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Abstract

Multi-object tracking in unmanned aerial vehicle (UAV)
videos is an important vision task and can be applied in a
wide range of applications. However, conventional multi-
object trackers do not work well on UAV videos due to
the challenging factors of irregular motion caused by mov-
ing camera and view change in 3D directions. In this pa-
per, we propose a UAVMOT network specially for multi-
object tracking in UAV views. The UAVMOT introduces
an ID feature update module to enhance the object’s fea-
ture association. To better handle the complex motions un-
der UAV views, we develop an adaptive motion filter mod-
ule. In addition, a gradient balanced focal loss is used to
tackle the imbalance categories and small objects detection
problem. Experimental results on the VisDrone2019 and
UAVDT datasets demonstrate that the proposed UAVMOT
achieves considerable improvement against the state-of-
the-art tracking methods on UAV videos.

1. Introduction
Multi-object tracking (MOT) is a fundamental task in

computer vision and is widely used in numerous appli-
cations [30, 33], such as autonomous driving, intelligent
transportation system, and advanced video analysis. MOT
methods [5, 45] typically follow the tracking by detection
paradigm which includes two steps: detection and data as-
sociation. The detection step generates potential box pre-
dictions of the target objects in every frame while the data
association step matches the predicted boxes of the same
target across frames based on appearance and motion cues
[18]. Recently, multi-object tracking in UAV views has
aroused the keen interest of researchers [1, 31, 39, 51] due
to the convenience and dexterity of unmanned aerial vehi-
cle (UAV) [9].

Despite the progress made in conventional multi-object
tracking (usually tested on the videos captured in a static
view), multi-object tracking under the moving UAV views is
still challenging. As illustrated in Fig. 1, there are two criti-
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Figure 1. Challenges of MOT on UAV videos. Detection stage:
the categories of objects in UAV videos are imbalanced and most
of the targets under a UAV view are small. Data association stage:
appearance and motion of objects change irregularly and rapidly
due to the moving of the UAV camera.

cal problems need to be solved urgently in the detection and
data association stages. In the detection stage, there are usu-
ally multiple categories of objects in a moving UAV view
and the object numbers of each category are extremely im-
balanced, which makes the training of the detection model
difficult. In addition, most of the objects in UAV videos are
small due to the high altitude of UAV, which further aggra-
vates the difficulty of the detection task. In the data asso-
ciation stage, the challenge lies in the inconsistent appear-
ance and motion information of the target objects which is
caused by irregular and fast camera motion and usually re-
sults in ID switches. The object motion in UAV videos is a
superposition of object movements and the motion of UAV
which is irregular and hard to be modelled by the traditional
Kalman filter.

In this paper, we propose a novel multi-object tracker,
named UAVMOT network, for multi-object tracking on
moving UAV videos. To enhance ID embedding features
of objects, we construct an ID feature update (IDFU) mod-



ule, where the correlation technology [12] is used to rele-
vant adjacent frame features and the ID embedding features
would be updated with the UAV views changing. To tackle
the issues caused by UAV motions, we develop an adap-
tive motion filter (AMF), where an motion mode is used to
judge the UAV motion mode and applies different tracking
strategies according to the motion mode. Particularly, a lo-
cal relation filter is specially designed to handle the irregular
motions of UAV, which grasps the invariant characteristics
that do not change with the UAV moving. Furthermore, to
alleviate the issues of imbalanced categories classification
and small-scale objects detection, we propose a gradient
balanced focal (GBF) loss to supervise the heatmaps learn-
ing. The GBF loss combines the equalization loss [29] to
balance the imbalanced categories and enhances the small-
scale objects detection ability.

We conduct experiments on two public benchmark
datasets, i.e., VisDrone2019 dataset [52] and UAVDT
dataset [13] to evaluate the proposed algorithm. The ex-
perimental results demonstrate that the proposed UAVMOT
can accurately track multiple objects in the view of UAV.
The key motivation of this work is that a novel multi-object
tracker is specifically designed for UAVs. It fully considers
the object characteristics in UAV video perspectives, and
makes corresponding improvements for multi-object track-
ing task. The main contributions of this article are summa-
rized as follows:

• We propose an ID feature update module to enhance
object ID embedding features, which could update ID
features adaptively with UAV changing views.

• We develop an adaptive motion filter for complex mo-
tion tracking of objects in UAV videos, which adap-
tively switches motion filters to adapt to the movement
of UAV.

• We design a novel gradient balanced focal loss to su-
pervise the learning of objects’ heatmaps, which not
only considers the imbalanced categories but also fo-
cuses on the small-scale objects in UAV videos.

2. Related work
In this section,we discuss the recent multi-object track-

ing methods and studies on the data association problem.
Multi-object tracking. The early MOT algorithms follow
the two-stage framework of tracking by detection paradigm.
The first step is to detect all targets in each video frame and
the second step is to associate these detected objects. For
example, SORT [3] uses Fast RCNN [15] to detect targets in
each frame image, and then uses Kalman filter and Hungar-
ian matching algorithm to complete multiple objects data
association. Deep SORT [40] is improved on the basis of

SORT, and the idea of cascade matching is proposed to fur-
ther improve the accuracy of multi-object tracking. To bal-
ance the accuracy and speed of MOT, researchers begin to
propose single-stage multi-object tracking algorithms. The
main framework of the single-stage multi-object tracking
algorithm is to add an embedding vector on the detector’s
head for ReID learning, and this embedding vector is used
for multi-object data association in the later stage. For ex-
ample, JDE [37] extracts a feature vector from feature maps
of YOLOv3 [26] for the first time. FairMot [46] adds the
learning of embedded vector on the basis of CenterNet [50],
to form a multi-target tracker, and achieves good accuracy
and speed. CenterTrack [49] directly predicts the displace-
ment of the target’s center point.

Recently, transformer technology begins to apply in
computer vision and has a good performance on various vi-
sion tasks. As for multi-object tracking, researchers regard
each tracked target as a query, which contains its ID fea-
tures and geometric information [8,22,28,43]. For example,
Sun et al. [28] propose TransTrack, which applies the trans-
former technology to the MOT task firstly and builds on the
DETR [6] detector. Zeng et al. [43] propose the MOTR to
achieve an end-to-end multi-object tracker, which correlates
times association in several frames implicitly. Chu et al. [8]
propose TransMOT to combine transformer and graphs.

Data association. Data association [44] is a critical step in
MOT, especially in the tracking by detection paradigm. It
associates the detected objects between two different frames
and gives the same object the same ID number. Generally
speaking, the data association mainly follows two critical
clues: object features and motion laws. For object appear-
ance, similar to the ReID task [47], researchers extract each
object’s features to distinguish different objects. For exam-
ple, JDE predicts an ID embedding vector to represent the
object ID features. For object motion laws, various filtering
methods are used to track the objects, such as the Kalman
filter [38], Particle filter [20].

Besides, some researchers covert the data association
problem into graph matching problem [21, 27, 32, 35]. Fist,
the multi-object tracking process is built into one graph,
where each detected object as a node and edges indicate
the relation between two detected objects. Then, the graph
matching problem can be solved by the min cost global opti-
mization. For example, He [16] et al. propose a novel learn-
able graph matching method for multiple crowds tracking,
which focus on the relationship in intra frame and achieves
end-to-end optimization. Wang [36] et al. propose a method
that combines the graph networks avoiding the additional
data association. Although the graph matching technology
can effectively solve the matching problem, it consumes
huge computing resources. The proposed adaptive motion
filter also considers the relationship between objects, but its
form is more concise and the amount of calculation is less.
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Figure 2. An overview of the proposed UAVMOT. In a UAV video sequence {It ∈ RW×H×3}Tt=1, take two adjacent frame images It and
It−1 as input, the UAVMOT uses DLA34 as backbone to extract object features. In object detection head, three parallel branches are built
for object bounding boxes sizes (width and height) wh, objects’ heatmaps Hm, and tracking ID embedding features FID , respectively. In
the ID embedding feature branch, an ID feature update (IDFU) module is proposed to enhance the ID features learning. In the tracking
stage, we design an adaptive motion filter (AMF) to track the objects according to the moving of UAV adaptively. Besides, we propose a
gradient balanced focal loss to alleviate the imbalanced categories problem and enhance the small objects detection capacity.

Long tailed object distribution. Long tailed object distri-
bution is a common phenomenon in the real word. The head
categories have a large number instances but the tail cate-
gories have a few instances. The long trailed distribution
brings huge difficulties for object classification, because the
network pays more attention to the head categories while
neglecting the tailed categories in network training.

To tackle the imbalance of categories, many researchers
propose a series of approaches in the literature. On the
one hand, some researchers consider it from the perspec-
tive of the loss function. For example, Feng [14] et al. uti-
lize mean classification score to indicate the classification
learning status and propose an equilibrium loss to balance
the classification. Wang [34] et al. propose an adaptive
class suppression loss avoiding complex manual grouping.
Hsieh [17] et al. propose an adaptive DropLoss for object
instance segmentation. On the other hand, some researchers
consider the long trailed problem from the perspective of
training strategy. For example, Yu et al. [42] propose a dual
sampler to perform biased sampling on object proposals for
tail and head classes respectively. Zhou et al. [48] propose
a novel cumulative learning strategy for classification.

3. UAVMOT Network
3.1. Overall Framework

Given a video sequences {It ∈ RW×H×3}Tt=1 captured
by the moving UAV, our UAVMOT aims to propose the
categories {C}Ni=1, bounding boxes {B}Ni=1 and tracking

identification {ID}Ni=1 of N objects. The overall frame-
work of UAVMOT is illustrated in Fig. 2. We fed two ad-
jacent frame images It−1 and It into UAVMOT network.
The two adjacent frames go through the shared feature ex-
traction network and detection head to finish the object de-
tection. The detection head consists of object bounding box
size wh, heatmaps Hm, and tracking ID embedding fea-
tures FID. We propose an ID feature update (IDFU) mod-
ule to strengthen the ID embedding features connection be-
tween two adjacent frames. We build an adaptive motion fil-
ter (AMF) to tackle the objects’ complex motions in moving
UAV videos. Besides, to alleviate the imbalanced categories
and enhance small-scale objects detection capacity, we pro-
pose a gradient balanced focal (GBF) loss to supervise the
learning of objects’ heatmaps.

3.2. ID Feature Update

In UAVMOT, the ID embedding features are used to
identify the ID information of each object and are critical
for the data association. However, The characteristics of
the objects will change with the UAV moving, which are
not conducive to ID embedding features learning and harm-
ful to later feature association. To enhance objects features
association, inspired by correlation layer in [12,19], we pro-
pose an ID feature update (IDFU) module for ID embedding
features learning in two adjacent frames. The IDFU module
extracts the previous frame object features to associate with
current frame features, which can adaptively update the ID
embedding features in various UAV views.
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Figure 3. Architecture of IDFU module. The IDFU module con-
sists of three stages: First stage, previous frame features extrac-
tion. Second stage, two adjacent frame features correlation. Third
stage, ID embedding features update.

As illustrated in Fig. 3, the IDFU module consists of
three stages. First, we extract the object ID embedding fea-
tures F t−1

ID in previous frame It−1. To simplify the fea-
ture computing, we only extract top K keypoints ID em-
bedding features FKt−1

ID by selecting corresponding top K
points in the heatmaps. And the FKt−1

ID is compressed
from 128 to 16 dimensions to obtain the compress ID fea-
tures FCt−1

ID for the following feature update. Second, we
get feature enhance attention weights WA via two adja-
cent frames features correlation operation. This correla-
tion attention weights WA guide the network where should
be focused on in current frame. The WA are future com-
bined with FCt−1

ID by multiplication and obtain the previous
frame attention features FAt−1

ID through a series operations.
Finally, the attention features FAt−1

ID incorporate current
frame ID embedding features F t

ID, and through convolu-
tion to finish object ID embedding features update.

3.3. Adaptive Motion Filter

In UAV video sequences, the object movement is no
longer a linear motion, but a nonlinear motion formed by
the coupling of the motion of the UAV and the object itself.
The traditional Kalman filter is difficult to deal with this ir-
regular motion, we propose an adaptive motion filter (AMF)
to handle the complex UAV movement. The AMF module
adaptively switches different filters according to different
motion modes of UAV, which can accurately complete the
object ID association.
UAV motion mode selective. According to the movement
of UAV, the motion of objects in UAV videos can be roughly
divided into two modes: normal mode and abnormal mode.
In normal mode, the UAV flies smoothly and normally in the
sky, and the objects’ movement in the video can be regarded
as approximate linear motion; In abnormal mode, the UAV
rotates or accelerates suddenly, and the objects movement
in UAV videos presents a kind of nonlinear motion. Partic-

ularly, we perform Kalman filter on the objects between two
adjacent frames and compute the objects matching number.
When the matching number is higher than a certain thresh-
old p, we consider it as normal mode, and vice versa. The
AMF module adopts IoU association and local relation filer
in two motion modes, respectively.

Local relation filter. The local relation filter aims to cre-
ate a filter, avoiding being affected by the external motion
of the UAV. Fortunately, we notice that the positional rela-
tionship between objects stays basically invariant in a local
area between two adjacent frames. To make good use of
this permanent characteristic of local positional relation, we
propose a local relation filter.

The local relation filter designs a relative relation vector
v to describe the positional relationship between the object
and the surrounding objects in a local area. There are many
relative positional relationships around each object, to sim-
plify the calculation, the relative relation vector v only con-
sists of three elements: the length lmax from the farthest
object, the length lmin from the nearest object and include
angle θ between these two objects in the local area. As illus-
trated in Fig. 4, we draw two frames of detected objects dis-
tribution and each dot represents a detected object. Take the
red dot P1 as an example, take it as the center point and the
circle with the radius of R as the local area of P1. In the lo-
cal area, find the nearest point P2 and the farthest point P8.
We present the relative relation vector v = [θ, lmax, lmin]
and v′ = [θ′, l′max, l

′
min] in two adjacent frames, respec-

tively. Obviously, the relative relation state vector remains
invariant basically without affecting by UAV moving.
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Figure 4. Schematic diagram of relative relation vector.

When switching to the abnormal mode, we calculate the
relative relation vector of detected objects and combine it
with the ID embedding features to construct the similarity
matrix. Then, this similarity matrix is used for Hungarian
matching to complete ID matching. The overall UAVMOT
algorithm can be summarized as Algorithm 1.



Algorithm 1 UAVMOT algorithm

Input: An UAV video sequences {It ∈ RW×H×3}Tt=1

Output: The tracked objects Tt = {Bt, Ct, IDt}
1: while (t<T) do
2: Input two adjacent frames images It−1, It.
3: Finish object detection, obtain two frames detected

objects Ot−1 = {Bt−1, Ct−1}, Ot = {Bt, Ct}.
4: Obtain ID embedding features F t−1

ID , F t
ID, finish

the feature association.
5: Kalman filter and judge the object motion mode.
6: if normal mode then
7: IoU association.
8: else
9: Local relation filter.

10: end if
11: Matching algorithm, get IDt.
12: end while

3.4. Gradient Balanced Focal Loss

The environment in UAV videos is far more complex
than the traditional multi-object tracking on crowds, in
which two prominent problems affect the performance of
detection: imbalanced categories and small-scale objects
detection. To tackle these two problems, we propose a
gradient balanced focal (GBF) loss to supervise objects’
heatmaps learning. The GBF loss not only alleviates the im-
balance between categories but also pays attention to small-
scale objects.

Wb

Ws

C

H

W

𝐿𝐿𝐻𝐻𝐻𝐻

Figure 5. Schematic diagram of GBF loss.

Particularly, the GBF loss is improved on the original
Cross-Entropy loss LHm and two adaptive wights are de-
signed to reweight the loss for objects heatmaps learning:
categories balanced weights Wb and small-scale object at-
tention weights Ws. As illustrated in Fig. 5, Wb is used
to balance the categories and Ws is used to focus on the
small-scale objects. These two adaptive loss weights adjust
its self considering on the imbalanced categories and the

sizes of objects, respectively. The GBF loss is defined as:

GBF = Wb ·Ws · LHm (1)

The small-scale object attention weights Ws focus on
the small-scale objects, and give the small object a larger
weight. Particularly, we measure the size of objects by the
area of the bounding box, so the Ws is defined as:

Ws = e−(w·h−µ) + 1 (2)

where w and h indicate the width and height of object
bounding box, respectively. The µ = 5 in this article.

The categories balanced weights Wb give different
weights to positive samples and negative samples accord-
ing the corresponding gradients, and the Wb is defined as:

Wb = pos w ·Hm+ neg w · (1−Hm) (3)

where pos w and neg w indicate the weights of positive
samples and negative samples, respectively. They will up-
date adaptively with the network training and the specific
update process can be referred to [29].

4. Experiments

4.1. Dataset and Metrics

Dataset. To validate the effectiveness of UAVMOT, we
conduct a series of experiments on VisDrone2019 dataset
and UAVDT dataset.

VisDrone2019 dataset [52] is used for tracking and de-
tection in UAV views. In MOT task, the VisDrone2019
dataset consists of training set (56 sequences), validation
set (7 sequences) and test set (33 sequences (test-challenge:
16 sequences, test-dev: 17 sequences)). In each frame,
every object is annotated by bounding box, category and
tracking ID. The VisDrone2019 dataset includes ten cate-
gories: pedestrian, person, car, van, bus, truck, motor, bicy-
cle, awning-tricycle, and tricycle. During the multi-object
tracking evaluation, we only consider five object categories,
i.e., car, bus, truck, pedestrian, and van.

UAVDT dataset [13] is specially used for vehicle object
detection and tracking, and it consists of three categories:
car, truck, and bus. In MOT task, it divides into training set
(30 sequences) and test set (20 sequences). And it only con-
siders a single category car. The video images have a res-
olution of 1080 × 540 pixels and includes various common
scenes, such as squares, arterial streets and toll stations.

Metrics. To evaluate our proposed UAVMOT with other
state-of-the-arts approaches, we adopt multiple metrics to
measure the performance of tracking [23], such as multiple
object tracking accuracy (MOTA), multiple object tracking



Dataset Method MOTA↑(%) MOTP↑(%) IDF1↑(%) MT↑ ML↓ FP↓ FN↓ IDs↓ FM

VisDrone2019

MOTDT [7] -0.8 68.5 21.6 87 1196 44548 185453 1437 3609
SORT [3] 14.0 73.2 38.0 506 545 80845 112954 3629 4838
IOUT [4] 28.1 74.7 38.9 467 670 36158 126549 2393 3829
GOG [25] 28.7 76.1 36.4 346 836 17706 144657 1387 2237

MOTR [43] 22.8 72.8 41.4 272 825 28407 147937 959 3980
TrackFormer [22] 25 73.9 30.5 385 770 25856 141526 4840 4855

Ours 36.1 74.2 51.0 520 574 27983 115925 2775 7396

UAVDT

CEM [24] -6.8 70.4 10.1 94 1062 64373 298090 1530 2835
SMOT [10] 33.9 72.2 45.0 524 367 57112 166528 1752 9577
GOG [25] 35.7 72 0.3 627 374 62929 153336 3104 5130
IOUT [4] 36.6 72.1 23.7 534 357 42245 163881 9938 10463
CMOT [2] 36.9 74.7 57.5 664 351 69109 144760 1111 3656
SORT [3] 39 74.3 43.7 484 400 33037 172628 2350 5787

DSORT [40] 40.7 73.2 58.2 595 338 44868 155290 2061 6432
MDP [41] 43.0 73.5 61.5 647 324 46151 147735 541 4299

Ours 46.4 72.7 67.3 624 221 66352 115940 456 5590

Table 1. Quantitative comparisons between our method and other methods for multi-object tracking task on VisDrone2019 test-dev set and
UAVDT test set.

precision (MOTP), ID switching (IDs) and and other met-
rics.

MOTA = 1− FP + FN + IDs

GT
(4)

where FP, FN and GT are the number of false positive sam-
ples, false negative samples and ground truth.

4.2. Implementation Details

Training. We utilize random crop, random scaling (be-
tween 0.6 to 1.3) as data augmentation. We use multiple
loss functions for careful supervision and the initial learn-
ing rate sets to 7e-5. We train the network 30 epochs in
total and the learning rate decays 10 times at 10 epochs and
20 epochs, respectively. We conduct experiments on two
GeForce RTX 2080Ti GPUs with batch size 4. In multiple
loss functions, L1 loss is used to supervise the object width
and height. Crossentrpy loss and triplet loss [11] are used to
deal with the object ID. Besides, we use the proposed GBF
loss to supervise the object heatmaps.
Inference. The UAVMOT follows the tacking by detec-
tion paradigm. At the detection phase, the detection score
threshold is set to 0.4 and the number K is set to 100 in
IDFU module. At the tracking phase, the threshold p is set
to 0.6 in the AMF module.

4.3. Comparison with State-of-the-arts

VisDrone2019 dataset. We compare our method with pre-
vious methods on VisDrone2019 dataset for MOT task. We
train the training set together with the validation set and
evaluate our approach on VisDrone2019 test-dev set using
the official VisDrone MOT toolkit. As illustrated in Tab. 1,
our method achieves 36.1% on MOTA and 51.0% on IDF1,

which outperform the exiting approaches on VisDrone2019
test-dev set.

UAVDT dataset. We also compare our method with other
methods on UAVDT test set for the MOT task. We train
the UAVMOT network using UAVDT training set and eval-
uate our approach on UAVDT test set. we list a series of
indicators such as MOTA, MOTP and IDF1 to compare the
performance of our method with other methods. As illus-
trated in Tab. 1, our method achieves 46.4% on MOTA and
67.3% on IDF1, and gets significantly better results against
existing methods.

4.4. Ablation Study

In this section, we conduct a series of ablation experi-
ments on VisDrone2019 validation set and test-dev set to
verify each module of UAVMOT. In ablation experiments,
we use FairMot as the baseline model and the DLA-34 as
the backbone network.

Baseline IDFU AMF GBF MOTA↑(%) IDs↓ IDF1↑(%)

✓ 20.1 2079 40.6
✓ ✓ 23.3 1974 43.8
✓ ✓ ✓ 23.7 867 45.5
✓ ✓ ✓ ✓ 26.7 969 45.8

Table 2. Ablation study on VisDrone2019 validation set.

As illustrated in Tab. 2, there are three core components
in UAVMOT, IDFU module, AMF module and GBF loss,
we report three critical metrics of each module on the Vis-
Drone2019 validation set. The baseline model gets 20.1%
on MOTA, 40.6% on IDF1 and 2079 on IDs. Adding the
IDFU module to the baseline model, the MOTA improves
to 23.3%, the IDs decreases to 1974 and achieves 43.8%



on IDF1. Adding on the IDFU module and AMF module to
the baseline model, the MOTA improves to 23.7%, the IDF1
improves to 45.5% and the IDs decreases from 1974 to 867.
Adding all three modules, our UAVMOT model achieves
26.7% on MOTA and 45.8% on IDF1.
Effectiveness of IDFU module. The IDFU module en-
hances the ID embedding features association, which can
effectively adapt to the change of UAV view. To evaluate
the effectiveness of IDFU module, we list four critical ID
association indicators (IDS, IDF1, IDP, IDR) on the base-
line model and the baseline+IDFU model, respectively. As
illustrated in Tab. 3, The IDs from 2079 decreases to 937.
The IDF1, IDP and IDR increase from 40.6%, 53.2% and
32.8% to 43.8%, 57.9% and 35.3%, respectively. The re-
sults demonstrate that the IDFU model has a good effect on
the data association, which can grasp the objects’ characters
accurately in moving UAV videos.

IDs↓ IDF1↑(%) IDP↑(%) IDR↑(%)

Baseline 2079 40.6 53.2 32.8
Baseline+IDFU 937 43.8 57.9 35.3

Table 3. Analysis of the effectiveness of IDFU module. We report
the results in terms of IDs, IDF1, IDP and IDR on VisDrone2019
validation set.

Effectiveness of AMF module. the AMF module can au-
tomatically switch the tracking filter mode according to the
motion of UAV. To evaluate the effectiveness of AMF, we
list ID association indicators (IDS, IDF1) and detection in-
dicators (recall rate, precision rate) on the baseline model
and the baseline+ADA model, respectively. As illustrated
in Tab. 4, The IDs from 2079 decreases to 1048 and the
IDF1 increases from 40.6% to 44.1%. Besides, the recall
increases from 41.5% to 46.5% and the precision slightly
decreases from 67.4% to 66.6%. The results demonstrate
that the AMF module has a good effect on the data associa-
tion, and the contribution mainly comes from the improve-
ment of recall rate.

IDs↓ IDF1↑(%) Recall↑(%) Precision↑(%)

Baseline 2079 40.6 41.5 67.4
Baseline+AMF 958 44.1 46.5 66.6

Table 4. Analysis of the effectiveness of AMF module. We report
the results in terms of IDs, IDF1, recall rate and precision rate on
VisDrone2019 validation set.

Effectiveness of GBF loss. To verify the effectiveness of
gradient balanced focal loss, we compare the MOTA of
each category between the baseline model and after using
GBF loss. As illustrated in Fig. 6, each category in Vis-
Drone2019 test-dev set has a great improvement on MOTA

after the baseline using GBF loss, especially the tail cate-
gories, ie, the van from 4.6% improves to 11.7% on MOTA,
the truck from 16.3% improves to 25% on MOTA. Besides,
the small-scale category (pedestrian) from 14.2% improves
to 20.2% on MOTA. These results demonstrate that the GBF
loss can effectively improve the MOTA of small number
categories and small-scale objects.
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Figure 6. Analysis of the effectiveness of GBF loss. We report the
MOTA of each category in VidsDrone2019 test-dev set.

4.5. Case Study

To better prove the advantages of UAVMOT in moving
UAV videos, we analyze three UAV special motion cases:
UAV hovers in the sky, turns left and right, moves up and
down suddenly.
UAV hovers in the sky. When the UAV hovers in the sky,
the position of objects captured in the UAV videos will ro-
tate with the UAV hovering. we compare the visualization
results of UAVMOT with the FairMOT on this special case,
As illustrated in Fig. 7, the FairMOT could not track the
cars when the UAV rotates quickly in the sky, but UAVMOT
can accurately track the cars without being affected by the
rotation of UAV.
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Figure 7. Analysis of the special case: UAV hovers in the sky.

UAV moves up and down. When the UAV moves up sud-
denly, the objects sizes in UAV videos will become small
and are difficult to be detected. As illustrated in Fig. 9,
the UAV moves up suddenly and the objects in the video
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Figure 8. Visualization of tracking results on Visdrone2019 and UAVDT datasets.

become small, especially the pedestrian and the cars in the
distance, these objects are difficult to be tracked in the Fair-
MOT but are accurately tracked in UAVMOT.
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Figure 9. Analysis of the special case: UAV moves up and down.

UAV turns left and right. When the UAV turns left and
right suddenly, the captured images in UAV videos will be-
come blurred and the original motion trend law will be bro-
ken. As illustrated in Fig. 10, the FairMOT could not track
the cars when the UAV turns right quickly, but UAVMOT
can accurately track the cars without being affected by the
turns of UAV.

4.6. Visualization

To show the effectiveness of our method more intuitively,
we draw the tracking results on VisDrone2019 test-dev set
and UAVDT test set. As illustrated in Fig. 8, the UAVMOT
can well adapt to the moving UAV environment, small-
scale objects are accurately detected and the multiple ob-
jects tracking results are not affected by UAV motion.The
visualization results demonstrate that UAVMOT can well
complete MOT task on UAV videos.
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Figure 10. Analysis of the special case: UAV turns left and right.

4.7. Limitations

The UAVMOT network can complete multi-object track-
ing task effectively in moving UAV videos. Due to the
MOT algorithm is loaded in the moving UAV and limited
hardware of mobile equipments, the parameters and run-
ning speed of the algorithm should be matched with the
UAV equipment. The UAVMOT network performs 12 FPS
on DLA34 backbone network with a video resolution of
1920 × 1080, we will explore a smaller parameters model
to obtain real-time running speed on the mobile UAV equip-
ment in the future.

5. Conclusions

This paper proposes a novel UAVMOT network for
multi-object tracking in UAV videos. In UAVMOT, an ID
feature update module is designed to enhance the ID embed-
ding features learning. To adapt to the complex UAV mo-
tions, the adaptive motion filter gives different motion filters
to different motion modes. Besides, a gradient balanced fo-



cal loss is proposed to supervise the objects’ heatmap learn-
ing, which not only considers the imbalanced categories but
also focus more attention on small-scale objects. We con-
duct a series of experiments on VisDrone2019 and UAVDT
datasets, and compare UAVMOT with other methods. The
results demonstrate that our method achieves state-of-the-
art performance on UAV videos for MOT task.
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