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Abstract. This paper introduces the development of a essential deep
learning model for surveillance systems utilizing high-mounted CCTV
or drones. Objects seen from elevated angles often look smaller and may
appear at different angles compared to ground-level observations. To im-
prove the detection of small objects, we propose a network incorporating
an element-wise multiplication module based on the vanilla Vision Trans-
former (ViT) architecture [1]. However, traditional transformer models
need significant computational resources, which may not be practical
for edge devices like CCTV cameras or drones. Therefore, we apply the
Attention-Free Transformer (AFT) [2] to reduce computational require-
ments enabling real-time operation on low-capacity devices. We validate
the performance by combining ViT and AFT with the YOLOv5 real-time
object detection model. Practical applicability is confirmed by imple-
menting it on the low-capacity device named ODROID H3+. Validation
datasets include Autonomous Driving Drone [3], VisDrone [4], Aerial-
Maritime [5], and PKLot [6], all containing numerous small-sized objects.
Experimental results on VisDrone dataset show that YOLOv5 [7] nano
+ AFT reduces parameter count by 4.6% while increasing accuracy by
1%, making it an efficient network. The model size is suitable for edge
device implementation at 3.7Mb. Similarly, Aerial Maritime and PKLot
datasets indicatge decreased amount of parameters and increased accu-
racy. Hence, the proposed deep learning model is applicable for aerial
surveillance systems.

Keywords: Small object detection · attention-free transformer · edge
device · aerial surveillance system.

1 Introduction

In recent years, surveillance systems utilizing cameras mounted on drones and
aerial platforms, as well as CCTV, have significantly advanced. Primarily, images
captured from a bird’s eye view (BEV) offer the advantage of a wide surveillance
range, allowing the observation of many objects simultaneously. This presents
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new possibilities for various systems including urban monitoring, traffic manage-
ment, environmental observation, and emergency response. However, such sys-
tems have the challenge of the small size of objects within the captured images.
Additionally, the complex background makes it difficult to identify small-sized
objects. This paper proposes a deep learning model that can effectively detect
objects when providing surveillance systems and various services using cameras
mounted on drones and aerial platforms.
Object detection is a fundamental task in computer vision and artificial intel-
ligence. Many researchers have implemented real-time object detection systems
using the YOLO family [7–10], a Convolutional Neural Network (CNN)-based
deep learning model. However, there has been a significant shift from CNN-based
architectures to Transformer-based structures [1] in recent deep learning mod-
els, achieving remarkable improvements in object detection performance. The
main drawback of Transformers is their high computational cost and memory
demand. For mobile entities like drones, the computational cost and processing
power required pose considerable challenges, making the computational cost of
Transformers inappropriate. Similarly, edge devices suitable for mounting on mo-
bile entities have limited processing capabilities, making it impractical to operate
surveillance systems using Transformer-based deep learning models. To address
this, this paper applies the Attention-Free Transformer (AFT), which has a sim-
ilar structure to the Vision Transformer (ViT) but reduces computational costs
by using element-wise multiplication instead of matrix multiplication. Addition-
ally, AFT enhances the detection performance for small objects by comparing the
characteristics of each part of an image, rather than comparing every part with
each other, simplifying the feature extraction process and calculating the fea-
ture map under conditions favorable for small object detection. Through this,
we propose an effective deep learning model for surveillance systems utilizing
drones and aerial platforms.
To validate the efficiency of the proposed deep learning model, its performance
is evaluated on edge devices. The equipment used in this study is the ODROID
H3+, and the model’s accuracy and real-time performance are tested using BEV
datasets such as VisDrone, xView, PKLot, and AerialMaritime. The main con-
tributions of this paper are outlined as follows:

– Proposal of a deep learning model applicable to aerial surveillance systems,
validated through experiments on datasets containing small objects such as
VisDrone, xView, PKLot, and AerialMaritime.

– Application of the Attention-Free Transformer (AFT) to reduce computa-
tional costs and memory requirements in comparison to the Vision Trans-
former (ViT).

– Validation of the proposed deep learning model’s suitability for edge devices
through implementation and testing on the ODROID H3+.
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2 Related Work

2.1 Attention-Free Transformer

Since the introduction of the Vision Transformer (ViT), a myriad of networks
featuring various architectures and methodologies based on the Transformer
paradigm have been proposed like Swin Transformer and EfficientViT. How-
ever, a commonality among most Transformer architectures is the inclusion of
the core module known as Multi-Head Attention (MHA). As depicted in Figure
x (a), MHA operates by segregating the input image into Query (Q), Key (K),
and Value (V ) components. It then computes the relationship between Q and
K through dot products, ultimately enhancing performance by calculating self-
relevance through a weighted sum with V . This process is formalized in Equation
(1). Because of the MHA use matrix multiplication, allowing the computational
complexity to be denoted as such O(N2D). N and D represent the size and
dimension of the feature map input into the transformer, respectively.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

Due to the rapid increase in computational demand as N grows, this paper
introduces the Attention-Free Transformer (AFT). Unlike Multi-Head Atten-
tion (MHA) that segments input images into Q, K, and V using dot products,
AFT employs element-wise multiplication, as shown in Figure x(b). This method
changes the operation sequence slightly. AFT calculates a weighted average of
value by first applying softmax to K, then combines it with V, and finally as-
sesses the relationship between Q and V, similar to MHA. As a result, AFT’s
computational complexity is noted as O(ND), which is N times less than MHA,
making it more efficient. The process of AFT is detailed in Equation (2).

AFT(Q,K, V ) = σ(Q)⊙
∑

(softmax(K)⊙ V ) (2)

2.2 Edge Computing

Edge Computing (EC) is establishing itself as a pivotal technology to overcome
the limitations faced by Cloud Computing (CC). The principal challenges of CC
include latency in data transmission to servers, high costs, and network conges-
tion during large data transfers, as well as cyber security threats. In contrast, EC
offers real-time responsiveness by enabling immediate processing at the point of
data generation. It enhances system efficiency through distributed data process-
ing and bolsters security with on-site data handling.
Recent research in the field of computer vision underscores the significant role
of EC. Guanchu Wang et al. (2022) [11] developed an object detection system
for Edge Devices (BED), showcasing an end-to-end pipeline utilizing a com-
pact 300kb Deep Neural Network (DNN) model. Moreover, Shihan Liu et al.
(2023) [12] presented a study that achieved processing speeds of over 30 frames
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Fig. 1: Architecture of Multi-Head Attention and Attention-Free Transformer

per second on Nvidia Jetson AGX Xavier, employing data augmentation tech-
niques with Mosaic and an Efficient Decoupled Head. These studies illustrate not
only how EC surpasses the limitations of CC but also its growing applicability
in various domains, including Internet of Things (IoT) devices, smart cities, and
autonomous vehicles.

3 Proposed Method

3.1 Overall pipeline

This paper proposes a deep learning model based on YOLOv5, a real-time object
detection model with superior performance due to its diverse CNN architectures.
The core of YOLOv5 is the Cross Stage Partial (CSP) network strategy and the
C3 module which utilizes three convolutional operations. YOLOv5 backbone
with four C3 modules is described as shown in Figure 2(a). Replacing the C3
module with C3TR and C3AFT modules for experiments, the C3TR module
integrates a transformer structure into the C3 module as shown in Figure 2(b)
while the C3AFT module applies AFT to the C3 module illustrated in Figure
2(c). Given transformer structures like C3TR are usually applied towards the
network’s end, C3AFT was also placed in a similar position to ensure consistent
experimental conditions. By substituting the last two parts of the C3 module
in the backbone with C3TR and C3AFT modules, the study assesses object
detection accuracy and computational speed.
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Fig. 2: The overall pipeline of the YOLOv5 backbone (a) and the process of the
C3TR (C3 module with transformer) module (b) and C3AFT (C3 module with
attention-free transformer) module (c) to replace the C3 module.
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3.2 C3AFT module

The C3AFT module is proposed to address the limitations of transformers. As
described in Section 2.1, "Attention-Free Transformer," the difference between
the Multi-Head Attention (MHA) used in Vision Transformer (ViT) and the
AFT applied in this paper lies in the method of operating across feature maps.
While MHA determines the important parts of a feature map through matrix
multiplication, AFT does so using element-wise multiplication. Particularly, in
this paper, AFT is applied to detect small objects within images. There are two
main reasons why AFT is advantageous for small object detection. First, by
performing operations across the entire feature map, AFT can recognize even
relatively small areas occupied by small objects as containing important infor-
mation. Compared to traditional CNNs, this allows for the extraction of features
not just based on local information but also considering the overall context. Sec-
ond, AFT normalizes the importance of each feature across the entire feature
map using the softmax function on the key vector, creating weights, and then
combines this result with the value (original feature map) as shown in Figure
2(c). This approach enables better capture of small object characteristics. Fi-
nally, by applying a sigmoid operation to the processed query and combining it
with the key-value output, important information is enhanced while non-critical
information is suppressed, thus extracting significant features of objects.

3.3 Training Strategy

As shown in Figure 2(a), YOLOv5 backbone incorporates the C3 module a total
of four times. In this paper, the last two of the four C3 modules are replaced with
the C3TR and C3AFT modules for experimentation. Given that transformers are
primarily applied in the network’s final layers, this paper similarly replaces the
last C3 module with the proposed modules. Additionally, to explore the impact
of repeating transformer structures on performance enhancement, the third and
fourth C3 modules are substituted with the C3TR and C3AFT modules.

4 Experiment

4.1 Dataset

Autonomous Driving Drone: This dataset was created by the Intelligent Sys-
tems Laboratory (ISLab), University of Ulsan, Korea, to which I am affiliated,
and I, as an author of this paper, participated in its production. The dataset
comprises 4k videos shot at various altitudes and angles across tourist spots,
urban areas, and forests in Korea. It is categorized into object detection, seg-
mentation, and 3D LiDAR datasets, with the object detection dataset containing
over 30 million images and encompassing 18 classes (such as person, tree, house,
car, bus, traffic light, etc.). For this paper, data from two tourist locations and
two urban areas were used, totaling 10,321 images for training (8,256) and eval-
uation (2,065).
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VisDrone: This dataset was produced by the AISKYEYE team at the Lab of
Machine Learning and Data Mining, Tianjin University, China. It consists of
over 260,000 high-resolution images taken in various urban, rural, and coastal
areas, organized into 10 classes (including pedestrian, car, bicycle, etc.). A total
of 8,629 images from this dataset were utilized in this paper.
xView: The xView dataset, constructed by the Defense Innovation Unit Exper-
imental (DIUx) and the National Geospatial-Intelligence Agency (NGA), stands
as the largest publicly available satellite imagery dataset. Comprising 1,127 im-
ages with over a million objects across 60 classes, it presents challenges for object
detection due to its 0.3m resolution. In this paper, 846 images were utilized for
training purposes and 281 images for evaluation.
PKLot: The PKLot dataset, produced by the Federal University of Paraná,
Brazil, encompasses 12,416 images captured by parking lot surveillance cam-
eras. Designed to determine the presence or absence of vehicles in parking areas,
this dataset includes images taken under various weather conditions, such as
sunny, cloudy, and rainy. For the purposes of this paper, 9,933 images were em-
ployed for training, and 2,483 images were used for evaluation.
AerialMaritime: Constructed by the team led by Jacob Solawetz at Roboflow,
this dataset comprises data captured over maritime environments using a Mavic
Air 2, a compact drone. Shot in 4k resolution from an altitude of 400ft (approxi-
mately 122 meters), it includes a total of 508 images categorized into five classes.
In this paper, 393 images were utilized for training purposes and 105 images for
evaluation.

4.2 Evaluation Metric

In the evaluation framework, focus lies on analyzing model efficiency and perfor-
mance through key metrics. First, model complexity gets examined by measuring
the total number of parameters, directly influencing computational efficiency.
Furthermore, model processing capability in terms of FLOPS (Floating Point
Operations Per Second) undergoes evaluation, offering insights into computa-
tional speed.
Additionally, mAP50 and mAP50-95 serve as primary accuracy metrics for a
comprehensive assessment of model precision in object detection. These indi-
cators assist in gauging model effectiveness across various detection thresholds.
Lastly, model size in megabytes (Mb) and inference speed are considered for
model feasibility on Edge Devices. This ensures meeting operational require-
ments for edge computing environments.

5 Result

5.1 Quantitative Result

The results from the five datasets mentioned earlier are shown in Table 1. For all
datasets, the original YOLOv5 had the fewest layers. The proposed model’s layer
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count differed by only 1 to 3 layers compared to the best results, indicating sim-
ilar performance since layer count does not directly affect model lightness. The
proposed model showed the best results in parameter count across all datasets,
leading to the smallest model size due to having the fewest parameters among the
five compared networks. The best performance in GFLOPS was observed when
the C3TR module was used twice, likely because the C3AFT module, while re-
quiring less computation, has a more complex structure. In terms of mAP50,
modules applying AFT generally achieved the best results. The Autonomous
Driving Drone dataset showed nearly identical accuracy to the best result, being
only 0.1% lower. For mAP50-95, networks with the proposed module performed
best on the VisDrone and Aerial Maritime datasets. In the Autonomous Driving
Drone and PKLot datasets, the proposed model recorded 0.2% and 0.8% lower
scores than the best results, respectively, which is less than a 1% difference, thus
considered equivalent in performance.
However, using the C3TR module twice yielded the best performance in GFLOPS,
suggesting that the C3AFT module, despite having lower computational require-
ments, has a more complex structure. In terms of mAP50, modules applying AFT
generally achieved the best results. The Autonomous Driving Drone dataset
recorded a 0.1% lower score compared to the best result, indicating nearly iden-
tical accuracy. For mAP50-95 scores, networks with the proposed module per-
formed best in the VisDrone and Aerial Maritime datasets. In the Autonomous
Driving Drone and PKLot datasets, they scored 0.2% and 0.8% less than the
best results, respectively, but these differences are under 1%, so the performances
are deemed equivalent.

5.2 Qualitative Result

The result images were extracted from models trained on each dataset using an
ODROID H3+. The xView dataset was excluded because the detection accu-
racy is significantly low. In the Autonomous Driving Drone data, large objects
like buildings and small objects like vehicles, trees, and streetlamps are almost
detected. Similarly, the VisDrone data showed good results in detecting vehicles
and pedestrians. In the case of PKLot, the results were concentrated in parking
spaces located at the center of the images, indicating the labeling focus on cen-
tral areas. This problem means that data augmentation and diversity in datasets
are very important. In conclusion, the proposed network in this paper has been
demonstrated to effectively detect various objects including small objects with
high accuracy.

5.3 Ablation Study

This paper primarily uses datasets captured by drones or aerial platforms fea-
turing small objects. For the Autonomous Driving Drone data, humans measure
about 20-30 pixels and vehicles 100-150 pixels against a total image size of 4k
(3840 x 2160), indicating the small size of objects. Therefore, this study tests
the proposed network’s performance on datasets with larger objects, using the
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(a) Autonomous Driving Drone result 1 (b) Autonomous Driving Drone result 2

(c) VisDrone result 1 (d) VisDrone result 2

(e) PKLot result 1 (f) PKLot result 2

(g) AerialMaritime result 1 (h) AerialMaritime result 2

Fig. 3: The result images of proposed method applied to aerial datasets.
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Table 1: Comparison of five networks on datasets containing small objects.
Dataset Architecture Layers Parameters GFLOPS mAP50 mAP50-95 Model size

Autonomous
Driving
Drone

Original 214 1,788,271 4.3 63.9 45.1 3.9
C3TR 217 1,788,399 4.2 63.4 44.9 3.9

C3TR*2 222 1,780,271 4.1 62.6 43.2 3.8
C3AFT 215 1,706,223 4.2 63.8 44.9 3.7

C3AFT*2 241 1,711,151 4.2 62.7 43.4 3.7

VisDrone

Original 157 1,772,695 4.2 19.8 9.45 3.8
C3TR 162 1,773,079 4.1 19.6 9.31 3.8

C3TR*2 173 1,765,335 3.9 17.7 8.54 3.8
C3AFT 160 1,690,903 4.1 20.8 9.94 3.7

C3AFT*2 186 1,695,703 4.1 17.8 8.41 3.7

Aerial
Maritime

Original 157 1,765,930 4.1 36.9 17.8 3.9
C3TR 162 1,766,314 4.1 38.5 18.9 3.9

C3TR*2 173 1,758,570 3.9 33.1 16.2 3.8
C3AFT 160 1,684,138 4.1 42.2 20 3.7

C3AFT*2 186 1,688,938 4.1 36.4 15.4 3.7

PKLot

Original 157 1,761,871 4.1 99.5 92.1 3.9
C3TR 162 1,762,255 4.1 99.4 91.5 3.9

C3TR*2 173 1,754,511 3.9 99.4 89 3.9
C3AFT 160 1,680,079 4.1 99.5 91.3 3.7

C3AFT*2 186 1,684,879 4.1 99.4 89.4 3.8

xView

Original 157 1,840,345 4.4 0.72 0.27 4.1
C3TR 162 1,840,729 4.3 0.648 0.482 4.1

C3TR*2 173 1,832,985 4.1 0.305 0.0809 4
C3AFT 160 1,758,553 4.3 1.24 0.181 3.7

C3AFT*2 186 1,763,353 4.3 1.04 0.212 3.9

Visual Object Classes (VOC) dataset and comparing results across five networks
as shown in Table 1. The experiment results for the VOC data presented in Ta-
ble 2 show a performance decline in networks applying both C3TR and C3AFT,
with a more significant decrease in networks with C3AFT. A roughly 3% ac-
curacy drop suggests the performance slightly worsens on datasets with larger
objects. The reason is that AFT applies element-wise multiplication across the
entire feature map, which can enhance representation where small objects are
present but may reduce expressiveness for larger objects as the entire feature
map is highlighted.

Another ablation study involves validating performance on the edge device
ODROID H3+. Given the challenging power supply conditions for drones and
aerial platforms, leveraging low-power edge devices for data processing is advan-
tageous. Having already concluded that the proposed network’s model size is
the smallest, performance is further proven by operating it on the edge device
and comparing inference times. The comparative results of inference times are
shown in Table 3.
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Table 2: Comparison result of VOC dataset containing big objects.
Architecture Layers Parameters GFLOPS mAP50 mAP50-95 Model size

Original 157 1,786,225 4.2 65.6 38.4 3.9
C3TR 162 1,786,609 4.2 64 36.3 3.9

C3TR*2 173 1,778,865 4 59.2 31.8 3.9
C3AFT 160 1,704,433 4.1 62.9 35.9 3.7

C3AFT*2 186 1,709,233 4.2 57.3 30.4 3.7

Table 3: Comparison inference time of five networks on the ODROID H3+.
Dataset Original C3TR C3TR*2 C3AFT C3AFT*2

Autonomous
Driving
Drone

179.5 198.9 306.6 183.1 239.1

VisDrone 130.2 133.8 234.6 132.6 168.1
Aerial

Maritime 153.4 158.1 328.4 155.1 202.6

PKLot 183.9 194 485.4 187.9 249.5
xView 410.2 452 832.4 425.8 658.2

In all datasets, the original YOLOv5 demonstrates the fastest inference time,
with networks applying C3AFT once showing the second fastest inference times.
However, the difference is minimal, ranging from just 1.7ms to 15.6ms per image.
Calculated in frames per second (fps), the Autonomous Driving Drone dataset
shows the original at 5.57fps, C3TR at 5.03fps, and C3AFT at 5.46 fps, indicating
similar computational speeds. Thus, networks utilizing AFT prove to perform
well with computational speeds comparable to the original YOLOv5.

6 Conclusion

This study introduces a deep learning model for efficiently detecting objects in
images taken from drones and high-positioned CCTVs. Especially, focusing on
the challenge of detecting small objects in aerial images. The proposed deep
learning model uses CNN and transformer architecture simultaneously to gener-
ate low computational feature map and to understand the image’s full context
and highlight significant parts, respectively. The proposed ’C3AFT’ module ad-
dresses the transformer’s computational demand through element-wise multipli-
cation. It enhances vital information by generating a weight vector for the entire
image and interacting with the original feature map to improve performance
by identifying essential features including those of small objects. Experimental
results with five datasets including numerous small objects show the proposed
model reduces parameters by approximately 5% and model size by an aver-
age of 0.22Mb compared to the original YOLOv5 nano. The detection accuracy
improved on three datasets, remained consistent on one dataset, and slightly



12 Jehwan Choi et al.

decreased by 0.1% on another. Inference time comparisons on the edge device
ODROID H3+ reveal the proposed network is marginally slower by an average
of 5.46ms, equating to processing one fewer image every nine seconds, which is
considered nearly identical in performance. These findings demonstrate that the
YOLOv5 model with applied AFT efficiently processes BEV images better than
the original YOLOv5 model, proving its viability for aerial surveillance systems.
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