasets

To evaluate our proposed method, three benchmark datasets,
i.e., GTA5, SYNTHIA, and Cityscapes [9], are used in the
experiments. In specific, GTA5 and SYNTHIA are chosen as
the source domain data since they are both synthetic datasets
and easy to be collected and labeled. The Cityscapes dataset is
chosen as the target domain since it is a realistic dataset and
difficult to be labeled due to the large data scale.

1) GTA5 to Cityscapes: The GTA5 dataset consists of
24,966 fine annotated synthetic images with the resolutions of
1914 × 1052. All these images are captured from a photo-
realistic open-world computer game called “Grand Theft Auto
V.” Similar to [7], [9], [18], [27], GTA5 images are resized into
the resolution of 1280 × 720 for saving GPU memory. In the
GTA5 dataset, there are 19 classes shared with the Cityscapes
dataset. Therefore, all the 19 classes can be used to evaluate
the performance of semantic segmentation. The images in the
Cityscapes dataset are resized to the resolutions of 1024 × 512
for training and validating purposes.

2) SYNTHIA to Cityscapes: The SYNTHIA [9] dataset con-
sists of 9400 images with the resolutions of 1280 × 760, and
also the dense pixel-level annotations. Following [7], [9], [18],
[27], we evaluate our models on Cityscapes validation set with
the 13 common classes between SYNTHIA and Cityscapes.
Similar to the adaption from GTA5 to Cityscapes, the models are
trained and tested on Cityscapes images with the resolution of
1024 × 512.

B. Implementation Details

To train the segmentation and discriminator networks, Pytorch
is used on a single RTX2080ti GPU. As emphasized in [9], a
strong baseline model is helpful to obtain better understanding
on the effect of different adaptation approaches, and enhance
the performance for the practical applications. Thus, accord-
ing to the conventional literature, the backbone of pretrained
ResNet-101 on ImageNet is chosen as our baseline model [7],
[9], [18], [27]. Specifically, the backbone network is with five
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TABLE I
CONFIGURATION OF NETWORKS. ILR, INITIAL LEARNING RATE; DP, DECAY POWER, AND WD, WEIGHT DECAY

TABLE II
QUANTITATIVE COMPARISON RESULTS FROM GTA5 TO CITYSCAPES (UNIT %)

convolutional layers. The final layer is used to obtain a high-
quality feature map, and atrous spatial pyramid pooling (ASPP)
is applied for classification modules with controlling the weight
by hyperparameter λadv. In agreement with [7], [9], [18], [27],
discriminator network contains five convolutional layers with
channel number {64, 128, 256, 512, 1}. The kernel size and stride
are set to 4 × 4 and 2, respectively. To train the discriminator
network, the output of ASSP head on the final conventional
layer is upsampled with weights λadv and λD. The detailed
configuration of training process is given in Table I. But unlike
the conventional literature, we only use 1% of the data from
Cityscapes training dataset, which are 30 images, instead of
using all unlabeled images of the training set as in [7], [9], [18],
[27], which are 2,975 images. Thus, in our evaluation scenario,
the amount of data in source and target domain is extremely
imbalanced, which is more realistic and closer to the practical
real-world applications.

C. Evaluation Metrics

This section provides the metrics for evaluating the per-
formance of adapted semantic segmentation. To quantitatively
evaluate the results of semantic segmentation, interaction-over-
union (IoU) is used to assess the performance for each semantic
class. The definition of IoU is given by

IoU(Y, Ŷ ) =
Y ∩ Ŷ

Y ∪ Ŷ
=

tp
tp + fn + fp

(12)

where Y are pixel-wise labels of ground-truth and Ŷ are the
predictions of each pixel. tp, fn, and fp represent the true
positives, false negative, and false positives, respectively. IoU
is used to measure the performance of a specific semantic class

and it is not affected by the class imbalances. In addition, the
overall performance of different methods is measured through
the mean value of IoU for all semantic classes, which is defined
by mIoU.

D. Quantitative and Qualitative Analysis

Tables II and III provide the semantic segmentation results on
GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes adaptation,
respectively. FCN is the baseline for domain adaptation, where
a segmentation model is only trained by the source dataset and
then assessed on the target dataset. For the GTA5-to-Cityscapes
adaptation, the mean IoU is used to exhibit the performance
of 19 common classes shared between the two datasets. To
keep consistency with [7], [9], [18], [27], the mean IoU for
SYNTHIA-to-Cityscapes adaptation is evaluated in 13 cate-
gories, and 6 categories (i.e. fence, wall, pole, terrain, truck,
and train) are not taken into account. Compared with the FCN
baseline model, our proposed method outperforms on all classes
in class-wise IoU and mIoU. Specifically, the mIoU score of
our proposed method can be boosted to 46.8 and 51.0 on the
GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes adaptation,
respectively. In addition, to alleviate the difficulty of maintaining
the category and spatiality information for aligning the marginal
distributions across domains, we not only enforce output space
feature (as in AdaptSegNet [9]), but also introduce reliable
target-style images into the training process to prevent the spa-
tial information being interrupted in the segmentation network.
According to comparative results provided in Tables II and III,
our method can achieve a significant improvement compared
with other methods. The best performance of a specific semantic
class is highlighted in blue and the best performance of mIoU
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TABLE III
QUANTITATIVE COMPARISON RESULTS FROM SYNTHIA TO CITYSCAPES (UNIT %)

Fig. 2. Visualization of segmentation results. (a) Target domain image. (b) Segmentation ground-truth of the corresponding target image.
(c) Generated images from AdaptSegNet. (d) Generated images from our model.

TABLE IV
ABLATION STUDY ON THE VARIOUS COMPONENTS OF OUR METHOD FOR

DOMAIN ADAPTATION (UNIT %)

is highlighted in bold black. The qualitative results of adapted
segmentation are illustrated in Fig. 2, where we can visually
inspect the effectiveness of our method on imbalanced adapted
segmentation.

E. Ablation Study

Table IV identifies the contributions of different components
to the overall performance in our proposed model, where AA
is adversarial adaptation, IT is image transferring, SG is self-
guidance, and HFA is hierarchical feature alignment. The mIoU
can achieve 36.6 when purely trained on the source domain
dataset. Then, the adversarial training of output space is pro-
ceeded as [9]. The mIoU can be improved to 38.88. As argued
in [18], image-level adaption also provides a significant contri-
bution to minimizing the discrepancy of the data distribution.
In light of this, we adopt a bidirectional translation to change
the image style from GTA5 to Cityscapes images by utilizing a
CycleGAN structure. This further improves the mIoU to 44.0.

Next, we add our proposed hierarchical alignment scheme
to the training framework. Alignment is enforced hierarchically
in the object, category, and image levels. In the object level,
foreground classes, e.g., car, truck, person, are aligned across

domains with λobj = 0.01 and w = 50 semantic source domain
feature samples. In the category level, we achieve the alignment
of semantic classes from the source domain to the target domain
by a maximum square loss, which is defined in (6).

Finally, a self-guidance framework is introduced into our
hierarchical feature alignment scheme to further improve the
segmentation performance, where our model is retrained by
using the given pseudo-labeled target dataset. The pseudo-labels
of the target dataset are obtained by choosing the confidence
threshold for each class, respectively. The pixel-level pseudo-
labels are identified for each target image. A confidence score
map is produced based on the pseudo-labels for the correspond-
ing image in the target domain. Subsequently, each pixel-level
label is mapped with a confidence score. We rank the confidence
scores of the same class for the entire target dataset and set the
threshold of confidence score to 0.9 for a specific class when
the median of confidence scores for the class is higher than 0.9.
Otherwise, the threshold of confidence score for the class is set
to the median of confidence scores. After this, the new ykt is
set and we can follow (8) to generate the pseudo-labels with
neglecting the target dataset. To this end, the model is retrained
through optimizing (11). The combination of our hierarchical
feature alignment scheme and self-guided framework can im-
prove mIoU to 46.8.

V. CONCLUSION

In this article, we proposed a progressive hierarchical feature
alignment method on imbalanced domain adaptation for seman-
tic segmentation. The imbalance was from two aspects: 1) class
imbalance from source to target domain and 2) data imbalance
between source data and target data. To alleviate the negative
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effects of the imbalanced data issue, we make fully use of multi-
source domain data to learn domain-invariant features. To remit
the class imbalance problem, we aligned the features across
domains hierarchically from bottom to top, named “hierarchical
feature alignment scheme,” in order to maintain the category and
spatial information when aligning the marginal distributions of
two domains. Our proposed method was evaluated by transfer
learning tasks on synthetic datasets, GTA5 and SYNTHIA, and
a realistic dataset, Cityscapes. According to the experimental
results, our proposed method achieved competitive performance
on imbalanced semantic segmentation adaptation. We also con-
ducted an ablation study to investigate the contribution of various
components in our method. In the future, this work can be
further extended from two aspects. On the one hand, more
advanced pseudo-labeling algorithms, such as DCBT-Net [30],
can be integrated into the proposed method to achieve better
self-guidance. On the other hand, the region-level feature [19]
and the diverse characteristics of target domain [20] can be
combined into our framework for providing a better holistic
alignment.
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