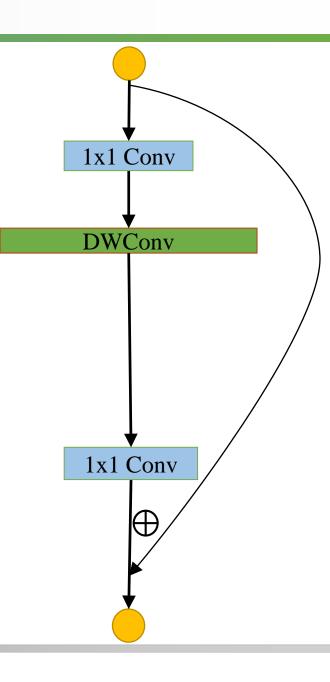
Investigate the Architecture of EfficientNet models

Van-Thanh Hoang Quang Binh University, Vietnam thanhhv@qbu.edu.vn August 05, 2023

Architecture of EfficientNet

Introduction

- EfficientNet can be considered as a family of network models
 - State-of-the-art accuracy on the ImageNet challenge
 - Have much fewer parameters and computation cost
 - > More efficient than most of their predecessors
 - > Network architecture is designed by using neural architecture search
- Family of EfficientNet models is produced by expanding the original EfficientNet-B0 model

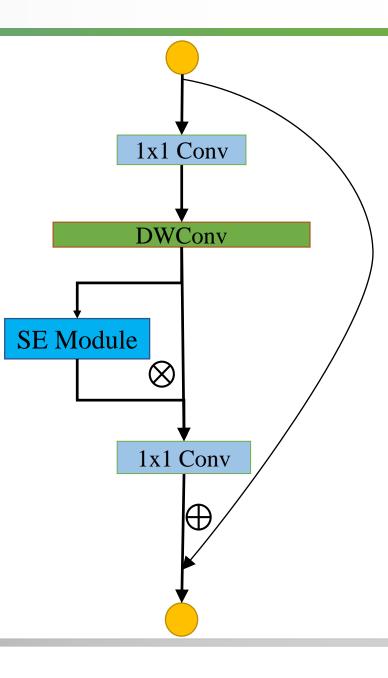

EfficientNet-B0 Architecture

Basic block: MBConv

Stage	Operator	Resolution	#Channels	#Blocks
i	$\hat{\mathcal{F}}_i$	$\hat{H}_i imes \hat{W}_i$	\hat{C}_i	$\hat{L}_{m{i}}$
1	$Conv3 \times 3$	224×224	32	1
2	MBConv1, $K = 3$	112×112	16	1
3	MBConv6, $K = 3$	112×112	24	2
4	MBConv6, $K = 5$	56×56	40	2
5	MBConv6, $K = 3$	28×28	80	3
6	MBConv6, $K = 5$	14×14	112	3
7	MBConv6, $K = 5$	14×14	192	4
8	MBConv6, $K = 3$	7 imes 7	320	1
9	$Conv1 \times 1$ & Pooling	7 imes 7	1280	1
10	Fully Connected	1×1	1000	1

Inverted bottleneck Residual Convolution (MBConv without SE)

- First layer is a 1 × 1 convolution to increase the channel dimension based on a expand ratio
- Second layer is a depthwise Convolution of k × k
- Last 1x1 point-by-point convolution to restore the channel dimension to the original
- There is a skip connection if the sizes of input and output are same



Mobile inverted bottleneck convolution (MBConv)

- First layer is a 1 × 1 convolution to increase the channel dimension based on a expand ratio
- Second layer is a depthwise Convolution of k × k
- Last 1x1 point-by-point convolution to restore the channel dimension to the original
- There is a skip connection if the sizes of input and output are same
- Add SE module right after Depthwise Convolution


Mobile inverted bottleneck convolution (MBConv)

- Has small number of parameters and FLOPS
- Run slower than traditional convolution when performed on high resolution

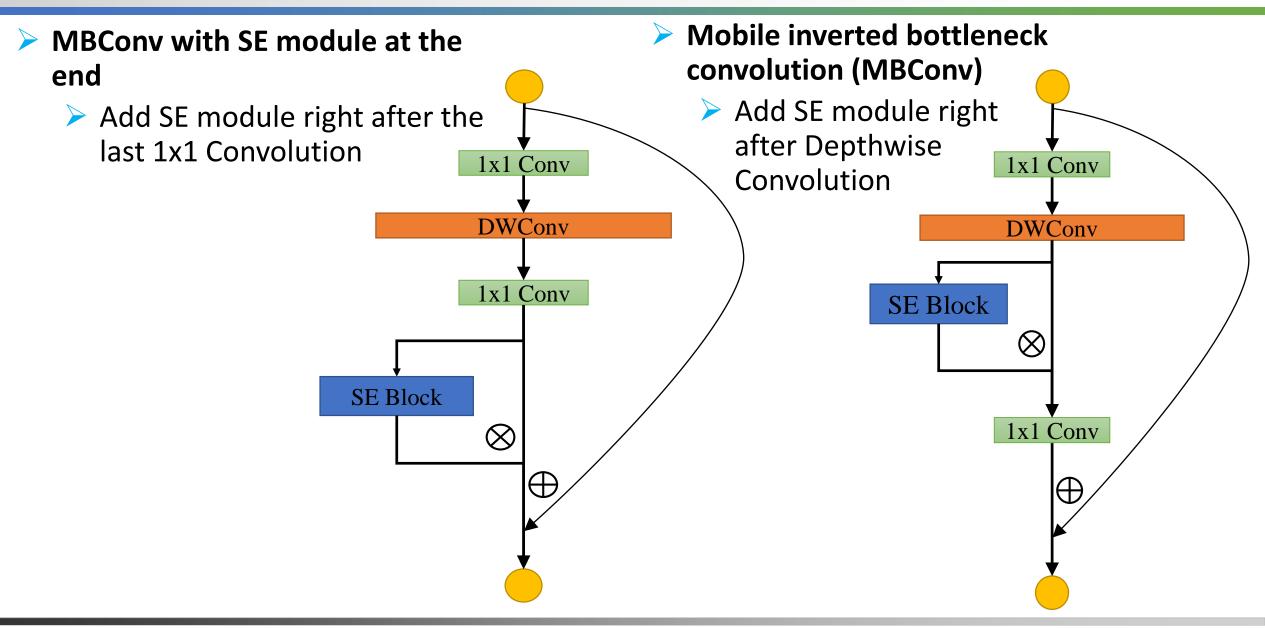
SE module

- Compress each channel to a single numeric value via global average pooling
- A fully-connected layer to add the necessary nonlinearity and decrease the complexity of its output channel by a scale factor
- Second fully-connected layer followed by Sigmoid activation for smooth gating each channel
- Weigh each feature map in the input block based on those result via multiplication operation

ImageNet dataset

- > 1.2 million training images
- > 50,000 validating images
- 1,000 classes

Implementation Details


- Implemented all models on TensorFlow
- > Trained on Google Colab service with TPU environment

Practical Analysis on Architecture of EfficientNet

Introduction

Contributions

- > Create some variations of EfficientNet-B0 by repositioning/removing SE modules
- Evaluate on ImageNet dataset to know the effect of SE modules on the performance of EfficientNet-BO

Results

Model	Block Arch.	#Params	Top-1	Top-5
EfficienNet-B0	Fig. 1b	5.29M	77.2	93.4
EfficienNet-B0-SEend@noskip		5.16M	77.1	93.3
EfficienNet-B0-SEend@hasskip	Fig. 1c	4.91M	76.5	93.2
EfficienNet-B0-SEend@all		4.78M	76.2	92.9
EfficienNet-B0-noSE@noskip		5.11M	77.1	93.4
EfficienNet-B0-noSE@hasskip	Fig. 1a	4.83M	76.6	93.0
EfficienNet-B0-noSE@all		4.65M	75.8	92.7

- noskip: changes applied to MBConv has no skip-connection
- hasskip: changes applied to MBConv have skip-connection
- SEend: MBConv with SE module at the end
- > noSE: MBConv with no SE module
- If changes (re-positioning or removing) are on noskip-blocks, the accuracy slightly drops with just 0.1% while the number of parameters decreases at 3%
- If changes are on hasskip-blocks, the accuracy drops a little bit larger at 0.7% while the number of parameters decreases at 8%
- If all blocks are applied, the accuracy drops much at 1% and 1.4% compared to 12% drop for the number of parameters
- => repositioning SE modules to the end of the blocks is not a good idea

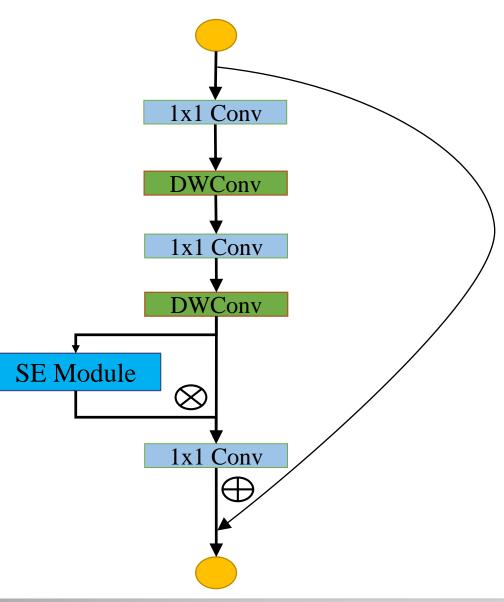
Results

Model	Block Arch.	#Params	Top-1	Top-5
EfficienNet-B0	Fig. 1b	5.29M	77.2	93.4
EfficienNet-B0-SEend@noskip		5.16M	77.1	93.3
EfficienNet-B0-SEend@hasskip	Fig. 1c	4.91M	76.5	93.2
EfficienNet-B0-SEend@all		4.78M	76.2	92.9
EfficienNet-B0-noSE@noskip		5.11M	77.1	93.4
EfficienNet-B0-noSE@hasskip	Fig. 1a	4.83M	76.6	93.0
EfficienNet-B0-noSE@all		4.65M	75.8	92.7

- noskip: changes applied to MBConv has no skip-connection
- hasskip: changes applied to MBConv have skip-connection
- SEend: MBConv with SE module at the end
- > noSE: MBConv with no SE module
- If we reposition the SE modules on only noskip-blocks or hasskip-blocks, the performance is similar to the removing case
- When the change is applied to all blocks, the variant with SE blocks has higher accuracy, 76.2% vs 75.8%
- => SE modules still can improve the accuracy for EfficientNet-BO, but we don't need to use SE modules for all MBConv blocks.

Conclusion

- Investigate the affect of SE module to EfficienNet-BO
 - Repositioning SE module to the end of the block is not a good idea
 - Don't need to use SE module for all MBConv blocks
 - => there is a trade-off need to be further studied to have a more efficient network


Rethinking Mobile Inverted Bottleneck Convolution for EfficientNet

Introduction

Contributions

- Introduce a new module called Mobile Equal channel Convolution
- Proposed network has higher accuracy on ImageNet dataset while still has fewer number of parameters

- Mobile Equal channel Convolution
 - It consists of three 1 × 1 convolution and two k × k depthwise convolution
 - All convolution layers have a same number of channels
 - The SE module after the second Depth-wise convolution layer

> Ablation Study on expanding in blocks with stride=2

Model	# Params	Top-1 (%)	Top-5 (%)
Efficienct-B0 [19]	5.28M	77.21	93.36
Proposed network $(e = 1)$	4.62M	75.11	92.11
Proposed network $(e = 2)$	4.81M	75.90	92.86
Proposed network $(e = 3)$	$5.00\mathrm{M}$	76.48	93.17
Proposed network $(e = 4)$	$5.19\mathrm{M}$	77.03	93.54
Proposed network $(e = 5)$	$5.37\mathrm{M}$	77.22	93.51
Proposed network $(e = 6)$	$5.56\mathrm{M}$	77.49	93.67

> Ablation Study on expanding in blocks with changes in sizes

Model	# Params	Top-1 (%)	Top-5 (%)
Efficienct-B0 [19]	5.28M	77.21	93.36
Proposed network $(e = 1)$	4.08M	75.04	92.34
Proposed network $(e = 2)$	$4.35\mathrm{M}$	76.36	93.14
Proposed network $(e = 3)$	$4.62\mathrm{M}$	77.06	93.49
Proposed network $(e = 4)$	$4.89\mathrm{M}$	77.64	93.66
Proposed network $(e = 5)$	5.16M	77.79	93.79

Ablation Study on expanding in blocks with change in sizes and expand-factor based on the number of output channels

Model	# Params	Top-1 (%)	Top-5 (%)
Efficienct-B0 [19]	5.28M	77.21	93.36
Proposed network $(e = 1)$	4.24M	76.13	92.91
Proposed network $(e = 1.5)$	$4.46\mathrm{M}$	76.65	93.25
Proposed network $(e = 2)$	$4.67\mathrm{M}$	77.26	93.54
Proposed network $(e = 2.5)$	4.89M	77.59	93.67
Proposed network $(e = 3)$	$5.10\mathrm{M}$	77.84	93.72
Proposed network $(e = 3.5)$	$5.31\mathrm{M}$	78.10	93.99

Performance Evaluation

- Proposed network can outperform EfficientNet-B0 and other models
- It has higher accuracy than EfficientNet-B0 while having a similar number of parameters

	-		
Model	# Params	Top-1 (%)	$\begin{array}{c} \text{Top-5} \\ (\%) \end{array}$
MobileNet-0.75[5]	2.59M	68.40	89.49
MobileNetV2-0.75[15]	2.63M	69.19	88.74
DenseNet $1.5 \times [8]$	-	60.10	-
Xception $1.5 \times [1]$	-	70.60	-
CondenseNet $(G=C=8)$ [7]	-	71.00	-
ShuffleNetV1 $1.5 \times (g=3)$ [22]	-	71.50	-
ShuffleNetV2 $1.5 \times [11]$	3.50M	72.60	90.32
MobileNet-1.0[5]	4.23M	70.60	91.29
MobileNetV2-1.0[15]	3.50M	72.00	90.10
DenseNet $2 \times [8]$	-	65.40	-
Xception $2 \times [1]$	-	72.40	-
CondenseNet $(G=C=8)$ [7]	-	73.80	-
ShuffleNetV1 $2 \times (g=3)$ [22]	-	73.70	-
PeleeNet [20]	2.8 M	72.60	90.60
ShuffleNetV2 $2 \times [11]$	7.39M	74.90	91.86
Efficienct-B0 [19]	5.28M	77.21	93.36
Proposed network $(e = 3)$	5.10M	77.84	93.72
Proposed network $(e = 3.5)$	5.31M	78.10	93.99

Conclusion

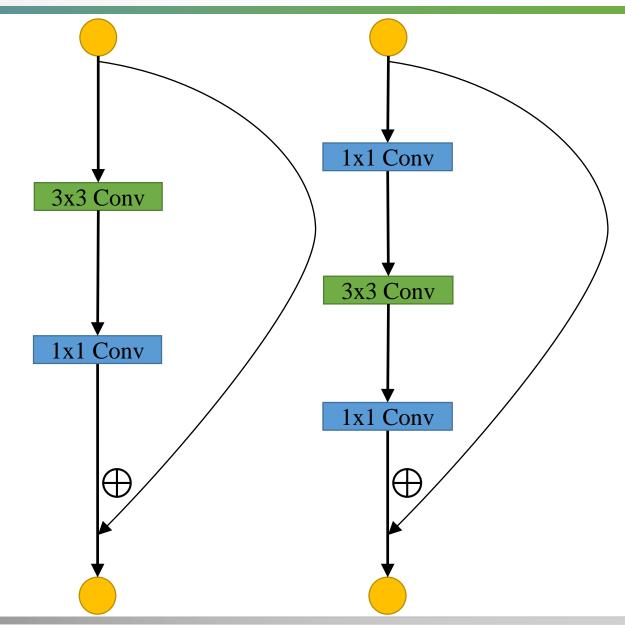
- Proposed new kind of block for EfficientNet called Mobile Equal channel Convolution
- The new block has a same number of channels for all convolution layers inside to make the module more balance
- The experiments show that the new variant can have higher accuracy with lower number of parameters

A Compact version of EfficientNet

Introduction

Contributions

- Proposed a compact version of EfficientNet that has similar accuracy on the ImageNet dataset but runs faster
- > This variation is more friendly for mobile devices


Convolution Blocks Architecture

Conv31 block

- Consist of 2 traditional convolution layer:
 - 3x3 convolution layer
 - 1x1 convolution layer

Conv131 block

- > Consist of 3 traditional convolution layer:
 - 1x1 convolution layer
 - 3x3 convolution layer
 - 1x1 convolution layer

Modifications

- Remove the first MBConv1 block which has resolution of 112 × 112
- Change the second MBConv6 block that has a resolution of 112×112 to the Conv31 block

Stage	Resolution	#Channels	Operator	#Blocks	Stage	Resolution	#Channels	Operator	# Blocks
i	$\hat{H}_i imes \hat{W}_i$	\hat{C}_i	$\hat{\mathcal{F}}_i$	\hat{L}_i	i	$\hat{H}_i imes \hat{W}_i$	\hat{C}_i	$\hat{\mathcal{F}}_i$	\hat{L}_i
1	224×224	32	Conv3x3	1	1	224×224	24	Conv3x3	1
2	112×112	16	MBConv1, k3x3	1	2	112×112	24	MBConv3, k3x3	1
3	112×112	24	MBConv6, k3x3	2	3	112×112	24	Conv31, k3x3	1
4	56×56	40	MBConv6, k5x5	2	4	56×56	40	MBConv6, k5x5	2
5	28×28	80	MBConv6, k3x3	3	5	28 imes 28	80	MBConv6, k3x3	3
6	14×14	112	MBConv6, k5x5	3	6	14×14	112	MBConv6, k5x5	3
7	14×14	192	MBConv6, k5x5	4	7	14×14	192	MBConv6, k5x5	4
8	7×7	320	MBConv6, k3x3	1	8	7 imes 7	320	MBConv6, k3x3	1
9	7×7	1280	Conv1x1 & Pooling	1	9	7 imes 7	1280	Conv1x1 & Pooling	1
10	1×1	1000	\mathbf{FC}	1	10	1×1	1000	FC	1

EfficientNet-B0

Proposed Network

Performance Evaluation

- The lite and compact versions have a slightly higher error compared to the original EfficientNet-B0 they can run 2 times faster.
- The compact version can achieve performance similar to that of the lite version while running 10% faster

Madal	#Params	#FLOPS	Top-1	Top-5	Speed
Model	(10^6)	(10^{6})	(%)	(%)	(ms)
EfficientNet-B0	5.61	391.71	24.86	7.81	53.94
EfficientNet-B0-lite	4.97	385.69	26.75	8.72	37.69
EfficientNet-B0-compact	4.97	387.10	26.95	9.01	31.17

- > Ablation study on stage 2
 - When remove the stage from the original, it runs fastest while the error is similar to the original

> Ablation study on stage 3

When we adopt the Conv31 architecture, the accuracy does not change much, but the speed of the model can be 10% faster

Architecture	#Params	#FLOPS	Top-1	Top-5	Speed
of stage 2	(10^6)	(10^{6})	(%)	(%)	(ms)
MBConv1	4.97	385.69	26.75	8.72	37.69
$DWConv3 \times 3$	4.97	398.54	26.68	8.64	37.39
Conv3×3	4.98	433.32	26.68	8.71	36.20
Conv1×1	4.97	381.94	27.21	8.92	35.93
Remove	4.97	394.78	26.78	8.87	34.39

Architecture	#Params	#FLOPS	Top-1	Top-5	Speed
of stage 3	(10^6)	(10^{6})	(%)	(%)	(ms)
MBConv1	4.97 🕞	394.78	26.78	8.87	34.39
Conv131	4.97	388.91	27.11	8.95	31.64
Conv31	4.97	387.10	26.95	9.01	31.17

Conclusion

- Proposed the EfficientNet-B0-compact model
 - Remove the first MBCon1 block
 - Change the second MBConv block to a Conv31 block.
- The proposed model has a similar accuracy but is faster than the original EfficientNet-BO and EfficientNet-BO-lite model

Thank you for attention!

Introduction

Standard Convolution can be replaced by Depthwise Separable Convolution consists of:

- Depthwise Convolution (DWConv): a spatial convolution performed independently over each channel to obtain spatial information
- Pointwise Convolution: a 1x1 convolution, to obtain cross-channel information

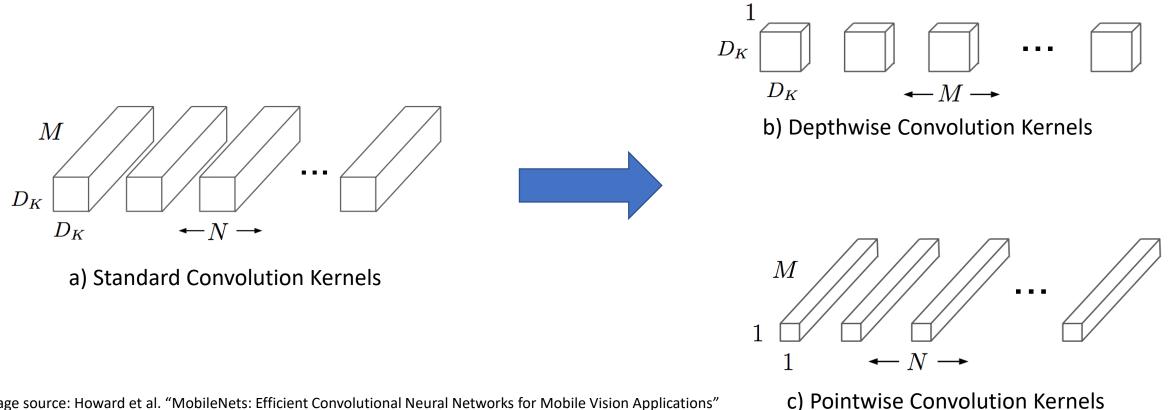


Image source: Howard et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"