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Problem for Semi-Supervised Object Detection

Main Problem

Inconsistency
for Pseudo-labels

highly
Inaccurate

sensitively
to Nosie
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Process for General Semi-Supervised Learning

01.Data Preparation
Weak: Random flipping 
Strong: Randomly change the color, 
sharpness, contrast Gaussian noise, etc.

02.Teacher Model
Using unlabeled image, generating 
pseudo-label by teacher model

Input data with 
Weak Aug

Input data with 
Strong & Weak  Aug

Teacher
Model

Student
Model

EMA

Adaptive
Method

Update:
Loss

Class,
Localization

03.Student Model
Training the model with labeled image

04.Adaptive Method
Method for updated quality of pseudo-label
Proposed loss function
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Technical Term

Label dataset

N: Number of sample
i: number of bbox
l: label data

Unlabel dataset

M: Number of sample
j: number of bbox
u: unlabel data

Model

Augmentation

T: Weak Aug
T’: Strong Aug

Ground Truth

L: Number of bbox
Cl: Classificition label

Pseudo label

ft: Teacher model
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Baseline Semi-Supervised Detector

 Baseline: Mean-Teacher with RetinaNet detector

 Main Idea for Mean-Teacher: proposed how to update between teacher and 
student -> Exponential moving average
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1.Baseline Semi-Supervised Detector

 Baseline: Mean-Teacher with RetinaNet detector

 Focal loss for classification / GIoU loss for regression

Equation of Loss function for SSOD
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Architecture of Consistent-Teacher
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2.Consistent Adaptive Sample Assignment

 Assigning each anchor, if IoU with GT is larger than threshold -> positive

 However, the problem of drifting phenomenon about pseudo label in Fig. 1

 Suppose calculating the distance between center of anchor and pseudo-bbox
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Problem for Semi-Supervised Object Detection
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3.BBox Consistency via 3-D Feature Alignment

 a 3-D Feature Alignment Module (FAM-3D) to calibrate the bbox localization 
with classification confidence, inspired by TOOD

 CONV3×3(RELU(CONV1×1)) layer at different FPN levels
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4. Thresholding with Gaussian Mixture Model

 Static hyperparameter τ for pseudo-bboxes filtering

 To find a way to automatically distinguish the positive from negative pseudo-
bboxes

 Gaussian mixture (GMM) distribution

 Adaptive score threshold for training student
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Experiments

 Datasets

 MS-COCO

 COCO-standard(train2017)

 118k labeled images

 850k instances from 80 classes

 123k unlabeled images

 Randomly sample 1, 5, and 10%  of labeled training data as a labeled set

 Rest of labeled data as an unlabeled set

 1%: 1.2k images

Sohn, Kihyuk, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee and Tomas Pfister. “A Simple Semi-Supervised Learning Framework for 
Object Detection.” ArXiv abs/2005.04757 (2020): n. pag.



Intelligent Systems Lab.13

Experiments

 PASCAL-VOC
 VOC07 trainval: 5,011 training images from 20 classes as a labeled set

 VOC12 trainval: 11,540 training images as an unlabeled set

 Validation sets: COCO val2017 and VOC07 test set, respectively

 COCO-additional
 Train2017-unlabeled data: 123k

 Details
 8 GPUs

 Randomly sample 5 images from 1 labeled and 4 unlabeled data per GPU

 EMA: 0.9995

 Network
 ResNet-50-FPN backbone in RetinaNet

 Initial weight: pre-trained on ImageNet
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Inconsistency Leading to Noisy Labels
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Inconsistency Caused by Classification-Regression Misalignment
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Inconsistency Caused by Hard Score Threshold
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Experiment Result

Faster-RCNN

RetinaNet
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Experiment Result

• STAC: SSL for object detection(Self-Training and 
the Augmentation driven Consistency
regularization), 2020

• CSD: Consistency-based semi-supervised 
learning for object detection, 2019

• Soft Teacher: End-to-End Semi-Supervised 
Object Detection with Soft Teacher, 2021

• Dense Teacher: Dense Pseudo-Labels for Semi-
supervised Object Detection, 2022

• PseCo: Pseudo Labeling and Consistency 
Training for Semi-Supervised Object Detection, 
2022
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Experiment Result

• ACRST: Semi-Supervised Object Detection with 
Adaptive Class-Rebalancing Self-Training, 2021

• Instant Teaching: Instant-Teaching: An End-to-
End Semi-Supervised Object Detection 
Framework, 2021

• Humble Teacher: Humble Teachers Teach Better 
Students for Semi-Supervised Object Detection, 
2021

• Unbiased Teacher: Unbiased Teacher for Semi-
Supervised Object Detection, 2021

• Unbiased Teacher v2: Unbiased Teacher v2: 
Semi-supervised Object Detection for Anchor-
free and Anchor-based Detectors, 2022
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Experiment Result
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Experiment Result
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Conclusion

 RetinaNet based Semi-Supervised Object Detection

 Adaptive pseudo label assignment

 Consistent Adaptive Sample Assignment

 BBox Consistency via 3-D Feature Alignment

 Thresholding with Gaussian Mixture Model
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Thank you very much 
for your attention!
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Appendix
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Architecture of RetinaNet

 Main Idea for RetinaNet: Focal Loss

 Model: ResNet + FPN(feature pyramid network)
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Cross Entropy Loss vs Focal Loss

Lin, Tsung-Yi et al. “Focal Loss for Dense Object Detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2020): 318-327.
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Intersection over Union

Area of Overlap

Area of Union

IoU =
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GIoU(Generalized Intersection over Union)

A B C A
B

C

IoU=0
GIoU=0

IoU=0
GIoU=-0.7
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Gaussian Mixture Model

 In group of data, if there are distribution, it can expect to decide the label

 How to decide the label? 
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Gaussian Mixture Model

 There are randomly selected mean and standard deviation
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Gaussian Mixture Model

 There are randomly selected mean and standard deviation
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Overview Framework
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Dense Detector

 One-stage anchor-based detector baseline

 YOLO + RetinaNet

 Modified from RetinaNet with ResNet-50-FPN backbone

 Changing the number of FPN output from 5 to 3

 Eliminating the weight sharing between detection headers and reducing the input 
resolution from 1333 to 640

 Dense Detector output: 
 classification score, bounding-box offset and objectness score
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Detail Feature Pyramid Network

In dense detector, 
FPN output 5 to 3



Intelligent Systems Lab.35

Dense Detector

 Dense Detector output: 

 objectness score: Complete Intersection over Union(CIoU)

 DIoU: Distance-IoU
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Dense Detector
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Pseudo Label Assigner

 Core problem in SSOD

 Pseudo label filter with setting threshold

 Pseudo label background: score < threshold

 Reliable pseudo label: score > threshold

(a) General pseudo label
-fast method
-scores of pseudo labels continue to increase
-treating incorrect pseudo label
-fail to converge in SSOD training

(b) Proposed pseudo label(Pseudo Label Assigner)
-more refined assignment of the pseudo labels
-apply non-maximum suppression
-two categories: reliable and uncertain pseudo label score 
- : high and low thresholds
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Loss Function for Pseudo Label Assigner

 SSOD loss function

 Lambda = 3.0

 Supervised loss

 Output of student model:

 Label assigner:  
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Loss Function for Pseudo Label Assigner

 Unlabeled loss function
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Loss Function for Pseudo Label Assigner

 Classification score, regression, objectness score of sampled results from PLA
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Epoch Adaptor

 After pseudo label assigner, still facing challenge in pseudo label inconsistency

 Lack: stability, high efficiency

 Lambda: 0.1

 Domain adaptation
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Epoch Adaptor

 Disrupting the label distribution ratio from mosaic data augmentation

 To tackle this problem, implement a distribution adaptation method

 From LabelMatch

 Alpha=60, N: number of labeled and unlabeled data

 P=pseudo label score at c-th class at the k-th epoch

 n: number of c-th class ground truth annotations

Binbin Chen, Weijie Chen, Shicai Yang, Yunyi Xuan, Jie Song, Di Xie, Shiliang Pu, Mingli Song, and Yueting Zhuang. Label matching semi-supervised object 
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14381–14390, 2022.
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Experiments

 Datasets

 MS-COCO and PASCAL-VOC

 COCO-standard(train2017)

 118k labeled images

 850k instances from 80 classes

 123k unlabeled images

 Randomly sample 1, 5, and 10%  of labeled training data as a labeled set

 Rest of labeled data as an unlabeled set

 1%: 1.2k images

 Dataset split strategy for semi-supervised learning from STAC(Self-Training and the 
Augmentation driven Consistency regularization)

Sohn, Kihyuk, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee and Tomas Pfister. “A Simple Semi-Supervised Learning Framework for 
Object Detection.” ArXiv abs/2005.04757 (2020): n. pag.
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Experiments

 PASCAL-VOC

 VOC07 trainval: 5,011 training images from 20 classes as a labeled set

 VOC12 trainval: 11,540 training images as an unlabeled set

 Validation sets: COCO val2017 and VOC07 test set, respectively

 COCO-additional

 Train2017-unlabeled data: 123k

 Details

 NVIDIA-V100 * 8EA

 Randomly sample 32 images from labeled and unlabeled data respectively

 300 epoch, 0.999 EMA



Intelligent Systems Lab.45

Experiments

 PASCAL-VOC

 VOC07 trainval: 5,011 training images from 20 classes as a labeled set

 VOC12 trainval: 11,540 training images as an unlabeled set

 Validation sets: COCO val2017 and VOC07 test set, respectively

 Network

 ResNet-50-FPN backbone in Dense Detector

 Original backbone with CSPNet and Neck with PAN

 Initial weight: pre-trained on ImageNet

 Details

 NVIDIA-V100 * 8EA

 Randomly sample 32 images from labeled and unlabeled data respectively

 300 epoch, 0.999 EMA
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Experiments
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Experiments
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Experiments

 Threshold: 0.3 for pseudo label
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Experiments

 Epoch adaptor for efficient and effective approach
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Conclusion

 Proposed efficient teacher to bridge the gap between SSOD and one-stage 
anchor based detectors

 Dense detector for efficient and quality of pseudo label

 Pseudo label assigner for inconsistency of pseudo label

 Epoch adaptor for domain and distribution adaptation
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Experiments

 STAC: SSL for object detection(Self-Training and the Augmentation driven 
Consistency regularization)

 CSD: Consistency-based semi-supervised learning for object detection

 Instant-Teaching: An end-to-end semi-supervised object detection framework
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Experiments

 STAC: SSL for object detection(Self-Training and the Augmentation driven 
Consistency regularization)

 CSD: Consistency-based semi-supervised learning for object detection

 Instant-Teaching: An end-to-end semi-supervised object detection framework
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Experiments
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Experiments
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Weak-strong data augmentations(1/3)

 To encourage the model to learn useful information from pseudo label

1. Augmentation: MixUp

 Soft class label(example)
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MixUp Augmentation

 MixUp: improving data generalization

Original MixUp Cutout CutMix

Zhang, Hongyi et al. “mixup: Beyond Empirical Risk Minimization.” ArXiv abs/1710.09412 (2017): n. pag.



Intelligent Systems Lab.57

Weak-strong data augmentations(2/3)

 To encourage the model to learn useful information from pseudo label

2. Augmentation: Mosaic

 Randomly mixing styles: horizontal and vertical mixing

 Using both data augmentations, robusting the model
for overfitting problem
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Mosaic Augmentation

 Mosaic data augmentation: supposed by YOLOv4

 Mixed with 4 training images and 4 different contexts

 Efficient for number of batch size: 4 images -> 1 image

Bochkovskiy, Alexey et al. “YOLOv4: Optimal Speed and Accuracy of Object Detection.” ArXiv abs/2004.10934 (2020): n. pag.
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Weak-strong data augmentations, Code for Mixup and Mosaic(3/3)

https://github.com/txdet/Instant-
Teaching/blob/d07910c4c811d875b03200ffb1822c32556ccf9a/projects/InstantTeaching/models/detectors/instant_teaching.py#L36
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Beta Distribution



x
P

D
F
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Co-rectify

 In semi-supervised learning, common problem → Confirmation bias

 Affecting the performance of model how to choose the unlabeled data

1. Same structure of models but different initialization(                     ,                     )

2. Sharing same data in each batch but different data aug and pseudo annotations

3. Follows below:
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Confirmation Bias

Tarvainen, Antti and Harri Valpola. “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep 
learning results.” NIPS (2017).

Unlabeled data
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Author

 Alibaba Group

 Industry: E-commerce, cloud, computing, etc.

 Foundation date: 28 June 1999

 Founder: Jack Ma

 Owner: SoftBank Group(23.9%)

 Location: China, Hangzhou
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Motivation

 Founded the problem of STAC

 STAC: SSL for object detection(Self-Training and the Augmentation driven Consistency
regularization, 2020)

1. Training procedure: Complicate and inefficient
 Needs: Teacher model, pseudo label

2. No longer updating the pseudo annotations
 Limited performance with the constant label

 Proposed a novel end-to-end SSOD framework

 Generating instant pseudo label with data augmentations(Mosaic and MixUp)

 Single model: Model-a
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Overview Framework



Intelligent Systems Lab.67

Total Loss

 Jointly minimizing the supervised loss and unsupervised loss

 Supervised loss

 Unsupervised loss

Ground truth
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Weak-strong data augmentations(1/3)

 To encourage the model to learn useful information from pseudo label

1. Augmentation: MixUp

 Soft class label(example)
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MixUp Augmentation

 MixUp: improving data generalization

Original MixUp Cutout CutMix

Zhang, Hongyi et al. “mixup: Beyond Empirical Risk Minimization.” ArXiv abs/1710.09412 (2017): n. pag.
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Weak-strong data augmentations(2/3)

 To encourage the model to learn useful information from pseudo label

2. Augmentation: Mosaic

 Randomly mixing styles: horizontal and vertical mixing

 Using both data augmentations, robusting the model
for overfitting problem
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Mosaic Augmentation

 Mosaic data augmentation: supposed by YOLOv4

 Mixed with 4 training images and 4 different contexts

 Efficient for number of batch size: 4 images -> 1 image

Bochkovskiy, Alexey et al. “YOLOv4: Optimal Speed and Accuracy of Object Detection.” ArXiv abs/2004.10934 (2020): n. pag.
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Weak-strong data augmentations, Code for Mixup and Mosaic(3/3)

https://github.com/txdet/Instant-
Teaching/blob/d07910c4c811d875b03200ffb1822c32556ccf9a/projects/InstantTeaching/models/detectors/instant_teaching.py#L36
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Beta Distribution



x
P

D
F
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Co-rectify

 In semi-supervised learning, common problem → Confirmation bias

 Affecting the performance of model how to choose the unlabeled data

1. Same structure of models but different initialization(                     ,                     )

2. Sharing same data in each batch but different data aug and pseudo annotations

3. Follows below:
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Confirmation Bias

Tarvainen, Antti and Harri Valpola. “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep 
learning results.” NIPS (2017).

Unlabeled data
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Experiments

 Datasets

 MS-COCO and PASCAL-VOC

 COCO-standard(train2017)

 118k labeled images

 850k instances from 80 classes

 123k unlabeled images

 Randomly sample 1, 5, and 10%  of labeled training data as a labeled set

 Rest of labeled data as an unlabeled set

 1%: 1.2k images

 Dataset split strategy for semi-supervised learning from STAC(Self-Training and the 
Augmentation driven Consistency regularization)

Sohn, Kihyuk, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee and Tomas Pfister. “A Simple Semi-Supervised Learning Framework for 
Object Detection.” ArXiv abs/2005.04757 (2020): n. pag.



Intelligent Systems Lab.77

Experiments

 PASCAL-VOC

 VOC07 trainval: 5,011 training images from 20 classes as a labeled set

 VOC12 trainval: 11,540 training images as an unlabeled set

 Validation sets: COCO val2017 and VOC07 test set, respectively

 Network

 Faster-RCNN with FPN and ResNet-50 backbone

 MMDetection: Open MMLab Detection Tool box and Benchmark

 Initial weight: pre-trained on ImageNet
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Experiments

 STAC: SSL for object detection(Self-Training and the Augmentation driven 
Consistency regularization)

 CSD: Consistency-based semi-supervised learning for object detection

 Instant-Teaching: An end-to-end semi-supervised object detection framework
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Experiments

 STAC: SSL for object detection(Self-Training and the Augmentation driven 
Consistency regularization)

 CSD: Consistency-based semi-supervised learning for object detection

 Instant-Teaching: An end-to-end semi-supervised object detection framework
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Experiments

 N1: human-annotated instances

 N2: human-annotated instances and model generated

 Getting increase the number of pseudo labels according to high quality pseudo 
labels
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Experiments
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Experiments
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Experiments

Without co-rectify

With co-rectify
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Label Mismatch Problems on the MS-COCO dataset

 Distribution-level mismatch

 Pseudo labels produced by the single confidence threshold and ground truth labels
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Cross Entropy Loss vs Focal Loss

Lin, Tsung-Yi et al. “Focal Loss for Dense Object Detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2020): 318-327.
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 Cross Entropy Loss

 Foreground, y=1, p=0.95

 Background, y=0, p=0.05

 FG Loss = BG Loss

 Number of cases of Background >> Number of cases of Foreground

 Updating the loss based on Background data & less training for the Foreground

Cross Entropy Loss
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 Balanced Cross Entropy Loss

 Foreground, y=1, p=0.95

 Background, y=0, p=0.05

 BCE for class imbalance(BG >> FG)

 Problem

 Not distinguished Easy/Hard Example

Balanced Cross Entropy Loss
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 Focal Loss

 In the paper,

Focal Loss

Lin, Tsung-Yi et al. “Focal Loss for Dense Object Detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2020): 318-327.
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 Focal Loss for hard/easy examples

Focal Loss

Lin, Tsung-Yi et al. “Focal Loss for Dense Object Detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2020): 318-327.

Hard

Easy
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GIOU(Generalized Intersection over Union)

A B C A
B

C

IoU=0
GIoU=0

IoU=0
GIoU=-0.7



Intelligent Systems Lab.91

Anchor-based Object Detection

 Anchor-based Object Detection

 Various hyperparameters: number of anchors, size, aspect ratio, etc.
 Bad for small object and various object type

 Fixed box scale and aspect ratio for anchor

 Sample imbalance
 Density of anchor box for high recall rate, imbalanced negative-positive sample

 Appear a lot of negative anchor box

 Expensive computation
 Compute for IOU with predicted box and GT box
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Anchor-free Object Detection

 Anchor-free Object Detection

 Without anchor, detecting the object

1. Keypoint-based method for detecting the object position

2. Center-based method for predicting the object boundary
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Adaptive Filtering Strategy

 Ignoring the gradients computation and propagation for Ignorable regions <-
Different point
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Baseline

 Anchor-free detector from FCOS

 ResNet50 backbone

 FPN neck and a dense head

Tian, Z., Shen, C., Chen, H., & He, T. (2019). FCOS: Fully Convolutional One-Stage Object Detection. 2019 IEEE/CVF International Conference on 
Computer Vision (ICCV), 9626-9635.
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FCOS, Fully Convolutional One-Stage Object Detection

 Prediction for the distances from the location to the four sides of bounding-box
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FCOS, Fully Convolutional One-Stage Object Detection

 Centerness

 Close to center(x,y), centerness → 1

 Far from center(x,y), centerness → 0

l r l r l r

0.8 0.2 0.5 0.5 0.6 0.4

t b t b t b

0.6 0.4 0.5 0.5 0.5 0.6

min 0.2 0.4 min 0.5 0.5 min 0.4 0.5

max 0.8 0.6 max 0.5 0.5 max 0.6 0.6

centerness 0.40824829 centerness 1 centerness 0.745355992
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FCOS, Fully Convolutional One-Stage Object Detection

 IOU with Ground-truth Bboxes

 Easy to split predicted result from nms
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FCOS Loss Function

 , 

IOU Loss: Yu, J., Jiang, Y., Wang, Z., Cao, Z., & Huang, T.S. (2016). UnitBox: An Advanced Object Detection Network. Proceedings of the 24th ACM international 

conference on Multimedia.

Focal Loss: Lin, T., Goyal, P., Girshick, R.B., He, K., & Dollár, P. (2020). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 42, 318-327.
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Recurrence Layer Aggregation

Zhao, J., Fang, Y., & Li, G. (2021). Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation. ArXiv, abs/2110.11852.
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Overview of Humble Teacher Approach

List of augmentation
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Architecture of Faster R-CNN



Intelligent Systems Lab.102

Overview of Humble Teacher Approach
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Overview of Humble Teacher Approach
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Approach

 By updating loss function, to improve the performance

 Total loss

 Number of unlabeled images:

 Number of unlabeled images:

 Regular detection loss      Faster R-CNN 

 RPN classification loss:

 RPN localization loss:

 ROI head’s classification loss:

 ROI head’s localization loss:

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object detection with region 
proposal networks. In Advances in Neural Information Processing Systems, pages 91–99, 2015



Intelligent Systems Lab.105

Classification Probability Bounding box regression output

Teacher

Student

Soft labels and Unsupervised Loss

 Unsupervised loss for RPN

 All anchors:      , KL divergence: 

 Teacher and Student RPN for the i-th proposal: 
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Part of Region Proposal Network(RPN)



Intelligent Systems Lab.107

Soft labels and Unsupervised Loss

 Unsupervised loss: 
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Second Stage: Generating a Set of Region Proposals

 RPN NMS: 300 proposal regions

 RoI sampling: N=640(according to class score)

 Positive:Negative=1:1

 Positive: IoU >= 0.7

 Negative: IoU <= 0.3

 Between: ignore
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Region Proposal

 Unsupervised loss: 
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Exponential Moving Average for the Teacher Model Update

 Updating teacher weights from student weights

 Slightly updated teacher

 Even though training with a wrong label prediction, its influence on the teacher model 

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve 
semi-supervised deep learning results. In Advances in Neural Information Processing Systems, pages 1195–1204, 2017
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Teacher Ensemble with Horizontal Flipping(1/2)

 Teacher model by taking as input both the image and horizontally flipped 
image

 Average prediction: both > only original image

 Backbone feature with original image: 

 Backbone feature with flipped image:

 Proposals detected by RPN with original image: 

 Horizontally flipped proposal coordinates from     : 

examples

roialign
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Teacher Ensemble with Horizontal Flipping(2/2)

 Classification head including softmax: 

 Regression head:

 Transformation-flip by x axis of all bounding boxes: 
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Experiments

 Inference stage

 In teacher model, to produce object detection result

 No data augmentation to the input image

 Augmentation

 Weak augmentation
 Random flipping and the image for teacher model

 Strong augmentation
 Randomly change the color, sharpness, contrast

 Gaussian noise

 Cutouts

 Model

 Base model: Faster R-CNN with ResNet-50



Intelligent Systems Lab.114

Example of Strong Augmentation from STAC

 Strong augmentation

 Color transformation / Cutout

 Global geometric / Box-level geometric transformation

Kihyuk Sohn, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee, and Tomas Pfister. A simple semi-supervised 
learning framework for object detection. arXiv preprint arXiv:2005.04757, 2020
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Datasets

 MS COCO: Microsoft COCO: Common Objects in Context

 Object segmentation & detection

 330K images & 1.5 million object instances

 80 object categories & 91 stuff categories

 250,000 people with keypoints

115

Example of Object Detection
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COCO 2020 Keypoint Detection Task

 200,000 images and 250,000 person instances labeled with keypoints
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COCO 2020 Panoptic Segmentation Task

 164K images from COCO 2017

 train 118K, val 5K, test-dev 20K, test-challenge 20K

 172 classes: 80 thing classes, 91 stuff classes and 1 class 'unlabeled'

https://github.com/nightrome/cocostuff#label-hierarchy

https://github.com/nightrome/cocostuff#label-hierarchy
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COCO 2020 DensePose Task

 39,000 images and 56,000 person instances labeled with DensePose
annotations
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PASCAL VOC

 PASCAL VOC project
 Pattern Analysis, Statistical Modelling and Computational Learning(PASCAL), 

 VOC(Visual Object Classes)

 Provides standardized image data sets for object class recognition

 Provides a common set of tools for accessing the data sets and annotations

 Enables evaluation and comparison of different methods

 Ran challenges evaluating performance on object class recognition (from 2005-2012, now 
finished)

 Organizers
 Mark Everingham (University of Leeds)

 Luc van Gool (ETHZ, Zurich)

 Chris Williams (University of Edinburgh)

 John Winn (Microsoft Research Cambridge)

 Andrew Zisserman (University of Oxford)

119
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PASCAL VOC 2007/2012

 Classes: 20

 Person(1): person

 Animal(6): bird, cat, cow, dog, horse, sheep

 Vehicle(7): aeroplane, bicycle, boat, bus, car, motorbike, train

 Indoor(8): bottle, chair, dining, table, potted, plant, sofa, tv/monitor

 Train/validation/test

 9,963image containing 24,640 annotated objects

 Classes: 20

 Train/validation/test

 11,530 images containing 27,450 RoI annotated objects and 6,929 segmentations

120
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PASCAL VOC 2007/2012

 PASCAL VOC 2007 labeled data

 5,011images

 PASCAL VOC 2012 unlabeled data

 11,530 images

 1:2 = labeled : unlabeled

 PASCAL VOC 2012 and MS-COCO20(not included in VOC classes 20)

 4,993 : 124,834 = labeled : unlabeled = 1 : 26

 In experiments, using MS-COCO2017 val dataset

121
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Experiments
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Experiments
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Experiments
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Experiments
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Conclusion

 “Humble Teacher” that obtained state-of-the-art performance on multiple 
benchmarks

 Demonstrated the effectiveness of our teacher-student model design

 Showed the importance of iteration-wise EMA teacher update
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Conclusion
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EXAMPLE
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RPN Original Image vs RPN flipped Image

Come back

IOU >= 0.7

(𝐂𝐱, 𝐂𝐲, 𝐰, 𝐡)

𝐂𝐱
′ , 𝐂𝐲

′ , 𝐰, 𝐡 =

(𝐂𝐱
𝐟 , 𝐂𝐲

𝐟 , 𝐰, 𝐡)

(𝐂𝐱, 𝐂𝐲, 𝐰, 𝐡) →
Horizontal flip

(𝐂𝐱
𝐟 , 𝐂𝐲

𝐟 , 𝐰, 𝐡)
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CONCEPT
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Pseudo-label

Lee, Dong-Hyun. (2013). Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural 
Networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL). 
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Pseudo-label

 Low-Density Separation between Classes

 Entropy Regularization
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Norm(L1 & L2)

 Manhattan distance

     distance, absolute distance 

Manhattan street
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Norm(L1 & L2)

 Euclidean distance

      distance, distance between p and q
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 Equation for 
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Entropy

 Quantity of information:정보량

 Mass, height, velocity, and etc -> unit amount

 Providing little informational value when high probability event

 Providing high informational value when low probability event

Fig. Korea Lottery

번개 맞을 확률

번개 안맞을 정보값
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Entropy

 Entropy: Expectation of every event
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Cross Entropy

 Between the probability distributions p and q

Source: https://www.desmos.com/calculator/auubsajefh

-log(x) graph

Example
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Cross Entropy

 Small cost is the optimal point to the system

 Prediction score is denoted by cross entropy
wrong prediction -> high cost, right prediction -> lower cost 

 Goal of loss function that computes minimum cost for finding the point
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KL-Divergence

 Kullback-Leibler divergence → relative entropy

 두 확률분포의 차이
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Example of KL-Divergence

 Real four sided shapes dices

 YK expected dices distribution 
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KL-Divergence



Intelligent Systems Lab.143

Expected Value, Expectation(기대값)

 확률변수의 기대값

 개별 가중치에 대해 곱해 구해지는 평균

 합리적인 평균 계산법

 극단적인 값에 영향이 적음

 예시
 게임에서 이길 확률은 0.99 입니다. 만약 이기면 100원을 받고, 지면 100,000원을 잃습니다. 확률 
변수 X는 게임에서 얻는 돈의 양으로 정의하겠습니다. X의 기대값 E[X]는 무엇일까?

 E[X] = 0.99*100-0.01*100,000 = -901

 한게임당 얻는 돈의 기대값은 -901원이 되어, 게임을 무수히 많이 진행하게 되면 결과적으로 
돈을 잃게 됩니다.
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 지도학습(Supervised Learning)
- 정답이 있는 데이터를 학습

 비지도학습(Unsupervised Learning)
- 정답이 없는 데이터를 학습

 준지도학습(Semi-Supervised Learning)
- 정답 레이블이 적은 데이터셋으로 1차 (지도)학습 후 정답 레이블이 없는 
많은 데이터셋으로 2차 학습
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TRANSFORMER



Intelligent Systems Lab.146

Attention Mechanism

 The result that is to predict every time step in decoder refers the information 
from encoder

 Different weights for 

 Machine Translation: Encoder-Decoder structure

 Attention(Q,K,V) = Attention Value

 Q, Query: decoder hidden status at time t

 K, Keys: encoder hidden status at every time

 V, Values: encoder hidden status at every time
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Attention Mechanism

Query
Attention

Value

Key1 Key2 Key3

Value1 Value2 Value3

 Attention(Q,K,V) = Attention Value

 Q, Query: decoder hidden status at time t

 K, Keys: encoder hidden status at every time

 V, Values: encoder hidden status at every time

https://wikidocs.net/22893
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Dot-Product Attention

softmax

softmax

LSTM LSTM LSTMLSTM LSTM LSTM LSTM

embedding embedding embedding embedding

I am a student

embedding embedding embedding

<sos> je suis

Dense

étudiant

https://wikidocs.net/22893
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Transformer

1. Compute attention score

2. Create attention distribution from softmax

3. Compute attention value with attention weight and hidden status

4. Concatenate attention value and decoder of  hidden status at time t

5. Compute output value, 

6. Generate softmax(   )

ǁ𝑠𝑡

ǁ𝑠𝑡

https://wikidocs.net/22893
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Compute attention score

LSTM LSTM LSTMLSTM LSTM LSTM LSTM

embedding embedding embedding embedding

I am a student

embedding embedding embedding

<sos> je suis

𝑠𝑡
𝑇

ℎ1 ℎ2 ℎ3 ℎ4

dot product

𝑠𝑡
𝑇

ℎ𝑖

×
𝑠𝑐𝑜𝑟𝑒 𝑠𝑡 , ℎ𝑖 = 𝑠𝑡

𝑇ℎ𝑖

𝑒𝑡 = 𝑠𝑡
𝑇ℎ1, ⋯ , 𝑠𝑡

𝑇ℎ𝑁

https://wikidocs.net/22893
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Create attention distribution from softmax

softmax

LSTM LSTM LSTMLSTM LSTM LSTM LSTM

embedding embedding embedding embedding

I am a student

embedding embedding embedding

<sos> je suis

Attention distribution

𝑎𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡)
Attention 
weight

https://wikidocs.net/22893
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Compute attention value with attention weight and hidden status

softmax

LSTM LSTM LSTMLSTM LSTM LSTM LSTM

embedding embedding embedding embedding

I am a student

embedding embedding embedding

<sos> je suis

ℎ1 ℎ2 ℎ3 ℎ4

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 →

𝑎𝑡 =

𝑖=1

𝑁

𝑎𝑖
𝑡ℎ𝑖

https://wikidocs.net/22893
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Concatenate attention value and decoder of  hidden status at time t

softmax
LSTM LSTM LSTM

embedding embedding embedding

<sos> je suis

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡

concatenate
ℎ𝑖𝑑𝑑𝑒𝑛
𝑠𝑡𝑎𝑡𝑢𝑠 𝑠𝑡

𝑣𝑡

https://wikidocs.net/22893
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Compute output value,     → create output

 Before coming out from output, apply to compute neural 
network

ǁ𝑠𝑡

𝑣𝑡

×

𝑊𝑐

𝑡𝑎𝑛ℎ =

ǁ𝑠𝑡

ǁ𝑠𝑡 = tanh(𝑊𝑐 𝑎𝑡 ∙ 𝑠𝑡 + 𝑏𝑐)

ො𝑦𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦 ǁ𝑠𝑡 + 𝑏𝑦)

https://wikidocs.net/22893
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Encoder-Decoder

LSTM LSTM

embedding embedding

a student

Encoder

LSTM LSTM LSTM

embedding embedding embedding

<sos> je suis

Decoder

Feed Forward

Self-Attention

Feed Forward

Self-Attention

Encoder-Decoder Attention

Refer: https://wdprogrammer.tistory.com/72
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Positional Encoding

 Original embedding: no consider of position

 Positional embedding in Transformer

LSTM LSTMEncoder

Embedding with 
Time Signal

Positional
Encoding

Embedding 𝑥3

𝑡3

𝑥3
=

+

Input a student

𝑥4

𝑡4

𝑥4
=

+

Refer: https://wdprogrammer.tistory.com/72
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Input Embedding

0.84
Positional
Encoding

Embedding 𝑥3

𝑡3

+

Input a student

𝑥4

𝑡4

+

0.001 0.54 1 0.91 0.002 -0.42 1

Refer: https://wdprogrammer.tistory.com/72

Visualize position encoding
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LayerNorm

 𝑦 =
𝑥−𝐸 𝑥

𝑉𝑎𝑟 𝑥 +𝜖
∗ 𝛾 + 𝛽

 Channel based normalization
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Vision Transformer

A. Dosovitskiy, L. Beyer, A. Kolesnikov, “An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale”, 2021, ICLR
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Vision Transformer

 Input size: 3 x 224 x 224

 Patch size: 14 x 14

A. Dosovitskiy, L. Beyer, A. Kolesnikov, “An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale”, 2021, ICLR
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Vision Transformer

 Classification 결과값은 MLP(Multi layer perceptron)를 통해 1 x 768 tensor를 생성함

 최종 텐서의 크기( 196 + 1 ) x 768

A. Dosovitskiy, L. Beyer, A. Kolesnikov, “An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale”, 2021, ICLR

768

1
9

7

nn.Parameter
Positional

Embeddings
197x768

Positional Embeddings

768

1
9

6
1

768

1
9

7

Patch Embeddings

768

1
9

7

Combined Embeddings

Transformer
Encoder
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Vision Transformer

1
9

7

Combined Embeddings

768

Layer Norm

qkv

nn.Linear
in_feature = 768

out_features = 2304(768*3)

1
9

7

qkv-after_linear

2304

1
9

7

3x12x64

qkv-after_linear-reshapedV
(12,197,64)

q
(12,197,64)

k(T)
(12,64,197)

①
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Vision Transform

V
(12,197,64)

q
(12,197,64)

k(T)
(12,64,197)

out
Attention * v
(12,197,64)

Attention 
softmax(q * k(T))

(12,197,197)

1
9

7

768

out (T) reshaped

proj

nn.Linear
in_feature = 768

out_features = 768

①

Layer Norm

nn.Linear
in_feature = 768

out_features = 3072

nn.Linear
in_feature = 3072

out_features = 768

②
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Batch Normalization without Shifting(1/2)

 Advantage(Batch Normalization)

 Speed up training time

 Reduce sensitivity of weight initialization

 Model regularization

 Data normalization between 0 and 1

Sergey loffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift“, ICML2015
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Batch Normalization without Shifting(2/2)

 Input: Values of x over a mini-batch: 
Parameters to be learned:

 Output: 

Sergey loffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift“, ICML2015

Mini-batch mean

Mini-batch variance

Normalize(zero-centered)
:zero score normalization

Scale and shift
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InceptionNet
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Squeeze and Excitation Block

J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, "Squeeze-and-Excitation Networks," in IEEE Transactions on 
Pattern Analysis and Machine Intelligence.
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SE-Inception Module

J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, "Squeeze-and-Excitation Networks," in IEEE Transactions on 
Pattern Analysis and Machine Intelligence.
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Residual and SE-Residual Module

J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, "Squeeze-and-Excitation Networks," in IEEE Transactions on 
Pattern Analysis and Machine Intelligence.
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ResNeXt deeper/wider test in Original Paper

S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep Neural Networks," 2017 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 5987-5995.
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ResNet50 vs ResNeXt-50

• ResNeXt50
• Deeper depth for 

convolution 
• But less computation

S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep Neural Networks," 2017 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 5987-5995.
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Global Average Pooling vs Global Max Pooling

1 2 0

1 0 0

0 0 0

1

a) Activation of conv layer and 
global average pooling

1 2 0

1 0 0

0 0 0

b) Activation of conv layer and 
global max pooling

2

 Why Global pooling?

 Replace fully connected layer -> overfitting and expensive computation

 Structural regularization / confidence maps in classification

 Others? -> Dropout, fully convolution layer 
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 G: number of group

Grouped convolution

Input filter Output
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Cosine similarity(1)

 According to the direction of vector, between two vectors, 
compute the similarity

https://wikidocs.net/24603

https://wikidocs.net/24603
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Cosine similarity(2)

1. A = (3,0), B=(6,0)
𝐴 ∙ 𝐵 = 18, 𝐴 × 𝐵 = 18 → 𝑐𝑜𝑠𝜃 = 1

2. A = (3,0), B=(0,6)
𝐴 ∙ 𝐵 = 0, 𝐴 × 𝐵 = 18 → 𝑐𝑜𝑠𝜃 = 0

3. A = (3,0), B=(-4,0)
𝐴 ∙ 𝐵 = −12, 𝐴 × 𝐵 = 12 → 𝑐𝑜𝑠𝜃 = −1
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Cosine similarity(3)
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Grad-CAM(1/5)

 Based on the fundamental framework of Grad-CAM[3]

 Gradient-weighted Class Activation Mapping

[3]R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep 
networks via gradient-based localization. In ICCV, 2017 
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Implementation Details

 CNN model: VGG16 and ResNet101

 Proposed model: last two convolutional layers modified as to have the stride 
equal to 1 instead of 2 in the original networks

 dilated conv-> rate=2, 4(to enlarge the receptive field)
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Grad-CAM(2/5)

 Deeper representations in a CNN capture higher-level visual construct[4,5]

 Convolution features naturally retain spatial information which is lost in full-
connected layers so we expect the last convolutional layers to have the best 
compromise between high-level semantics and detailed spatial information

 In last layer, look for semantic class-specific information in the image

[4] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE transactions on 
pattern analysis and machine intelligence, 35(8):1798–1828, 2013
[5] A. Mahendran and A. Vedaldi. Visualizing deep convolutional neural networks using natural pre-images. International 
Journal of Computer Vision, pages 1–23, 2016 
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Grad-CAM(3/5)

 To obtain the class discriminative localization map 

 Compute the gradient of the score for class c,

 Respect to feature maps       of a convolutional layer

 Gradients flowing back are global-average pooling to obtain the neuron 
importance weights
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Grad-CAM(4/5)

 Weighted combination of forward activation maps and follow it by a ReLU to 
obtain

 Result in coarse heat-map of the same size as the convolutional feature 
maps(14x14, last convolutional layers of VGG and AlexNet)

 Why they use ReLU

 Only interested in the features that have a positive influence on the class of interest

 Pixels whose intensity should be increased in order to increase 

 Negative pixels are likely to belong to other categories in the image
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Grad-CAM(5/5)

 Prediction Score for class c

 Able to interchange the prediction score
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AlexNet Architecture
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VGG16 Architecture
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GoogleNet(1/2)
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GoogleNet(2/2)



Intelligent Systems Lab.188

Interaction with feature and attention mask
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Network Architecture

 Stacking multiple attention modules

 Two parts in attention module

 Trunk branch, T(x)

 Mask branch, M(x)

 Attention module

 i: all spatial position, c: channel
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Process of Soft Mask(Attention) & Trunk Branch

 Trunk: keep convolution same size with input

 Soft mask: generate mask information in top-down and bottom-up process
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Proposed Architecture
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Soft Mask Branch
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Detail of Soft Mask & Trunk Branch(stage1)  



Intelligent Systems Lab.194

Downsampling(1/2)



Intelligent Systems Lab.195

Downsampling(2/2)
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Upsampling(1/2)
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Upsampling(2/2)
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Grid R-CNN

https://www.groundai.com/project/grid-r-cnn-plus-faster-and-better/1

https://www.groundai.com/project/grid-r-cnn-plus-faster-and-better/1
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Fully Convolutional Network vc Fully Connected Layer

https://medium.com/@msmapark2/fcn-%EB%85%BC%EB%AC%B8-
%EB%A6%AC%EB%B7%B0-fully-convolutional-networks-for-semantic-
segmentation-81f016d76204

 FC layer lost the location information

https://medium.com/@msmapark2/fcn-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0-fully-convolutional-networks-for-semantic-segmentation-81f016d76204
https://medium.com/@msmapark2/fcn-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0-fully-convolutional-networks-for-semantic-segmentation-81f016d76204
https://medium.com/@msmapark2/fcn-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0-fully-convolutional-networks-for-semantic-segmentation-81f016d76204
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RoIPool & RoIAlign

 RoIPool: quantized bins + pooling

 RoIAlign: continuous + bilinear interpolation + pooling
-> better preserved spatial correspondence 

RoI

RoI feature map

Whole feature map
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RoIPool

 RoIPool: quantized bins + pooling

Source: https://blog.deepsense.ai/region-of-interest-pooling-explained/

a) Input activation
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RoIPool

 RoIPool: quantized bins + pooling

Region projection and pooling sections

Source: https://blog.deepsense.ai/region-of-interest-pooling-explained/



Intelligent Systems Lab.203

RoIPool

 RoIPool: quantized bins + pooling -> 2x2 max pooling

Region projection and pooling sections

0.85 0.84

0.97 0.96

Source: https://blog.deepsense.ai/region-of-interest-pooling-explained/



Intelligent Systems Lab.204

RoIAlign

 RoIAlign: continuous + bilinear interpolation + max pooling

Region projection and pooling sections

Source: https://blog.deepsense.ai/region-of-interest-pooling-explained/
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RoIAlign

 RoIAlign: continuous + bilinear interpolation + max pooling

Sampling locations

x x x x

x x x x

x x x x

x x x x

Source: https://blog.deepsense.ai/region-of-interest-pooling-explained/
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RoIAlign

 RoIAlign: continuous + bilinear interpolation + max pooling

Sampling locations

x x x x

x x x x

x x x x

x x x x

Max pooling output

Source: https://blog.deepsense.ai/region-of-interest-pooling-explained/
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Bilinear Interpolation

 Extension of linear interpolation on rectilinear 2D grid

 As the intensity value is in linear relationship

 What is the red point intensity value?
 Bilinear interpolation can get the intensity

1 3 5

4 6 10

7 9 12

1 3 5

4 6 10

7 9 12

Image x 3
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Bilinear Interpolation

 Extension of linear interpolation on rectilinear 2D grid

1 P 3

4 Q 6

 In case of x axis
 P value

A=1, B=3
P =(1/3) x A + (2/3) x B = 2.33

 Q value
C=4, D=6
Q = (1/3) x 4 + (2/3) x 6 = 5.33

 In case of y axis
 P = 2.33, Q = 5.33

red = (1/3) x P + (2/3) x Q = 4.33

1 P 3

4 Q 6
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Derive for Back Propagation

Youlkyeong Lee



Intelligent Systems Lab.210 210

Structure

• Training Input/output
• Initial weights
• biases
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Feed Forward Computation(1/3)

211
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Feed Forward Computation(2/3)
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Feed Forward Computation(3/3)

 Calculating the total error

213
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Backwards Computation(1/3)

 Consider       , how much a change in        affects the total 
error

 In chain rule

214
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Backwards Computation(1/5)

215



Intelligent Systems Lab.216

Backwards Computation(2/5)

216
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Backwards Computation(3/5)

217
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Backwards Computation(4/5)

218
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Backwards Computation(5/5)

 To decrease the error, subtract this value from the current weight

219



Intelligent Systems Lab.220

First order Markov chains

 A sequence of random variables 𝑥1, 𝑥2, …

 𝑥𝑡 is the state of the model at time t

 Markov assumption:
each state is dependency of only on the previous one
dependency given by a conditional probability

 A first-order Markov chain

 Nth-order Markov chain:

𝑥1 𝑥2 𝑥3 𝑥4
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Computation of Convolution Image Size
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VGG-16 Structure
222
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VGG-16 Structure

 Number of layers: 
weight layers(conv layers + fully connected layers), 
no count max pooling

223
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Fully Convolutional Network

 Previous pixel-level classification

 Generate local window

 Object classify within window

 Center point of window = class

 Problem: limitation search in local information and computation

 FCN

 Use CNN architecture

 Global computation

 Pixel-level classification

 Classify at each pixel 
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FCN architecture
225

1/2 1/4 1/8 1/1
6

1/32

Source: https://youtu.be/UdZnhZrM2vQ
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FCN Result
226

Source: Jonathan Long, Evan Shelhamer, Trevor Darrell, “Fully Convolutional Networks for Semantic 
Segmentation”, TPAMI, Vol. 39, Issue 4, 2016
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Experiments

 Hyperparameter : suing existing Faster R-CNN

 Backbone architectures: ResNet50, ResNet101, FPN(Feature Pyramid Networks)

 Input image: resized into 800px for its shorter size

 GPU: 8 GPU @2 images on training

 Training time: 32 hours(ResNet50-FPN), 44 Hours (ResNet101-FPN), not end-
to-end training

 Testing time (ResNet101-FPN): 105ms per image on an Nvidia Tesla M40 
GPU(plus 15ms CPU time resizing the outputs to the original resolution)

 Dataset: MS COCO(80k train, 35k val, 5k test)

 YOLOv2, SSD->GeForce GTX Titan X(3073 cores, 12Gb)

 Mask R-CNN->Nvidia Tesla M40(3072 cores, 12Gb)

227
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Result
228
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Result

 Compare with Faster R-CNN in COCO dataset

229
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Result

 Mask R-CNN in Cityscapes dataset

230
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Result

 Human Pose Estimation

231
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OBJECT DETECTION
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Selective Search
233

 Selective Search by Hierarchical grouping

 Create initial regions

 Greedy algorithm to iteratively group regions
 Similarities between all neighbouring regions



 Group together with two similar regions

 Calculate new similarities between resulting region and its neighbors

 Repeat the process of grouping the most similar regions until the whole image becomes 
a single region 
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Hierarchical Grouping Results
234
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R-CNN Architecture
235

 Takes an input image

 Extracts around 2000 bottom-up region proposals(by selective search)

 Computes features for each proposal using a large convolutional 
network

 Classifies each region using class-specific linear SVMs

R-CNN, object detection system overview

Source: Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, “Region-based Convolutional Networks for Accurate Object Detection and Segmentation”,  PAMI, Vol 38, Issue 1, 2015
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R-CNN Architecture
236

 Regional Proposal + CNN

 Regional Proposal by Selective search

 Compute the CNN at each proposal region(many computation)

 Improve the detection accuracy by bounding box regression 

R-CNN Architecture

Source: https://jamiekang.github.io/2017/05/28/faster-r-cnn/

 Problem
 Slow test

 13s/image in GPU

 53s/image in CPU

 Learning process complex

 84 hours in GPU 
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Fast R-CNN
237

 Initial RoI by Selective search

 CNN for whole image

 After CNN, RoI apply with feature map

 Different from R-CNN that is no convolution computation at each RoI

Source: https://jamiekang.github.io/2017/05/28/faster-r-cnn/

Fast R-CNN Architecture
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Faster R-CNN
238

 Region Proposal Networks

No use selective search

RoIpooling, classifier and bounding box regressor

Source: https://jamiekang.github.io/2017/05/28/faster-r-cnn/
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Faster R-CNN
239

 Region Proposal Networks

 K proposals are parameterized relative to k reference boxes, which 
are called anchor

 K=9( 3 scales(128, 256, 512) and 3 aspect ratio(1:1, 1:2, 2:1))

 Image resize: PASAL VOC 2007(500x375) -> 1000x600

 2k scores(there is object in bounding box or not)

 4k coordinates: x, y(top-left), H, W

Source: https://jamiekang.github.io/2017/05/28/faster-r-cnn/
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Architecture of Faster R-CNN
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Part of Feature Extraction
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Part of Region Proposal Network(RPN)
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Part of Prediction
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3x3 conv

1x1 conv

1x1 conv

Feature map
(h/16xw/16x4x9)

Feature map
(h/16xw/16x2x9)

RoI pooling

Region
proposals

Feature map
(7x7x512)

FC layer

RPN

Feature map
(h/16xw/16x512)
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Feature map
(h/16xw/16x512)

RoIs
RPN

Anchor
Target
Layer

Proposal
Layer

RoI
pooling

Class scores,
BBox regressors

Proposal
Target
LayerRegion

Proposals

Anchor Boxes
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Feature map
(50x50x512)

RoIs
RPN

Anchor
Target
Layer

Proposal
Layer

RoI
pooling

Proposal
Target
LayerRegion

Proposals
Class scores: (50x50x2x9)
BBox regressors: (50x50x4x9)

Feature map
(50x50x512)

# of anchors: 
50x50x9=22,500

Top-N ranked by 
class scores 

Sample for 
Pos:Neg = 1:1 

Anchor and GT

Sample for 
Pos:Neg = 1:1
Top-N and GT 

Feature map
(7x7x512)



Intelligent Systems Lab.247

Multi-Task Loss

 Training classifier and bounding box regressor at the same time

 Predicted probability of anchor i being an object

 Ground-truth label:

 Classification loss: Log loss
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Multi-Task Loss

 Training classifier and bounding box regressior at the same time

 Coordinates of the predicted bounding box

 Ground-truth bounding box:

 Smooth L1 loss function:
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Multi-Task Loss

 Converting coordinate as follows

 Ground-truth bounding box:

 Coordinates of the predicted bounding box:
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Anchor Box(1/3)

 Generating the dense sampling for proposal region



Intelligent Systems Lab.251

Anchor Box (2/3)

 Suggested three kinds of scales and aspect ratio for anchor box
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Anchor Box (3/3)
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RPN

 Positive sample(128):Negative sample(128) = 1:1

 To make it balance of proposed bbox class and regression(position)
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R-CNN vs Fast vs Faster R-CNN
254

Source: https://www.youtube.com/watch?v=v5bFVbQvFRk
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Bounding Box Predictions

 By sliding the kernel, it is a convolution process with ground truth

 Some of kernels are matched with ground truth

 How much match kernel with ground truth 

255

Sliding kernel

Source: https://www.google.co.kr/search?q=udacity+dataset&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjFitKu8-
jaAhVElZQKHY0QCjUQ_AUICigB&biw=1474&bih=750#imgrc=Fi2QqVQZN63kMM: , UDACITY dataset
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IMAGENET Dataset

 ImageNet 2012(Classification)

 ImageNet Large Scale Visual Recognition Challenge(ILSVRC)

 1.28 million training images

 50k validation images

 100k test images

 1,000 categories

https://image-net.org/index.php
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Datasets

 MS COCO: Microsoft COCO: Common Objects in Context

 Object segmentation

 Recognition in context

 Superpixel stuff segmentation

 330K images

 1.5 million object instances

 80 object categories

 91 stuff categories

 5 captions per image

 250,000 people with keypoints
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PASCAL VOC

 PASCAL VOC project
 Pattern Analysis, Statistical Modelling and Computational Learning(PASCAL), 

 VOC(Visual Object Classes)

 Provides standardized image data sets for object class recognition

 Provides a common set of tools for accessing the data sets and annotations

 Enables evaluation and comparison of different methods

 Ran challenges evaluating performance on object class recognition (from 2005-2012, now 
finished)

 Organizers
 Mark Everingham (University of Leeds)

 Luc van Gool (ETHZ, Zurich)

 Chris Williams (University of Edinburgh)

 John Winn (Microsoft Research Cambridge)

 Andrew Zisserman (University of Oxford)
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PASCAL VOC 2007/2012

 Classes: 20

 Person(1): person

 Animal(6): bird, cat, cow, dog, horse, sheep

 Vehicle(7): aeroplane, bicycle, boat, bus, car, motorbike, train

 Indoor(8): bottle, chair, dining, table, potted, plant, sofa, tv/monitor

 Train/validation/test

 9,963image containing 24,640 annotated objects

 Classes: 20

 Train/validation/test

 11,530 images containing 27,450 RoI annotated objects and 6,929 segmentations
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CITYSCAPES

 Semantic Understanding of Urban Street Scenes
 Labs: Daimler AG R&D, Max Planck Institute for Informatics, TU Darmstadt Visual Inference Group, 

Germany
 Volume

 2048x1024 pixels
 5,000 annotated images with fine annotations

 https://www.cityscapes-dataset.com/examples/#fine-annotations

 20,000 annotated images with coarse annotations
 https://www.cityscapes-dataset.com/examples/#coarse-annotations

 Metadata
 Preceding and trailing video frames. Each annotated image is the 20th image from a 30 frame video snippets
 Corresponding right stereo views
 GPS coordinates
 Ego-motion data from vehicle odometry
 Outside temperature from vehicle sensor

 Benchmark suite and evaluation server
 Pixel-level semantic labeling
 Instance-level semantic labeling

261

https://www.cityscapes-dataset.com/examples/#fine-annotations
https://www.cityscapes-dataset.com/examples/#coarse-annotations
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CITYSCAPES

 Features
 Annotations

 Semantic
 Instance-wise
 Dense pixel annotations

 30 classes
 Flat: road, sidewalk, parking, rail track
 Human: person, rider
 Vehicle: car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer
 Construction: building, wall, fence, guard rail, bridge, tunnel
 Object, pole, pole group, traffic sign, traffic light
 Nature: vegetation, terrain
 Sky: sky

 Diversity
 50cities
 Several months(spring, summer, fall)
 Daytime
 Good/medium weather conditions
 Manually selected frames

 Large number of dynamic objects
 Varying scene layout
 Varying background
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ADE20K Dataset

 ADE20K Dataset

 Massachusetts Institute of Technology , USA, University of Toronto, Canada

 ADE stands for Adela Barriuso who did handedly annotated entire dataset

 150 object and stuff classes / train: 25,574, val: 2,000

 Segmentation, image size: 512 x 512
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Brainwash Dataset

 Brainwash dataset in 2015

 Head detection

 Train/val: 11,917 images, 91,146 annotated heads

 Image size: 480x640
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Method

 D2Det redesigns both regression and classification branches of 
the traditional two-stage R-CNN detectors by dense local 
regression and discriminative classification
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Comparison of Dense Local Regression with Traditional Regression

FCN vs FC
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Regression Parameters in Faster R-CNN

 Traditional regression in Faster R-CNN

 Candidate object proposal:

 Ground Truth box:

 Box offsets: ∆𝑥= (𝑥𝐺 − 𝑥𝑃)/𝑤𝑃, ∆𝑥= (𝑦𝐺 − 𝑦𝑃)/ℎ𝑃

∆𝑤= log(
𝑤𝐺

𝑤𝑃
),  ∆ℎ= log

ℎ𝐺

ℎ𝑃

where (x, y) = box centers and (w, h) = width and height

 Pooling = RoIPool or RoIAlign

𝑃 = (𝑥𝑃, 𝑦𝑃 , 𝑤𝑃, ℎ𝑃)

G= (𝑥𝐺 , 𝑦𝐺 , 𝑤𝐺 , ℎ𝐺)
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Regression Parameters in Proposed method

 Regression in this paper

 Distance of each local feature:

 Top-left and bottom-right from GT:

 Ground-truth offsets: 𝑙𝑖 = (𝑥𝑖 − 𝑥𝑙)/𝑤𝑃, 𝑡𝑖 = (𝑦𝑖 − 𝑦𝑡)/ℎ𝑃
𝑟𝑖 = (xr − xi)/𝑤𝑃,  𝑏𝑖 = (𝑦𝑏 − 𝑦𝑖)/ℎ𝑃

𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)

(𝑥𝑙 , 𝑦𝑡), (𝑥𝑟 , 𝑦𝑏)

𝑚𝑖 = ቊ
1, 𝑖𝑓 𝑝𝑖 ∈ 𝐺;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ෝ𝑚𝑖 = ෝ𝑚𝑖 ∶ 𝑖 ∈ 1, 𝑘2 → 𝜎 ෝ𝑚𝑖 : 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
                                 𝜎 ෝ𝑚𝑖 >0.5: ignore the predicted box

𝑚𝑖 = {𝑚𝑖 ∶ 𝑖 ∈ [1, 𝑘2]}

𝑘 × 𝑘: 𝑅𝑜𝐼 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑠𝑖𝑧𝑒, 7 × 7
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Discriminative RoI Pooling

 To classify the object, it adopts the discriminative RoI pooling

 To use the light-weight of prediction, sized RoIAlign=
𝑘

2
×

𝑘

2
 and fully connected 

layer

 Weighted RoI feature

𝐹 ∈ 𝑅2𝑘×2𝑘, W(𝐹) ∈ 𝑅2𝑘×2𝑘

෨𝐹 = 𝑊(𝐹)⨀𝐹
⨀: Hadamard product(=element-wise product)
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Experiment Results(2/2)
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DATA AUGMENTATION
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Augmentation: Cutout(1/2) 

 Improved Regularization of Convolutional Neural Networks with Cutout

 Area of cutout: zero-value -> similar with dropout

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout. arXiv preprint 
arXiv:1708.04552, 2017.
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Augmentation: Cutout(2/2)

 Affecting the size of cutout area for the performance

 In this experiments, defaulted shape => square

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout. arXiv preprint 
arXiv:1708.04552, 2017.
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Search Space(Auto Augmentation)

 Search Space

 Color Operations: Equalize, Contrast, Brightness, etc

 Geometric Operations: Rotate, TranslationX, TranslationY, etc

 Bounding Box Operations: Bbox_Only_Equalize, Bbox_Only_Rotate

Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V. Le. Learning data augmentation strategies for object 
detection. In ECCV, 2020
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Scale-aware Search Space(Image-level Augmentation)

 Image-level Augmentation

 Commonly used Image Pyramid

 Expensive computation for 
training original multi-scale

 Random crop for Zoom-In

 Change P, M for every iteration

 P(probability): [0, 0.1, 0.2, 0.3, 0.4, 0.5]

 M(magnitude): 
Zoom ratio function

 Total:
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Image Pyramid

 Downscale for every level 
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Scale-aware Search Space(Box-level Augmentation)

 Box-level Augmentation

 Conducted augmentation for each object box

 Different from box object area, used gaussian map for each object

 Blended original and transformed pixels with spatial wise Gaussian map

 Affected context information for detection result
 Removed background 

pixels

 Drop the AP_s, 25.2->18.0
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Scale-aware Search Space(Box-level Augmentation)

 Box-level Augmentation

 Augment area adaptive to object sizes, area ratio

 Blended original and transformed pixels with spatial wise Gaussian map

 A: augmented region

 I: input, T: transformation function

 V: area for gaussian map, HxW: image height x width
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Scale-aware Search Space(Box-level Augmentation)
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Scale-aware Search Space(Box-level Augmentation)

 Box-level Augmentation
 8 color operations and 6 geometric operations

 Probability range: 6 discrete values, [0, 0.2, 0.4, 0.6, 0.8, 1.0]

 Magnitude range: 6 discrete values, [0, 2, 4, 6, 8, 10]

 Area ratio
 Area ratio type: small, middle, large

 Area ratio range: 10 discrete values [0.2, 0.4, 0.6, 0.8, 1.0, 2, 4, 6, 8, 10]

 Total candidate policies box(5 policies), image(1 policies)
 Image-level augmentation 6 ** 4

 Zoom-in: 6*6

 Zoom-out: 6*6

 Box-level augmentation (10 ** 3) * ((8 * 6 * 6) * (6 * 6 * 6)) ** 5
 Area ratio: 10*10*10

 Color operations: 8*6*6

 Geometric operations: 6*6*6
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Scale-aware Search Space(Box-level Augmentation)

 Compared with Auto Augmentation 2 times combinations

 Total candidate policies box(5 policies), image(1 policies)

 Image-level augmentation 6 ** 4
 Zoom-in: 6*6

 Zoom-out: 6*6

 Box-level augmentation (10 ** 3) * ((8 * 6 * 6) * (6 * 6 * 6)) ** 5
 Area ratio: 10*10*10

 Color operations: 8*6*6

 Geometric operations: 6*6*6

Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V. Le. Learning data augmentation strategies for object 
detection. In ECCV, 2020
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Scale-aware Search Space(Box-level Augmentation)
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Scale-aware Search Space(Box-level Augmentation)
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Scale-aware Search Space(Box-level Augmentation)
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Scale-aware Search Space(Box-level Augmentation)
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Scale-aware Estimation Metric

 In common, adaptive random augmentation in dataset

 Evaluated with accuracy for object detection

 In this paper, balanced optimization over different scales

 Evaluated with accumulated loss and accuracy
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Experiment

 MS(Multi-scale) training baseline

 Model: Faster R-CNN, RetinaNet, FCOS, Mask R-CNN
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Experiment
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Experiment
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Experiment
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Experiment

 Scale invariant for using multi-scale training

 Better performance for using Scale aware Auto 
Augmentation
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SEMI-SUPERVISED 
LEARNING
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Consistency-based Semi-supervised Learning for Object Detection

 Semi-supervised learning

 Using horizontally flip image as unlabel data, to improve consistency 
regularization(CR)

Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak. Consistency-based semi-supervised learning for object detection. In 
Advances in Neural Information Processing Systems, pages 10759–10768, 2019.
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Consistency-based Semi-supervised Learning for Object Detection

Unlabel and flip data
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Knowledge Distillation

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network”, NIPS, 2014, arXiv:1503.02531

 Googleplex(Google+complex) in Mountain View, California

 Edward Kasner, America Mathematician

 Googleplex from Googolplex
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Knowledge Distillation

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network”, NIPS, 2014, arXiv:1503.02531

 Contribution

 Complex model(T): acc -> 99%, inference time -> 3 hours

 Simple model(S): acc -> 90%, inference time -> 3 mins 
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Knowledge Distillation

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network”, NIPS, 2014, arXiv:1503.02531

 Contribution

 Teacher Network(T)
 Cumbersome model: ensemble / a large generalized model

 (pros) excellent performance

 (cons) computationally expensive

 Student Network(S)
 Small model

 (pros) fast inference

 (cons) lower performance than Teacher Network

Teacher
Network (T)

knowledge
Student

Network (S)
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 Already predicted the dog from model

 But still room to study from other results

 Room to learn from the soft label than hard label

 Possible to figure the difference out between cat and (cow and car)

Knowledge Distillation

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network”, NIPS, 2014, arXiv:1503.02531

0

cow

1

dog

0

cat

0

car
Original label
=hard label

Output softmax
=soft label

cow dog cat car

※ difficult to study with small value
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 Enlarge the softmax value with T(temperature)

 If T is getting large, easy to understand the value

 Because of T, called distillation

Knowledge Distillation

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network”, NIPS, 2014, arXiv:1503.02531

cow dog cat car

Softened output 
softmax
=soft label

cow dog cat car

Output softmax
=soft label



Intelligent Systems Lab.301

Knowledge Distillation

 Distillation loss(how to update Teacher -> Student)

Softmax(T=t)

Softmax(T=t)

Softmax(T=1)

Soft labels

Soft predictions

Hard predictions

Loss 
fn

Loss 
fn

Hard label y
(ground truth)

Distillation loss

Student loss

Input
x

Teacher model

Student model
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UNIVERSITY
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Carnegie Mellon University

 Founded in 1900, Carnegie Technical Schools

 Founder: Andrew Carnegie(Nov 25th, 1835 – Aug 11th, 1919)

 Steel industry / richest Americans in history

 In 1967, Carnegie Institute of Technology and the Mellon 
Institute of Industrial Research

Andrew Carnegie in 1913
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