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Abstract

Recent state-of-the-art methods for HOI detection typ-
ically build on transformer architectures with two decoder
branches, one for human-object pair detection and the other
for interaction classification. Such disentangled transform-
ers, however, may suffer from insufficient context exchange
between the branches and lead to a lack of context informa-
tion for relational reasoning, which is critical in discover-
ing HOI instances. In this work, we propose the multiplex
relation network (MUREN) that performs rich context ex-
change between three decoder branches using unary, pair-
wise, and ternary relations of human, object, and interac-
tion tokens. The proposed method learns comprehensive re-
lational contexts for discovering HOI instances, achieving
state-of-the-art performance on two standard benchmarks
for HOI detection, HICO-DET and V-COCO.

1. Introduction

The task of Human-Object Interaction (HOI) detection
is to discover the instances of ⟨human, object, interaction⟩
from a given image, which reveal semantic structures of hu-
man activities in the image. The results can be useful for
a wide range of computer vision problems such as human
action recognition [1,25,42], image retrieval [9,33,37], and
image captioning [12,34,36] where a comprehensive visual
understanding of the relationships between humans and ob-
jects is required for high-level reasoning.

With the recent success of transformer networks [31] in
object detection [2, 45], transformer-based HOI detection
methods [4, 15, 16, 29, 38, 44, 46] have been actively devel-
oped to become a dominant base architecture for the task.
Existing transformer-based methods for HOI detection can
be roughly divided into two types: single-branch and two-
branch. The single-branch methods [16, 29, 46] update a
token set through a single transformer decoder and detect
HOI instances using the subsequent FFNs directly. As a sin-
gle transformer decoder is responsible for all sub-tasks (i.e.,
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Figure 1. The illustration of relation context information in an HOI
instance. We define three types of relation context information in
an HOI instance: unary, pairwise, and ternary relation contexts.
Each relation context provides useful information for detecting an
HOI instance. For example, in our method, the unary context about
an interaction (green) helps to infer that a human (yellow) and
an object (red) are associated with the interaction, and vice versa.
Our method utilizes the multiplex relation context consisting of the
three relation contexts to perform context exchange for relational
reasoning.

human detection, object detection, and interaction classifi-
cation), they are limited in adapting to the different sub-
tasks with multi-task learning, simultaneously [38]. To re-
solve the issue, the two-branch methods [4, 15, 38, 40, 44]
adopt two separated transformer decoder branches where
one detects human-object pairs from a human-object to-
ken set while the other classifies interaction classes between
human-object pairs from an interaction token set. However,
the insufficient context exchange between the branches pre-
vents the two-branch methods [15,38,40] from learning re-
lational contexts, which plays a crucial role in identifying
HOI instances. Although some methods [4, 44] tackle this
issue with additional context exchange, they are limited to
propagating human-object context to interaction context.

To address the problem, we introduce the MUtiplex
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RElation Network (MUREN) that performs rich context ex-
change using unary, pairwise, and ternary relations of hu-
man, object, and interaction tokens for relational reasoning.
As illustrated in Figure 1, we define three types of relation
context information in an HOI instance: unary, pairwise,
and ternary, each of which provides useful information to
discover HOI instances. The ternary relation context gives
holistic information about the HOI instance while the unary
and pairwise relation contexts provide more fine-grained in-
formation about the HOI instance. For example, as shown in
Figure 1, the unary context about an interaction (e.g., ‘rid-
ing’) helps to infer which pair of a human and an object
is associated with the interaction in a given image, and the
pairwise context between a human and an interaction (e.g.,
‘human’ and ‘riding’) helps to detect an object (e.g., ‘bicy-
cle’). Motivated by this, our multiplex relation embedding
module constructs the context information that consists of
the three relation contexts, thus effectively exploiting their
benefits for relational reasoning. Since each sub-task re-
quires different context information for relational reason-
ing, our attentive fusion module selects requisite context in-
formation for each sub-task from multiplex relation context
and propagates the selected context information for con-
text exchange between the branches. Unlike previous meth-
ods [4, 15, 38, 44], we adopt three decoder branches which
are responsible for human detection, object detection, and
interaction classification, respectively. Therefore, the pro-
posed method learns discriminative representation for each
sub-task.

We evaluate MUREN on two public benchmarks, HICO-
DET [3] and V-COCO [10], showing that MUREN achieves
state-of-the-art performance on two benchmarks. The abla-
tion study demonstrates the effectiveness of the multiplex
relation embedding module and the attentive fusion mod-
ule. Our contribution can be summarized as follows:

• We propose multiplex relation embedding module for
HOI detection, which generates context information
using unary, pairwise, and ternary relations in an HOI
instance.

• We propose the attentive fusion module that effectively
propagates requisite context information for context
exchange.

• We design a three-branch architecture to learn more
discriminative features for sub-tasks, i.e., human de-
tection, object detection, and interaction classification.

• Our proposed method, dubbed MUREN, outperforms
state-of-the-art methods on HICO-DET and V-COCO
benchmarks.

2. Related Work

2.1. CNN-based HOI Methods.

Previous CNN-based HOI methods can be categorized
into two groups: two-stage methods and one-stage meth-
ods. Two-stage HOI methods [7, 8, 13, 18, 19, 26, 30, 32, 39]
first detect the human and the object instances using an off-
the-shelf detector (e.g., Faster R-CNN [27]) and predict the
interaction between all possible pairs of a human and an ob-
ject. To create discriminative instance features for HOI de-
tection, they additionally utilize spatial features [8, 19, 35],
linguistic features [7, 23], and human pose features [11, 19]
with visual features. Some approaches [7, 26, 30, 32, 39]
utilize the graph structure and exchange the context infor-
mation of the instance features for relational reasoning be-
tween the nodes. DRG [7] proposes human-centric and
object-centric graphs to perform context exchange focused
on relevant context information. SCG [39] transforms and
propagates the context information to the nodes in a graph
conditioned on spatial relation. On the other hand, previous
one-stage HOI methods [6,14,20] detect human-object pairs
and classify the interactions between human-object pairs in
an end-to-end manner. These methods utilize the interac-
tion region to match the interaction and a pair of a human
box and an object box. UnionDet [14] proposes a union-
level detector to find the union box of human and object for
matching a human-object pair. PPDM [20] detects interac-
tion centers and points to the center point of the human and
object box to predict HOI instances.

2.2. Transformer-based HOI Methods.

Inspired by DETR [2], a number of work [4, 15, 16, 29,
40,44,46] have adopted the transformer-based object detec-
tor to solve HOI detection. They can be divided into two
folds: single-branch and two-branch methods. The single-
branch methods [16,29,46] predict the HOI instances with a
single transformer decoder. MSTR [29] utilizes multi-scale
features to extract discriminative features for the HOI in-
stances. In contrast, two-branch methods [4, 15, 38, 40, 44]
adopt two transformer decoder branches, one is responsible
for human-object pair detection and the other for interaction
classification. HOTR [15] detects the instances in an image
in detection branch and predicts the interaction with addi-
tional offsets to associate humans and objects in interaction
branch. Although they extract discriminative features for
each sub-task, there is no context exchange for relational
reasoning, bringing performance degradation in HOI detec-
tion. To alleviate this, AS-NET [4] and DisTR [44] per-
form the message passing for relational reasoning between
two branches. However, they only propagate human-object
context information for interaction classification. In this
paper, we exchange the context among branches with the
multiplex relation context. The multiplex relation context,
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Figure 2. The overall architecture of MUREN. The proposed method adopts three-branch architecture: human branch, object branch, and
interaction branch. Each branch is responsible for human detection, object detection, interaction classification. The input image is fed into
the CNN backbone followed by the transformer encoder to extract the image tokens. A transformer decoder layer in each branch layer
extracts the task-specific tokens for predicting the sub-task. The MURE takes the task-specific tokens as input and generates the multiplex
relation context for relational reasoning. The attentive fusion module propagates the multiplex relation context to each sub-task for context
exchange. The outputs at the last layer of each branch are fed into to predict the HOI instances.

which considers all relation contexts in an HOI instance,
gives relational semantics for relational reasoning. We also
extract more discriminative features for each sub-task via
three-branch.

3. Problem Definition
Given an input image, the goal of HOI detection is to

predict a visually-grounded set of HOI instances for ob-
ject classes O and interaction classes I. An HOI instance
consists of four components: a bounding box of human
bH
i ∈ R4, a bounding box of object bO

i ∈ R4, a one-hot
vector of object label cOi ∈ {0, 1}|O|, and a one-hot vector
of interaction label cIi ∈ {0, 1}|I|, where | · | denotes the
size of a set. The output of HOI detection is thus expressed
by a set of HOI instances {(bH

i ,b
O
i , c

O
i , c

I
i)}.

4. Method
The proposed network, MUREN, is illustrated in Fig-

ure 2. Given an input image, it extracts image tokens via a
CNN backbone followed by a transformer encoder. The im-
age tokens are fed to three independent branches to perform
three sub-task: human detection, object detection, and inter-
action classification. In each branch, a transformer decoder
layer refines N learnable tokens using the image tokens as
keys and values to extract task-specific tokens. Using the
task-specific tokens of each branch, our multiplex relation
embedding module (MURE) generates the context infor-
mation for relational reasoning. The attentive fusion mod-
ule then integrates the context information across the task-
specific tokens for human, object, and interaction branches,
propagating the results to the next layer. After repeating this
process for L times, FFNs predict the set of HOI instances.
In the remainder of this section, we explain the details of
each component in MUREN.

4.1. Image Encoding

Following the previous work [2, 29, 47], we use a trans-
former encoder with a CNN backbone to extract image to-
kens. The CNN backbone takes an input image to extract
an image feature map. The image feature map is fed into
1 × 1 convolution layer to reduce the channel dimension
to D, and the positional encoding [2] is added to the im-
age feature map to reflect the spatial configuration of the
feature map. The feature map is then tokenized by flatten-
ing and fed into the transformer encoder to produce image
tokens X ∈ RT×D for the subsequent networks, where T
and D are the number of the image tokens and the channel
dimension, respectively.

4.2. HOI Token Decoding

Different from previous two-branch methods [4, 15, 44],
we design an architecture consisting of three branches
which is responsible for human detection, object detection,
and interaction classification, respectively. Each branch τ ,
consisting of L layers, takes the learnable tokens Qτ =
{qτ

i }Ni=1 and the image tokens X as inputs , where τ ∈
{H,O, I} indicates human, object, and interaction respec-
tively. At each layer, Qτ is refined through a transformer
decoder layer followed by a MURE module and an atten-
tive fusion module. Specifically, the three branches take
learnable tokens QH,QO,QI ∈ RN×D for human, ob-
ject, and interaction branches, respectively. In l-th layer
of the branch τ , a transformer decoder layer Decτ(l) up-
dates Qτ

(l−1)
, the output of previous layer of the branch

τ , by attending X to generate task-specific tokens Fτ
(l) =

{fτ(l),i}
N
i=1 which contain the context information for pre-

dicting a sub-task which the branch τ is responsible for:

Fτ
(l) = Decτ(l)(Q

τ
(l−1)

,X), (1)



where Dec(q, kv) denotes a transformer decoder layer.

4.3. Relational Contextualization

As mentioned above, relational reasoning is crucial to
identify HOI instances. However, since the task-specific to-
kens are generated from the separated branches, the tokens
suffer from a lack of relational context information. To mit-
igate this issue, we propose multiplex relation embedding
module (MURE) which generates multiplex relation con-
text for relational reasoning. The multiplex relation context
contains the unary, pairwise, and ternary relation contexts
to exploit useful information in each relation context, as
shown in Figure 3.

Specifically, the MURE first constructs the ternary rela-
tion context fHOI

i ∈ RD for i-th HOI instance by concate-
nating each fτi followed by an MLP layer.

fHOI
i = MLP([fHi ; fOi ; f Ii ]), (2)

where [·; ·] is a concatenation operation. We omit the sub-
script l for the sake of simplicity. Since the ternary rela-
tion takes the overall understanding of each sub-task into
account, it gives holistic context information about the HOI
instance. On the other hand, since the unary and the pair-
wise relations take a fine-grained level understanding of
each sub-task into account, they give the fine-grained con-
text information about the HOI instance. To exploit both
holistic and fine-grained context information, we embed the
unary and the pairwise relation contexts within the ternary
relation context with a sequential manner.

In detail, we apply a self-attention on a set of i-th task-
specific tokens {fHi , fOi , f Ii } to consider the unary relation
for i-th HOI instance as Eq. 3. Then, the unary-relation
context Ui is embedded into ternary relation context using
a cross-attention as Eq. 4:

Ui = SelfAttn({fHi , fOi , f Ii }), (3)

f̃HOI
i = CrossAttn(fHOI

i , Ui), (4)

where we denote SelfAttn(·) as a self-attention operation
and CrossAttn(q, kv) as a cross-attention operation for sim-
plicity. To embed the pairwise relation context within the
ternary relation context, we extract the pairwise features of
fHO, fHI, fOI ∈ RD for respective human-object, human-
interaction, object-interaction relation as follows:

fHO
i = MLP([fHi ; fOi ]), (5)

fHI
i = MLP([fHi ; f Ii ]), (6)

fOI
i = MLP([fOi ; f Ii ]). (7)

Similar to the above, we apply the self attention on a set of
pairwise features to consider the pairwise relation for i-th
HOI instance, and the cross attention to embed the pairwise
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Figure 3. The architecture of the multiplex relation embedding
module (MURE). MURE takes i-th task-specific tokens and the
image tokens as input, and embed the unary and pairwise relation
contexts into the ternary relation context. The multiplex relation
context, the output of MURE, is fed into subsequent attentive fu-
sion module for context exchange.

relation contexts within ternary relation context:

Pi = SelfAttn({fHO
i , fHI

i , fOI
i }), (8)

f̂HOI
i = CrossAttn(f̃HOI

i , Pi). (9)

Finally, the f̂HOI
i is transformed to generate the multi-

plex relation context mi as follows by attending the image
tokens X:

mi = CrossAttn(f̂HOI
i ,X). (10)

It is noteworthy that our high-order (ternary and pair-
wise) feature functions have a form of non-linear function,
i.e., MLP, on top of a tuple of multiple inputs, which is not
reducible to a sum of multiple functions of individual lower-
order inputs in general. Such a high-order feature function
thus can learn the structural relations of the inputs in the tu-
ple, considering all the inputs jointly. For example, a ternary
function of three coordinates f(a, b, c) can compute the an-
gle feature between ab and ac, which cannot be computed
by an individual unary function, g(a), g(b), or g(c) as well
as their linear combination. In a similar vein, our ternary
feature functions, i.e., Eq. 2, can effectively learn to capture
structural relations which are not easily composable from
unary and pairwise feature functions.

4.4. Attentive Fusion

Our attentive fusion module aims to propagate the multi-
plex relation context to the task-specific tokens for context
exchange. Since each sub-task requires different context
information for relational reasoning, the multiplex relation
context is transformed using MLP with each task-specific
token to propagate the context information conditioned on
each sub-task. We further utilize the channel attention to
select the requisite context information for each sub-task.



Then, the refined tokens Qτ
(l), the output of l-th layer of

branch τ , is generated by propagating the requisite context
information to the task-specific tokens Fτ

(l). Formally, the
channel attention α and the refined tokens Qτ

(l) are formu-
lated as follows:

α = σ(MLP([fτ(l),i;m(l),i])) (11)

qτ
(l),i = fτ(l),i + α⊙ MLP([fτ(l),i;m(l),i]), (12)

where we denote ⊙ and σ as element-wise multiplication,
and sigmoid function, respectively. As the refined tokens
Qτ

(l) is generated via context exchange with the multiplex
relation context, it deduces the comprehensive relational un-
derstanding to discover HOI instances.

The Qτ
(L), the output of last layer of branch τ , is fed

into FFNs to predict a set of the HOI predictions. Formally,
given the Qτ

(L), the MUREN predicts a set of HOI predic-
tions {(bH

i ,b
O
i ,p

O
i ,p

I
i)}Ni=1 using FFNs as follows:

bH
i = FFNhbox(q

H
(L),i) ∈ R4, (13)

bO
i = FFNobox(q

O
(L),i) ∈ R4, (14)

pO
i = δ(FFNoc(q

O
(L),i)) ∈ R|O|, (15)

pI
i = σ(FFNic(q

I
(L),i)) ∈ R|I|, (16)

where δ is a softmax operation, and pO
i , pI

i are class proba-
bility of object and interaction, respectively.

4.5. Training Objective

For training our proposed method, we follow previous
transformer-based methods [29, 38, 44]. We adopt the Hun-
garian Matching [17] to assign the ground-truth HOI in-
stances to the predictions. MUREN is trained with multi-
task loss composed of four losses: L1 loss [27] LL1 and
GIoU loss [28] LGIoU for the bounding box regression,
cross-entropy loss Loc for the object classification, and fo-
cal loss [21] Lic for the interaction classification. The total
loss L is formulated as:

L = λL1LL1 + λGIoULGIoU + λocLoc + λicLic, (17)

where λL1, λGIoU, λoc, and λic are the hyper-parameters
for weighting each loss. Additionally, we apply intermedi-
ate supervision for better representation learning. Specif-
ically, we attach the same FFNs to each decoding branch
layer to calculate the intermediate loss. This auxiliary loss
is computed the same as L.

4.6. Inference

Given the set of HOI predictions, we generate a set of
HOI instances {(bH

i ,b
O
i , c

O
i,j′ , c

I
i,t)| i ∈ N, k ∈ R|I|, j′ =

argmaxjp
O
i,j}, where cOi,j′ ∈ R|O|, cIi,t ∈ R|I| are one-hot

vectors with the j-th and t-th index set to 1, respectively.
Following [38], we then select top-k score HOI instances,
where the score is given by pO

i,j′ · pI
i,t.

5. Experiments

5.1. Datasets and Metrics

We evaluate our model on the two public benchmark
datasets: HICO-DET [3] and V-COCO [10].
HICO-DET has 38,118 images for training and 9,658 im-
ages for testing. It contains 80 object classes, 117 interac-
tion classes and 600 HOI classes, which are a pair of an
object class and an interaction class (e.g., ‘riding bicycle’).
We evaluate the proposed method on Default and Known
Object settings. In the Default setting, the AP is calculated
across all testing images for each HOI class. The Known
Object setting calculates the AP of an HOI class over the
images containing the object in the HOI class (e.g., the AP
of an HOI class ‘riding bicycle’ is only calculated on the
images which contain the object ‘bicycle’). Following the
previous work [38], we report the mAP under three splits
(Full, Rare, and Non-Rare) for each setting. The Full, Rare,
and Non-Rare splits contain all 600 HOI classes, 138 HOI
classes, which have less than 10 training samples for each
class, and 462 HOI classes, which have more than 10 train-
ing samples for each class, respectively.
V-COCO is a subset of the MS-COCO [22] dataset. It con-
sists of 5400 and 4,946 images for training, and testing.
It has 80 object classes and 29 action classes. Following
the evaluation settings in [15], we evaluate the proposed
method on scenario 1 and scenario 2, and report role av-
erage precision under two scenarios (AP#1

role for scenario 1
and AP#2

role for scenario 2). In scenario 1, the model should
predict the bounding box of the occluded object as [0,0,0,0].
In contrast, the predicted bounding box of the occluded ob-
ject is ignored on calculating the AProle in scenario 2.

5.2. Implementation Details

The encoder in MUREN adopts ResNet-50 as a CNN
backbone followed by a 6-layer transformer encoder. We set
the number of branch layers L to 6. For the training, we set
the number of queries N to 64 for HICO-DET and 100 for
V-COCO following [38]. The weight of loss λL1, λGIoU,
λoc, λic is set to 2.5, 1, 1, 1, respectively. The network
is initialized with the parameters of DETR [2] pretrained on
MS-COCO [22]. We optimize our network by AdamW [24]
with the weight decay 1e−4. We set the initial learning rate
of the CNN backbone to 1e−5 and the other component to
1e−4. The model is trained with 100 epoch. For the V-
COCO, we freeze the CNN backbone to prevent overfitting,
and set the learning rate to 4e−5. All experiments are con-
ducted with a batch size of 16 on 4 RTX 3090 GPUs.

5.3. Comparison with State-of-the-Art

Table 1 and Table 2 show the performance comparison
of the proposed method with the previous HOI methods.
As shown in Table 1, on the HICO-DET dataset, the pro-



Method Backbone Feature Default Known Object
Full Rare Non-Rare Full Rare Non-Rare

CNN-based methods

iCAN [8] R50 A+S 14.84 10.45 16.15 16.26 11.33 17.73
TIN [19] R50 A+S+P 22.90 14.97 25.26 - - -

GPNN [26] R101 A 13.11 9.34 14.23 - - -
DRG [7] R50-FPN A+S+L+M 24.53 19.47 26.04 27.98 23.11 29.43

VSGNet [30] R152 A+S 19.80 16.05 20.91 - - -
wang et al. [32] R50-FPN A+S+M 17.57 16.85 17.78 21.00 20.74 21.08

IDN [18] R50 A+S 26.29 22.61 27.39 28.24 24.47 29.37
VCL [13] R50 A 23.63 17.21 25.55 25.98 19.12 28.03

UnionDet [14] R50 A 17.58 11.72 19.33 19.76 14.68 21.27
GGNet [43] HG104 A 28.83 22.13 30.84 27.36 20.23 29.48
SCG [39] R50-FPN A+S+M 31.33 24.72 33.31 34.37 27.18 36.52

Transformer-based methods

PST [5] R50 A 23.93 14.98 26.60 26.42 17.61 29.05
HoiTrans [46] R101 A 26.61 19.15 28.84 29.13 20.98 31.57

HOTR [15] R50 A 25.10 17.34 27.42 - - -
AS-Net [4] R50 A 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [29] R101 A 29.90 23.92 31.69 32.38 26.06 34.27
MSTR [16] R50 A+M 31.17 25.31 32.92 34.02 28.83 35.57
CDN [38] R101 A 32.07 27.19 33.53 34.79 29.48 36.38
UPT [40] R50 A+S 31.66 25.94 33.36 35.05 29.27 36.77

DisTR [44] R50 A 31.75 27.45 33.03 34.50 30.13 35.81
STIP [41] R50 A+S+L 32.22 28.15 33.43 35.29 31.43 36.45

Ours R50 A 32.87 28.67 34.12 35.52 30.88 36.91

Table 1. Performance comparison on the HICO-DET [3] dataset. The letters in Feature column stand for A: Appearance/Visual features,
S: Spatial features, L: Linguistic features, P: Human pose features, M: Multi-scale features. The best score is highlighted in bold, and the
second-best score is underscored.

posed method achieves state-of-the-art performance on De-
fault and Known Object settings against existing CNN- and
transformer-based methods. Compared with the previous
CNN-based methods [7, 26, 30, 32, 39], which utilize the
graph structure for context exchange, MUREN shows sig-
nificant improvements. We also surpass the previous single-
branch methods [16, 29, 46]. It illustrates that it is crucial
extracting the task-specific tokens for each sub-task with
different branches. In particular, we outperform the pre-
vious two-branch methods [4, 15, 38, 40, 44]. DisTR [44]
and AS-NET [4] perform context exchange for relational
reasoning, but they only propagate the context information
of the human and the object to the interaction branch for
interaction classification. Instead, we exchange the con-
text information among the three branches, selecting req-
uisite context information from the multiplex relation con-
text for each sub-task. These results illustrate the advantage
of context exchange between each branch using the mul-
tiplex relation context for relational reasoning. Moreover,
MUREN shows better performance without using any addi-
tional information (e.g., spatial and linguistic information)
compared with [16,39–41]. We also outperform [29,38,46]
which utilize a deeper backbone to extract discriminative
features for each sub-task. These results illustrate that
three-branch architecture and context exchange with mul-
tiplex relation context for relational reasoning provide more

discriminative features to predict each sub-task. We fur-
ther evaluate MUREN on the V-COCO dataset and observe
similar results as in the HICO-DET dataset. As shown
in Table 2, MUREN achieves state-of-the-art performances
across all the metrics compared with existing methods.

5.4. Ablation Study

We conduct various ablation studies on the V-COCO
dataset to validate the effectiveness of MUREN.
Impact of each relation context information on rela-
tional reasoning. We utilize the multiplex relation con-
text, which contains the unary, pairwise, and ternary rela-
tion context, for relational reasoning. To investigate the
impact of each relation context information on relational
reasoning, we gradually add each relation context infor-
mation to the baseline, which predicts the HOI instances
without context exchange among each branch for relational
reasoning. As shown in Table 3, we observe that context
exchange using the ternary relation context gives 4.55%p,
4.22%p improvement with a large margin in AP#1

role and
AP#2

role, respectively. This result indicates that context ex-
change for relational reasoning is essential for discovering
the HOI instance and ternary relation context promotes re-
lational reasoning providing holistic information about the
HOI instances. Besides, when the model exploits ternary
and unary relation contexts, the model shows an additional



Method Backbone Feature AP#1
role AP#2

role

CNN-based methods

GPNN [26] R101 A 44.0 -
iCAN [8] R50 A+S 45.3 52.4
TIN [19] R50 A+S+P 47.8 54.2

VSGNet [30] R152 A+S 51.8 57.0
DRG [7] R50-FPN A+S+L+M 51.0 -
VCL [13] R101 A 48.3 -

UnionDet [14] R50 A 47.5 56.2
GGNet [43] HG104 A 54.7 -

IDN [18] R50 A+S 53.3 60.3
SCG [39] R50-FPN A+S+M 54.2 60.9

Transformer-based methods

QPIC [29] R50 A 58.8 61.0
MSTR [16] R50 A+M 62.0 65.2
HOTR [15] R50 A 55.2 61.0
AS-NET [4] R50 A 53.9 -
CDN [38] R101 A 63.9 65.9
UPT [40] R50 A 59.0 64.5
STIP [41] R50 A+S+L 66.0 70.7

DisTR [44] R50 A 66.2 68.5

Ours R50 A 68.8 71.0

Table 2. Performance comparison on V-COCO [10] dataset. The
letters in Feature column stand for A: Appearance/Visual features,
S: Spatial features, L: Linguistic features, P: Human pose features,
M: Multi-scale features. The best score is highlighted in bold, and
the second-best score is underscored.

performance improvement. We observe similar results on
the model which utilizes both ternary and pairwise relation
contexts. It indicates that the fine-grained relation contexts
provide useful information for relational reasoning to pre-
dict HOI instances. When we use all the relation context
information in HOI instance, the model shows a significant
performance increase of 6.23%p and 5.86%p in AP#1

role and
AP#2

role, compared with the baseline. It demonstrates that
each relation context information complements the others,
and thus the multiplex relation context provides rich infor-
mation for relational reasoning and brings performance gain
in HOI detection.
Impact of the multiplex relation context on each sub-
task. For investigating the propagation impact of the multi-
plex relation context on the sub-tasks, we gradually add the
propagation the multiplex relation context to each branch.
When we propagate the multiplex relation context to one
of the detection branches (i.e., human branch and object
branch), we observe that the model consistently shows
performance improvement compared with the baseline, as
shown in Table 4. We also observe the performance gains
when the model propagates the multiplex relation context
to both human and object branch. It indicates that rela-
tional context information is required to detect the human
and the object in the HOI detection. In particular, when the
model propagates the multiplex relation context to the in-
teraction branch, MUREN shows the notable performance
gains of 3.19%p and 2.77%p on scenario 1 and scenario

ternary unary pairwise AP#1
role AP#2

role

- - - 62.52 65.14
✓ - - 67.07 69.36
✓ ✓ - 68.12 70.31
✓ - ✓ 67.67 70.02

✓ ✓ ✓ 68.75 71.00

Table 3. The impact of each relation context information on rela-
tional reasoning. The ‘ternary’, ‘unary’, and ‘pairwise’ columns
indicate the ternary, unary and pairwise relation context.

human object interaction AP#1
role AP#2

role

- - - 62.52 65.14
✓ - - 64.44 66.62
- ✓ - 63.66 66.00
✓ ✓ - 65.29 67.5
- - ✓ 65.71 67.91

✓ ✓ ✓ 68.75 71.00

Table 4. The impact of the multiplex relation context on each sub-
task. The ‘human’, ‘object’, and ‘interaction’ columns indicate
the propagation of the multiplex relation context to human, object,
and interaction branch, respectively.

conditioning channel AP#1
role AP#2

role

- - 66.50 68.96
✓ - 66.95 69.23
- ✓ 67.10 69.49

✓ ✓ 68.75 71.00

Table 5. Ablations studies on each component in the attentive fu-
sion module. ‘conditioning‘ and ‘channel‘ indicate transforming
multiplex relation context conditioned on a task-specific token
and channel attention mechanism.

2. It indicates that the multiplex relation context is essential
to interaction classification which requires a comprehensive
relational understanding between the human and the object.
The entire model of MUREN, which propagates the relation
context information to all sub-tasks, achieves the highest
performance with a significant margin compared with the
other model variants. The results demonstrate that context
exchange among the three branches is essential to identify
HOI instances and plays a crucial role in the comprehensive
relational understanding.
Impact of attentive fusion module on context exchange.
MUREN exchanges relational context information between
each branch via the attentive fusion module. To investigate
the impact of the attentive fusion module, we remove the at-
tentive fusion module and fuse both the task-specific tokens
and the multiplex relation context with an element-wise ad-
dition operation for the baseline. As shown in Table 5, the
performance drops by 2.25%p and 2.04%p in the two sce-
narios. It shows the effectiveness of our attentive fusion
module for context exchange between the branches.



Method AP#1
role AP#2

role Params (M)

MUREN-(0) 68.8 71.0 69.3
MUREN-(3) 67.1 69.3 64.3
MUREN-(6) 66.6 69.1 59.6

MUREN† 68.3 70.6 59.6

Table 6. The Impact of disentangling human and object branches.
MUREN-(k) denotes the sharing of parameters between the hu-
man and object branches across k layers. The parameters are
shared only between corresponding layers. MUREN† is variant
of MUREN by adjusting the number of layer L.

Impact of the context information selection for each sub-
task. In the attentive fusion module, we select requisite
context information for each sub-task from the multiplex
relation context. We further analyze the impact of the con-
text information selection as shown in Table 5. To select
the requisite context information for each sub-task, we uti-
lize 1) transforming multiplex relation context conditioned
on a task-specific token (‘conditioning’ in Table 5) and 2)
channel attention mechanism (‘channel’ in Table 5). We
observe that the model, which utilizes one of ‘conditioning’
and ‘channel’, gains performance improvement. We also
observe that the model with both ‘conditioning’ and ‘chan-
nel’ shows better performance than the other model vari-
ants. The results demonstrate that each sub-task requires
different context information for relational reasoning, and
thus it is important to propagate the requisite context for
each sub-task. Our attentive fusion module effectively se-
lects requisite context information for each sub-task.
Impact of disentangling human and object branches.
Human plays a central and an active role for HOI, which
is distinctive from a relatively passive role of object, and
thus requires a dedicated module to capture relevant at-
tributes and semantics such as pose and clothing. We eval-
uated in Table 6 the effect of sharing parameters between
human and object branches; we gradually increased the
number of layers that share parameters between the two
branches. The results show that increasing the number of
shared layers drops the performance and the full-sharing
model, MUREN-(6), results in 2.2%p and 1.9%p decrease
in performance at two scenarios, respectively, compared
with non-sharing model, MUREN-(0). This is a significant
drop also compared to MUREN†, which has a similar num-
ber of parameters with MUREN-(6) by adjusting the num-
ber of layer L of MUREN, indicating that separating human
and object branches is important indeed for HOI detection.

5.5. Qualitative Results

We visualize HOI detection results and the cross atten-
tion map of each branch and the multiplex relation embed-
ding module (MURE) in Fig. 4. As shown in Fig. 4b, c, the
human and the object branches focus on the instance ex-
tremities to detect the human and the object. In the Fig. 4d,
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Figure 4. The visualization of the HOI detection results and the
cross-attention map in each branch and the multiplex relation em-
bedding module (MURE). Best viewed in color.

we observe that the interaction branch attends to the regions
where the interaction exists between the human and the ob-
ject. These results indicate that the task-specific tokens con-
tain context information for predicting each sub-task. We
also observe that the cross-attention map in MURE high-
lights the overall region that contains the relational seman-
tics about the HOI instance as shown in Fig. 4e. It demon-
strates that MURE captures the context information about
HOI instance for relational reasoning.

6. Conclusion
We have proposed MUREN, a one-stage method that ef-

fectively performs the context exchange between the three
branches for HOI detection. By leveraging relation contexts
for relational reasoning in MURE and using the attention fu-
sion module to select requisite context information for each
sub-task, MUREN can learn discriminative features to pre-
dict each sub-task. Our extensive experiments demonstrate
the importance of context exchange between the branches
and the effectiveness of MUREN, which achieves state-
of-the-art performance on both HICO-DET and V-COCO
benchmarks and its components.
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