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Abstract—The rapidly developing autonomous driving field
now needs a more secure transportation system through in-
formation between multiple mobility. Deep learning that can
judge traffic conditions by convergence of various sensor data
and in particular, research on the convolutional neural network
using computer vision are being actively conducted. In addition,
recognizing many objects at once in a large area through drone
images and understanding the movement of the object is used
as safe traffic assistance information. In this study, an image
classification study is conducted to determine the status of the
vehicle on the road through drone flight image data. The goal is
to build a new image classification model robust to the proposed
image classification network by applying the weighted adversarial
learning method. Weight adversarial learning is a method of
securing robust performance in image classification of various
statuses while disturbing the model by forcibly reflecting the
slope value in reverse when updating the network through the
reverse gradient layer. In the experiment, model performance is
evaluated through the collected drone flight data set.

Index Terms—Adaptive adversarial learning, classification,
drone image, transportation system, vehicle status

I. INTRODUCTION

1) Autonomous Driving Mobility: Autonomous driving sys-
tems are developing at a remarkable pace, and shortly, we can
expect to utilize safe autonomous vehicle services. This will
likely be achieved through the fusion of various data types,
such as traffic signals, road signs, and vehicle information.
Moreover, the movement data of vehicles on the road (buses,
cars, motorcycles, trucks, etc.) and data collected by fixed
traffic information devices (Closed-circuit Television, CCTV)
will be complemented through data sharing with future mo-
bility technologies like drones. This approach will extend
road information collection and analysis. Especially, flying
drones, equipped with cameras and LiDAR sensors, have the
advantage of capturing wide areas from a high altitude in a
single shot, acquiring dynamic environmental information on
the roads. This overcomes the limited data collection capa-
bilities of on-road vehicles and provides effective information
to autonomous driving assistance systems, playing a crucial
hardware role in establishing the next generation of road safety
networks.

2) Convolutional Neural Networks: The recent surge in
research on models developed based on artificial neural net-
works, particularly Convolutional Neural Networks (CNNs),
highlights their popularity in image-based artificial intelligence
model development. The diversity of real-world data requires

Fig. 1: Vehicle Status Data Distribution

the computation of deep convolutional layers, mirroring the
human neural network structure. Furthermore, widely used for
tasks like image classification and lightweight model design,
the MobileNet series [1], [2], SqueezeNet [3], ShuffleNet [4],
among others, offer high performance and are frequently de-
ployed on mobile devices. This allows these models to perform
critical functions such as situation assessment, recognition,
and prediction. Consequently, CNNs have become an essential
module in building autonomous driving assistance systems,
garnering intense interest and becoming a hot topic among
many researchers.

3) Proposed Adversarial Learning: In this research, as
an alternative method to improve performance, a weight
adversarial training method is proposed. Fig. 1 shows how
confusing each class of dataset. The picture illustrates simple
road conditions, texture, types of vehicles, weather, etc. This
approach robustly overcomes the diversity of real-world road
image data. It involves adding noise to the feature maps
extracted within the network, thereby incorporating feature
diversity into the network’s weights and updating the learning
model. This method allows the model to adapt to new image
information without the need to continually add new image
data for training. The experimentation involves using a drone
flight dataset, which captures road images, to evaluate this
training method on a model designed to determine vehicle
status.

This weight adversarial training approach offers several
advantages. Firstly, it reduces the reliance on extensive
data augmentation techniques, saving time and computational
resources. Secondly, embedding diversity directly into the
model’s weights, enhances the model’s generalization capa-
bilities, making it more effective in handling unseen or novel
scenarios. This is particularly relevant for autonomous driving
systems, where the ability to adapt to a wide range of driving
conditions and environments is crucial. Overall, this proposed



Fig. 2: Overall architecture for efficient vehicle status classification.

method represents a significant step forward in developing
more efficient and robust models for real-world applications.
The contributions of the proposed methods are as follows:

• Wide Area Feature Extraction: Four types of dilated
convolutional layers are combined to create the initial
feature extraction module

• Local and Global Feature Extraction: Deformable con-
volutional layers are used for regional feature extraction,
while self-attention mechanisms are employed for global
semantic feature extraction

• Adaptive Adversarial Learning: Adding in-layer random
noise for weighted adversarial learning contributes to
a more robust distribution of results with four dilated
convolution layers

II. PROPOSED METHODS

A. Overall Architecture

The proposed vehicle status classification algorithm adopts
the approach of Lee et al. [5] in Fig. 2. As suggested in
VSNet, for vehicle detection, the YOLOv5 model [6] is used
on drone flight datasets [7], [8]. The detected vehicles are then
cropped along with their surrounding areas to be used as input
images. The vehicle status is classified into three categories:
Normal, Stopped, and Lane Changing. The proposed algorithm
suggests a model that can adapt to the dataset autonomously,
proposing an adaptive adversarial learning model for deter-
mining vehicle status applied with four dilated convolution
layers.

B. Wide Area Feature Extraction

The recent feature extraction in various classification models
has involved layers that are deep and combine layers that
extract features with various kernel sizes, such as VGG
[9], ResNet [10], Inception [11]. Efforts have been made to
generate good feature maps in the initial stages of the model
structure. These models are trained on the ImageNet dataset
[12], which is a general-purpose dataset for common objects,
thus possessing high versatility. However, the purpose of fea-
ture extraction varies depending on the model’s characteristics.
In this research, feature extraction is conducted for image data
with wide areas and small objects distanced from each other,
like drone flight footage. This is referred to as the Wide Area
Feature Extraction (WAFE) module. Table. 1 describes the

layers that make up the WAFE module. The initial block of the

TABLE 1: Setting of WAFE module. c: channel, k: kernel
size, s: stride, d: dilated ratio, g: group, p: padding

Layer Name Output c k s d g p
Input 512× 512 3 - - - - -

Conv5 128× 128 64 5 4 3 4 6
Conv1 128× 128 128 1 1 1 4 -

BN 128× 128 128 - - - - -
GELU 128× 128 128 - - - - -

Dropout 128× 128 128 - - - - -
DConv3 1,BN,GELU 128× 128 32 3 1 1 1 1
DConv3 2,BN,GELU 128× 128 32 3 1 3 1 3
DConv3 3,BN,GELU 128× 128 32 3 1 5 1 5
DConv3 4,BN,GELU 128× 128 32 3 1 7 1 7

Concatenate 128× 128 128 - - - - -
Conv1 128× 128 128 1 1 1 4 -

Addition 128× 128 128 - - - - -

WAFE module consists of two convolutional layers. The first
layer has a kernel size of 5×5, channels=64, a dilated ratio=4,
padding=6, and a stride of 4. The second layer employs a
1 × 1 convolutional layer and batch normalization, adopting
the GELU [13] as the activation function. The characteristics
of drone flight data include vehicles in the image being
widely spaced. To overcome this in feature extraction, the
dilated convolution filter proposed by Liang-Chieh et al. [14]
is applied. The dilated ratio expands the kernel size, allowing
reference to a wide receptive field of pixel information while
maintaining efficient computation, contributing to effective
feature extraction. In this module, four types of dilated ratios,
d = [1, 3, 5, 7], are applied, dividing the input value into
four equal parts. These four methods form various feature
maps, constituting an important part of feature extraction in
the proposed architecture.

C. Object-oriented Feature Extraction

In this part of the study, the focus is on extracting more
robust features from the feature maps derived from the back-
bone, which contains the overall information of the image.
Robust features are likely to be located especially around the
characteristics of objects in the image. When conventional
convolutional layers are applied, the features are computed
at fixed receptive field locations as calculated in Eq. (1).

Cov(p0) =
∑
pn∈R

W (pn) · I(p0 + pn) (1)



In the feature map, pn refers to the position where the calcu-
lation with the kernel occurs. For a 3× 3 kernel, this range is
represented as R = (−1, 1), (−1, 0), (0, 0), . . . , (1, 0), (1, 1).
p0 denotes the initial position of the kernel, which is repre-
sented in (x, y) coordinates. Stacking multiple layers in this
manner results in the observation of unnecessary features at
all locations, including the background, multiple times. To
compute this more effectively, the deformable convolutional
layer [15] is applied. The deformable convolution is expressed
in Eq. (2) as follows.

DConv(p0) =
∑
pn∈R

W (pn) · I(p0 + pn +∆pn) (2)

In the existing kernel position, ∆pn is added to modify the
location where the feature map is computed. This value is ap-
plied as a learnable parameter, allowing the position to update
around robust features. Such an approach enhances the weights
of the layer that extracts features based on important feature
values within the feature map. For extracting features centered
around objects in the feature map, Object-oriented Feature
Extraction is depicted as follows. Initially, two Deformable
Convolutional (DConv) layers are stacked. Then, a 3× 3 and
a 1 × 1 convolution are applied to share feature information.
Next, the feature map is halved through Maxpooling, and
two additional DConv layers are applied to form an object-
centered feature extraction module. This module plays a role
in enhancing the understanding of the image based on the
robust features possessed by objects in the feature map.

D. Global-oriented Feature Extraction

The repeated use of convolutional layers often leads to the
final feature maps of deep layers focusing too narrowly on
specific parts of the original image. This localized focus can
result in inaccuracies in image classification decisions. To ad-
dress this issue, an approach that differs from Object-oriented
feature extraction, which primarily focuses on local features,
is employed. This approach involves using the encoder part
of the Vision Transformer (ViT) [16]. The key concept of
this method is to extract features by utilizing the entire input
image to assess similarities among global pixel information.
The Transformer encoder utilizes the feature maps extracted
from the backbone network as its input. To handle 2D images,
these extracted feature maps, represented as x ∈ RH×W×C ,
are rearranged considering the image size (H,W ), the channel
size C, and the patch size (P, P ). Here, N = (H ×W )/P 2

represents the number of patches, and the feature map is
rearranged into xp ∈ RN×(P 2·C). This is made into the
efficient sequential length of the Transformer, providing a
trainable linear projection in the D dimension. Next, the
missing position information from the value converted into a
vector is included by adding positional encoding (Eq. (3), z0).
The encoder is composed of multi-head self-attention (MSA)
and multi-layer perception (MLP) blocks (Eq. (4), and Eq. (5)).

z0 = [x1
pE;x2

pE;x3
pE; , · · · ,xN

p E] +Epos,

E ∈ R(P 2·C)×D,Epos ∈ R(N+1)×D
(3)

z
′

l = MSA(LN(zl−1)) + zl−1, l = 1, . . . , L (4)

zl = MLP(LN(z
′

l)) + z
′

l, l = 1, . . . , L (5)

Ultimately, the Global-oriented Feature Extraction divides the
entire feature map into a grid, computing global features by
analyzing the correlations between grids, and providing these
for image classification decisions.

E. Adaptive Adversarial Learning

In Neural Networks (NN), the number of parameters that
need to be handled is immense. It is impossible for humans to
manually adjust these parameters to optimize the model. In-
stead of directly modifying the network’s weights, adversarial
training can be constructed by manipulating the input images
or feature maps. The Reverse Gradient Layer [17], denoted as
Rλ(x), consists of forward and back propagation (Eq. (6) and
Eq. (7)).

Rλ(x) = x (6)

dRλ

dx
= −λI (7)

The proposed method is to forcibly add noise to the weight
of the existing layer to find robust weights in various image
environments in the future.

Ãl = (1− α)N + αAl (8)

In Eq. 8, Al is a feature map for the l-th layer, and N is a noise
map of the same size as Al. α generates Ãl with the feature
values of the feature map and the noise map as weights. α is
a value between 0 and 1. And when one 3× 3 Conv layer is
applied and backpropagation proceeds, a reverse gradient layer
is applied to update the Eq. (9) weight in a different direction
for the amount of change for that layer.

Āl = Ãl + β
∂Ltotal

∂Ãl
(9)

Āl is a feature map updated after applying the reverse gradient
layer. β proposes adaptive adaptive adaptive learning by ap-
plying a weight of gradient change at a rate of 0.99 per epoch.

III. EXPERIMENT

A. Implementation Details

The vehicle status detection model is developed based on the
PyTorch [18] library. The input image is size-adjusted to 512×
512. The Batch size is set to 64. The optimization function
uses SGD [19] and the learning rate is 0.01. α generates a
random value within the beta distribution. β reduces the ratio
by 0.99 for each epoch. The GPU uses 4 Nvidia A100 sheets.



Fig. 3: To figure out the best model with several metrics, the graphs show the various combinations of conditions for vehicle
status classification performance.

B. Datasets

There are few public datasets for vehicle status classification
using drones. In addition, since various drone datasets do not
serve the purpose of vehicle status classification, datasets must
be collected and processed directly. There are three types of
vehicle status classification: stop, lane change, and normal.
This dataset uses the drone flight dataset used in [7], [8].
As input images of the vehicle classification model, some of
the images are cut out to build a dataset through the method
proposed by Lee et al. [5], [7], [8] for the target vehicle. The
total number of images is 14,906, and the training and test
images are divided into 8:2.

C. Metrics

There are main metrics in this study: Accuracy, specificity,
sensitivity, and F1 score.

• Accuracy
– This metric indicates how well the model classifies.

It is the proportion of correctly classified data out of
the total data.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

• Specificity
– This metric indicates how accurately the model clas-

sifies negative instances among the actual negative
cases.

Specificity =
TN

TP + FP
(11)

• Sensitivity
– This metric indicates how accurately the model clas-

sifies positive instances among the actual positive
cases.

Sensitivity =
TP

TP + FN
(12)

• F1 Score
– This is the harmonic mean of Precision and Recall,

and it considers the balance between these two
metrics.

F1 score =
2× (Precision×Recall)

Precision+Recall
(13)

D. Comparison Results

The performance of proposed vehicle status classification
models is compared using widely used image classification
models [1], [2], [3], [4], [20], [21], as shown in Table 2.
w denotes pre-trained models trained on ImageNet [12],
while w/o represents those without pre-training. Generally,
pre-trained models on a large dataset like ImageNet tend
to outperform the proposed models. The proposed models
utilize the encoder of a transformer within them, requiring
parameters such as multi-head and embedding size within the
self-attention mechanism. Among the existing w/o models,
MobileNetV3 [2] exhibits the highest accuracy at 79.54%,
showing a performance difference of 3.42% compared to
the proposed model (h = 32, e = 128). Although the
proposed models show lower performance compared to the
MobileNet series [1], [2], they demonstrate higher accuracy
than the other models. Semantic evaluation of the models
is conducted using evaluation metrics such as Sensitivity,
Specificity, and F1 score, as illustrated in Fig. 3. This involves
plotting performance metrics against various combinations
of hyperparameters to visualize their distributions. Models
located in the upper-right corner of this graph are considered
to have stable performance. Under the dilated ratio conditions
of 1, 3, 5, and 7, the proposed model with (h = 32, e = 128) is
situated at the upper-right corner in the Specificity-Sensitivity
and Specificity-F1 distributions, but not in the Sensitivity-F1
distribution. This highlights that elevated accuracy does not
automatically ensure consistent model performance.

E. Runtime Results

The aim is to construct an efficient model for deployment
on mobile devices in the future. Table 3 presents the results
of runtime measurements. Most proposed models achieve
around 500 FPS. Efficient speed is achieved through parallel
computation via group convolution layers within the model
design. For instance, in SqueezeNet, 128 channels are reduced
to 16 channels through a 1 × 1 conv layer, followed by two
branches producing 128-channel output: one with 64 1×1 conv
filters and the other with 64 3×3 conv filters. This drastically
reduces parameters but leads to higher GFlops compared to
the proposed model, resulting in lower accuracy. Given the
importance of both fast decision-making and high accuracy in



determining traffic conditions, a balanced research approach
is required between these two metrics.

IV. CONCLUSION

This study proposes a vehicle status classification network
based on weighted adversarial learning using drone flight
image data. The proposed vehicle status classification model
consists of wide-area feature extraction, object-oriented feature
extraction, and global-oriented feature extraction. The pro-
posed weight adversarial learning is applied to each module.
The forcibly added noise map allows learning to proceed by
adjusting the gradient reflection ratio as the echo proceeds. It
is currently experimenting and producing meaningful results.
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TABLE 2: Comparison of Vehicle Status Classification Model. There are two types of a state-of-the-art classification model(The
first group is a light model, the second is a heavy model.

Method Accuracy(%) Sensitivity(%) Specificity(%) F1 score(%) Precision(%)
w w/o w w/o w w/o w w/o w w/o

MobileNetv2 [1] 83.10 78.50 90.00 86.10 84.17 79.47 90.46 86.96 90.93 87.83
MobileNetv3 small [2] 79.68 77.63 89.74 91.65 74.85 67.24 87.89 87.00 86.10 82.80
MobileNetv3 large [2] 80.28 79.54 92.62 94.57 69.78 65.55 88.28 88.37 84.33 82.93
SqueezeNet [3] 81.96 71.36 89.41 86.01 81.82 60.07 89.50 82.36 89.59 79.02
ShuffleNetv2 [4] 82.53 71.97 94.76 88.09 74.25 71.79 90.46 85.45 86.53 82.97
Efficient b0 [20] 82.56 73.71 90.46 88.15 84.26 63.80 90.68 84.20 90.90 80.60
Efficient b4 [20] 83.10 67.98 91.34 96.15 83.07 45.07 90.83 83.73 90.32 74.15
Efficient wideses b0 [20] 82.96 73.84 90.98 88.75 82.67 61.78 90.54 84.25 90.10 80.17
Efficient wideses b4 [20] 84.17 72.60 91.76 90.10 83.11 59.04 91.13 84.01 90.52 78.70
ResNeXt-50 [21] 84.04 78.64 92.00 92.49 81.03 66.63 90.77 87.55 89.57 83.11
ResNeXt-101 [21] 84.57 78.07 92.47 87.09 82.95 75.15 91.51 86.53 90.57 95.97
Proposed(h=8, e=96) - 76.09 - 87.28 - 69.76 - 56.46 - 83.71
Proposed(h=16,e=96) - 74.21 - 90.10 - 61.68 - 85.08 - 80.59
Proposed(h=32,e=96) - 74.04 - 86.65 - 66.83 - 84.42 - 82.30
Proposed(h=8, e=128) - 75.35 - 87.07 - 69.15 - 85.13 - 83.28
Proposed(h=16,e=128) - 73.31 - 87.25 - 65.45 - 84.44 - 81.81
Proposed(h=32,e=128) - 76.12 - 88.32 - 69.46 - 85.94 - 83.69

TABLE 3: Comparison of runtime result with the state-of-the-art.

Method FPS GFlops Params(M) Head Emb Patch
MobileNetv2 [1] 435 1.67 2.23 - - -
MobileNetv3 small [2] 471 0.30 1.52 - - -
MobileNetv3 large [2] 370 1.17 4.21 - - -
SqueezeNet [3] 1201 3.99 0.74 - - -
ShuffleNetv2 [4] 422 0.77 1.26 - - -
Efficient b0 [20] 347 2.08 4.01 - - -
Efficient b4 [20] 192 8.01 17.55 - - -
Efficient wideses b0 [20] 310 2.08 7.15 - - -
Efficient wideses b4 [20] 178 8.03 33.14 - - -
ResNeXt-50 [21] 539 22.24 22.99 - - -
ResNeXt-101 [21] 306 86.07 86.74 - - -
Proposed(h=8, e=96) 681 1.36 3.06 8 96 16
Proposed(h=16,e=96) 522 1.36 3.06 16 96 16
Proposed(h=32,e=96) 510 1.36 3.06 32 96 16
Proposed(h=8, e=128) 450 1.73 3.53 8 128 16
Proposed(h=16,e=128) 624 1.73 3.53 16 128 16
Proposed(h=32,e=128) 576 1.73 3.53 32 128 16
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