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Abstract—Remote sensing image classification plays a piv-
otal role in environmental monitoring and urban planning,
yet it faces the challenge of accurately interpreting complex
and high-resolution images with fast inference speed for real
time applications. To address this, we introduce the Mobile
Large Kernel Attention Network (MLKANet), which integrates
MobileNetV2’s inverted residual structures with the large kernel
attention mechanism from the Visual Attention Network (VAN).
Our proposed MLKANet achieves a compelling balance of
computational efficiency and sophisticated feature extraction,
while maintaining the speed from the MobileNetV2 baseline. This
study evaluates MLKANet’s performance against state-of-the-art
models using the Aerial Image Dataset (AID), demonstrating
superior accuracy and efficiency. The architecture’s effectiveness
is further evidenced through an ablation study highlighting the
scalability of our approach and class-wise performance analysis
that showcases MLKANet’s proficiency across various scene
types.

Index Terms—Remote Sensing, Scene Classification, Mo-
bileNetV2, Large Kernel Attention, Fast and Accurate Classi-
fication

I. INTRODUCTION

Remote sensing has revolutionized the way we collect
information about Earth’s surface, making significant contri-
butions to environmental science, urban planning, and dis-
aster management. Yet, the classification of complex and
high-resolution remote sensing images remains a formidable
challenge. The heterogeneity and dynamic range of these
images demand sophisticated analytical models capable of
capturing both fine-grained details and broader contextual
patterns. Deep learning models, particularly Convolutional
Neural Networks (CNNs), have emerged as a game-changer
in this field, automating the feature extraction process and
providing robust representational capabilities. These models
have significantly outperformed traditional machine learning
approaches by learning hierarchical feature representations
directly from the raw pixels of the images [1].

As remote sensing datasets increase in size and complexity,
there is a growing need for models that can efficiently process
vast amounts of data without compromising on performance.
The MobileNetV2 [2] architecture presents a paradigm shift in
this regard, offering a lightweight yet deep network design tai-
lored for mobile and embedded vision applications. It achieves
this by incorporating inverted residuals and linear bottlenecks,
which efficiently manage the flow of information across the
network while significantly reducing computational load. Its

success in various vision tasks makes it an attractive backbone
for resource-constrained remote sensing applications.

However, the nuanced spatial relationships and contextual
dependencies characteristic of remote sensing images neces-
sitate models that go beyond local receptive fields, prompting
the integration of mechanisms that can capture long-range
dependencies. Vision Transformers (ViTs) [3] have emerged
as a powerful alternative to traditional CNNs, eschewing con-
volutional layers in favor of multihead attention mechanisms.
This shift allows the model to learn long-range interactions
between pixels, a critical factor for the intricate patterns often
present in remote sensing images, but the quadratic complexity
makes them impractical for high-resolution images. The Visual
Attention Network (VAN) [4] takes a step in this direction
by introducing the Large Kernel Attention (LKA) mechanism,
which enhances the network’s ability to understand and lever-
age the global context within an image. LKA offers a fine-
grained, attention-driven approach to feature representation,
crucial for handling the diversity and intricacies inherent in
aerial scenes [5].

In this context, we introduce the Mobile Large Kernel
Attention Network (MLKANet), which seamlessly blends the
computational efficiency and depth of MobileNetV2 with the
innovative LKA mechanism from the VAN framework. This
hybrid model is engineered to optimize the classification of
remote sensing images by capitalizing on the strengths of
both architectures: the efficient information processing of Mo-
bileNetV2 and the sophisticated, global contextual understand-
ing afforded by LKA. This approach is particularly apt for
tackling the Aerial Image Dataset (AID), which encompasses
a diverse array of scene types from various geographies,
captured at different times and under varying conditions [6].

Our paper advances the state-of-the-art in remote sensing
image classification with the following contributions:

• We introduce the MLKANet, a novel architecture that
combines depth-wise separable convolutions with large
kernel attention to enhance the feature extraction process
for remote sensing images.

• Our comprehensive evaluation on the AID dataset not
only demonstrates MLKANet’s superior performance
compared to established models but also showcases its
effectiveness in dealing with high variability and complex
spatial structures typical of remote sensing images.

• We compare with other state-of-the-art classification net-
works with similar speed and computational efficiency
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Fig. 1. Overall Architecture of the proposed Mobile Large Kernel Attention Network.

and showcase the strength of our architecture in both
accuracy and efficiency.

II. RELATED WORKS

A. Recent Approaches for Remote Scene Classification

Recent developments in remote sensing scene classification
have leveraged advanced deep learning techniques to address
various challenges in the field, notably the management of
high-dimensional data and the scarcity of labeled samples.One
notable approach is the ”Bag of Convolutional Features”
(BoCF) method, which eschews traditional handcrafted fea-
tures in favor of deep convolutional features, demonstrating
superior effectiveness in scene classification [7]. Similarly,
the ”Bidirectional Adaptive Feature Fusion” strategy integrates
features adaptively to enhance classification performance [8]
Innovations also include task-specific models such as the
”Task-specific contrastive learning for few-shot remote sens-
ing image scene classification,” which tailors the learning
process to the unique characteristics of remote sensing data
[9]. Authors in [10] proposes an efficient version of the
popular densenet [11] architecture by significantly reducing
the computation of the base model.

B. Towards Fast and Efficient Deep-Learning Models

The current quest in deep learning models revolves around
achieving state-of-the-art accuracy while ensuring fast in-
ference and computational efficiency. Convolutional Neu-
ral Networks (CNNs) have been the cornerstone of these
advancements, where approaches like EfficientNet-B0 have
systematically scaled up CNNs for improved performance
across multiple tasks [12]. MobileNetV2 further streamlined
the approach for mobile applications, optimizing the trade-off
between accuracy and computational efficiency using inverted
residuals and linear bottlenecks [2]. Attention mechanisms in
CNNs, epitomized by the Visual Attention Network (VAN),
have provided a means to model the global context within an
image, a beneficial attribute for the complex spatial patterns
encountered in aerial images [4]. Similarly, MobileViT-S in-
troduced a fusion of convolutional principles with transformer-
based architectures, aiming to marry the locality of CNNs
with the global receptive field of transformers in a mobile-
friendly package [13]. A novel addition to this suite of
efficient architectures is FasterNet, which targets the reduction
of floating-point operations (FLOPs) without a correspond-
ing decrease in latency. By proposing a partial convolution



(PConv), FasterNet circumvents the inefficiencies of depthwise
convolutions, significantly reducing both computational and
memory overheads [14].

III. METHODOLOGY

A. Inverted Residual Bottleneck Block

The Inverted Residual Bottleneck Block, shown in Fig. 1
is a hallmark of the MobileNetV2 architecture, represents an
approach to constructing deep neural networks that are both
lightweight and computationally efficient. The block utilizes a
two-step process: expansion and projection. Initially, the input
is expanded to a high-dimensional space using a 1x1 convolu-
tion, allowing for a more expressive feature set. Subsequently,
a depthwise separable convolution applies a 3x3 convolutional
filter to each input channel separately, promoting efficiency.
The final step involves projecting the features back to a
low-dimensional representation using another 1x1 convolution,
hence creating a ’bottleneck’ that compacts the information
while retaining the salient features. This design is pivotal for
diminishing the model size and computational demand without
significant losses in performance. The process within an IRB
block can be mathematically described as follows:

f(x) = x+ ConvLinear
1×1 (ReLU6(DWConv3×3

(ReLU6(ConvExpand
1×1 (x))))),

(1)

where x represents the input to the block. The term
ConvExpand

1×1 is the expansion convolution, DWConv3×3 denotes
the depthwise convolution, and ConvLinear

1×1 is the projection
convolution with a linear activation.

B. Large Kernel Attention Block

The Large Kernel Attention (LKA) block innovatively ad-
dresses the computational inefficiencies of traditional self-
attention and large-kernel convolution methods used in com-
puter vision. The LKA block, as depicted in Fig. 1, con-
sists of a sequence of operations starting with an attention
mechanism that assesses the input features to generate an
attention map. This is followed by batch normalization (BN)
to stabilize the learned features. The output from the BN is
then passed through a feed-forward network (FFN), and the
result undergoes another round of BN before being added to
the original input through a residual connection, producing the
final output of the block. By decomposing a large kernel into
three components—a depthwise convolution for local spatial
details, a depthwise dilated convolution for extended spatial
reach, and a 11 convolution for channel adaptability—LKA
captures both local and long-range dependencies effectively.
The Attention operation in a LKA block is given by:

Attention = Conv1×1(DW-D-Conv(DW-Conv(F ))), (2)

Output = Attention ⊗ F, (3)

where F denotes the input feature map. This method en-
hances feature selection and noise reduction without the
computational burden associated with standard convolutional
approaches, facilitating dynamic adaptability in both spatial

and channel dimensions, crucial for processing high-resolution
images.

TABLE I
PERFORMANCE COMPARISON OF CLASSIFICATION MODELS

Model Name Params. Flops Accuracy Inference Model
(M) (G) (%) Speed (FPS) Size (MB)

MobileNetV2 [2] 6.83 2.26 90.85 293 18.4
EfficientNet-B0 [12] 6.87 4.06 90.45 291 32.7

Van-B0 [4] 6.92 3.85 88.7 289 31.1
MobileVit-S [13] 7.05 5.01 87.65 284 40.4
FasterNet-T2 [14] 6.95 13.74 90 288 110.1

MLKANet-0 (Ours) 6.95 4.01 91.4 288 32.8

TABLE II
PERFORMANCE COMPARISON OF CLASSIFICATION MODELS

Model Name Params. Flops Accuracy Inference Model
(M) (G) (%) Speed (FPS) Size (MB)

MLKANet-0 6.95 4.01 91.4 288 32.8
MLKANet-1 7.09 4.96 91.55 282 40.3
MLKANet-2 7.11 6.84 91.8 281 55.4

C. Overall Architecture of MLKANet

As shown in Fig. 1 the MLKANet architecture is conceived
as a concatenation of efficiently designed blocks that together
facilitate the accurate classification of remote sensing images.
The network initiates with a stem block that conducts the
initial convolutional processing to transform the input data
into a feature-rich format suitable for the subsequent layers.
Following this, a series of IRB blocks and LKA blocks are
alternated, capitalizing on the efficiency of the former and the
expansive contextual awareness of the latter. The alternation
pattern allows the network to maintain a balance between local
feature extraction and global context incorporation, which is
particularly beneficial for capturing the diverse spatial relations
in remote sensing images. The architecture concludes with a
final convolutional layer that integrates the extracted features
and prepares them for the classification task. Each block in
the architecture is meticulously engineered to preserve the
integrity of the image’s spatial structure while ensuring the
network remains computationally tractable.

IV. EXPERIMENTAL ANALYSIS

A. Dataset and Implementation Detail

The Aerial Image Dataset (AID) is a large-scale collection
of over 10,000 annotated 600x600 resolution RGB aerial
images, encompassing 30 different classes representing various
scene types. The AID’s images were expertly labeled for
remote sensing classification, featuring diverse scene types
from various countries, primarily including China, the USA,
England, France, Italy, Japan, and Germany. These images,
consistent at a resolution of 600x600 pixels, vary in spatial
resolution from 8 to 0.5 meters, captured across different
seasons and under varying conditions.



TABLE III
CLASS-WISE PERFORMANCE OF VARIOUS EFFICIENT MODELS ON AID DATASET

Class Name MobileNetV2 MLKANet-0 (Ours) EfficientNet-B0 Van-B0 FasterNet-T2 MobileViT-S

Airport 87.59 87.22 92.54 88.89 85.51 85.93
BareLand 86.82 90.77 88.89 88.37 90.08 84.85
BaseballField 98.80 95.35 96.39 92.86 95.24 91.57
Beach 97.53 98.16 96.89 98.16 96.93 96.93
Bridge 95.87 94.40 90.32 90.16 86.40 89.08
Center 82.83 86.60 82.61 84.00 84.54 75.00
Church 88.89 90.00 88.89 83.95 88.31 85.00
Commercial 86.45 90.67 91.39 86.49 86.25 87.42
DenseResidential 92.12 92.22 92.02 90.36 92.12 91.86
Desert 90.78 95.59 91.30 91.30 92.75 91.97
Farmland 93.17 93.17 92.22 88.34 90.57 83.95
Forest 99.03 98.08 98.08 96.15 98.08 96.15
Industrial 94.79 76.03 79.35 78.89 84.21 75.15
Meadow 94.61 98.39 96.77 95.16 98.36 98.39
MediumResidential 97.53 94.74 94.55 92.86 92.98 89.66
Mountain 94.51 96.40 87.50 94.81 95.77 90.51
Park 96.36 80.56 80.26 81.12 83.69 84.44
Parking 96.45 99.38 97.44 96.15 96.77 99.37
Playground 97.53 92.21 95.42 91.50 94.19 93.51
Pond 94.51 95.08 93.99 91.80 94.38 95.56
Port 96.51 96.47 93.49 94.67 95.35 94.92
RailwayStation 92.73 92.04 91.59 90.91 82.69 87.27
Resort 71.29 76.29 76.00 74.75 72.92 57.43
River 93.62 95.59 91.97 90.51 92.31 86.76
School 56.57 58.49 71.03 57.66 72.88 61.82
SparseResidential 98.25 100.00 99.12 96.43 95.58 93.91
Square 82.54 81.36 78.63 69.42 78.40 67.86
Stadium 94.66 94.03 94.66 95.45 93.13 92.19
StorageTanks 92.42 93.33 89.39 85.71 88.55 88.57
Viaduct 93.51 98.06 94.27 92.99 90.68 90.57

To ensure consistency across experiments, all models were
trained from scratch using the same test split, with input
images resized to 224x224 pixels and data augmentation
techniques such as AutoAugment and random flips applied.
We split the dataset into train set, validation set and test
set using a 60:20:20 ratio. The LION optimizer was used
for its efficiency, along with the standard Cross-Entropy Loss
function. Learning rates were set lower for Transformer and
Hybrid models, and all models were trained on NVIDIA Tesla
V-100 GPU, with training epochs set to 100.

B. Evaluation on AID Dataset
The detailed results on AID dataset is shown in Table I along

with the comparative analysis with the other state of the art
methods. Our proposed, MLKANet-0 demonstrates enhanced
classification performance with a 91.4% accuracy, outperform-
ing established models like MobileNetV2, EfficientNet-B0,
Van-B0, and MobileViT-S. It accomplishes this with a com-
putational requirement of 4.01 gigaflops, positioning it as a
more efficient alternative to the particularly compute-intensive
FasterNet-T2, which demands 13.74 gigaflops. Despite this
efficiency, MLKANet-0 retains a swift inference speed of 288
frames per second, on par with other models and notably more
efficient than the slightly slower MobileVit-S. In terms of size,
MLKANet-0 occupies 32.8 MB, comparable to Van-B0 and
EfficientNet-B0, and is substantially smaller than the larger
FasterNet-T2, which occupies 110.1 MB. This balance of
accuracy, efficiency, and model size underscores MLKANet’s

suitability for applications where model compactness and
performance are critical. The proposed model outperforms the
other recent methods, while not sacrificing speed.

C. Ablation study of MLKANet Variations

Table II shows the study examining variations of the
MLKANet architecture, performance enhancements are sys-
tematically evaluated in relation to increments in model com-
plexity. The study specifically explores the impact of adjusting
the MLP ratio within the LKA Block. The base model,
MLKANet-0, with an MLP ratio r=2, demonstrates solid per-
formance with an accuracy of 91.4% and the fastest inference
speed among the variants at 288 FPS, all contained within a
32.8 MB model size. Advancing to MLKANet-1, where the
MLP ratio is doubled to r=4, a slight increase in accuracy
to 91.55% is observed, alongside a modest increase in model
size to 40.3 MB and a negligible decrease in inference speed.
The most substantial model, MLKANet-2, with an MLP ratio
of r=8, achieves the highest accuracy of 91.8%, at the cost of
further increased computational complexity, leading to a larger
model size of 55.4 MB and a minimally slower inference speed
of 281 FPS. This stratified augmentation underscores the trade-
off between model size and performance within the MLKANet
series. But, even at the highest size MLKANet-2 retains fast
inference speed while improving the accuracy by almost 1%
over the baseline MobileNetV2.
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Fig. 2. Class activation map from 5 example classes from the AID dataset is shown using Eigen-Cam [15] algorithm, our model MLKANet-0 is compared
with EfficientNet-B0, FasterNet-T2, Van-B0 and MobileNetV2.

D. Class-Wise Performance

Shown in Table. III the class-wise performance for the
AID dataset reveal that MLKANet-0 achieves the highest
accuracy in 15 out of 30 classes when compared to other
efficient models like MobileNetV2, EfficientNet-B0, Van-B0,
FasterNet-T2, and MobileViT-S. This indicates MLKANet-0’s
superior capability in accurately distinguishing a broad range
of aerial scene types, from natural landscapes like ’Forest’
and ’Farmland’ to constructed areas such as ’Airport’ and
’Parking’, substantiating its effectiveness for diverse remote
sensing image classification tasks.

E. Qualitative Analysis

Fig. 2 shows the Eigen-Cam [15] activation maps of 5
classes center, port, church, resort and viaduct from the
AID dataset and compares the models of Table I. The pro-
vided Eigen-CAM activation maps for various models us-
ing AID dataset samples showcase the distinct focus areas
that each model deems significant when classifying scenes.
The MLKANet-0, our proposed network, consistently exhibits
more targeted and central activation patterns, particularly on
salient features of the scene types, indicating a better align-
ment with discriminative regions. This focused activation is
indicative of the model’s robust feature extraction capabili-
ties, which likely contributes to its superior performance in
scene classification tasks as compared with EfficientNet-B0,



FasterNet-T2, Van-B0, and MobileNetV2.

V. CONCLUSION

This paper presented MLKANet, an architecture adept at
handling the intricate task of remote sensing scene classifica-
tion. By effectively combining depth-wise separable convolu-
tions and large kernel attention, MLKANet not only excels in
recognizing diverse scene types but does so with impressive
computational economy. Through extensive experiments on
the AID dataset, MLKANet outperformed comparable models,
achieving the best results while maintaining comparable infer-
ence speed with MobileNetV2. The ablation study confirmed
that increasing the MLP ratio within the LKA Block correlates
with incremental accuracy gains. Additionally, our qualitative
analysis, demonstrated by activation maps, reaffirmed the net-
work’s focused and discerning feature extraction capabilities.
MLKANet stands out as a significant contribution to the field
of remote sensing, offering an efficient and robust tool for
high-fidelity image classification.
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