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Abstract—Biological foveal vision consists of multiple contour
regions, determined by the varying distances from the center of
the gaze. Adopting foveal vision in deep neural networks can
have the ability to capture various visual features in different
regions. Long-range dependencies from the gaze are modeled by
global operations (global self-attention and state-space model)
and short-range dependencies are perceived by local operations
(local self-attention and convolution). Existing works in visual
backbones have improved the performance by modeling local and
global features of the input images. However, fully perceiving
foveal vision has not been well explored, which is crucial for
modeling visual features. To address the above issue, this paper
proposes a Reweighting Foveal (RF) mechanism for a visual
representation to extract various features at different regions
varied by the distance from the center of the query’s position.
Far regions from each query position are modeled by pooling self-
attention on coarse input and nearest regions are perceived by
local convolution on fine-grained input. The importance of each
region to the model features is also emphasized by a reweighting
module based on softmax attention to let the model learn to
perceive the relationship among foveal regions. Based on this
design, the RF Transformers are introduced by stacking RF
blocks across stages. Extensive experiments are validated on
image classification, object detection, and semantic segmentation.
On image classification, RF-1 with 8.5M parameters and 0.7
GFLOPs achieves 78.2% Top-1 accuracy that surpasses recent
ConvNets and Vision Transformer methods. When transferring
trained RF Transformers to other tasks, the proposed methods
obtain competitive performances compared to recent backbones
while getting better efficiency.

Index Terms—Foveal Vision, Image classification, Vision Trans-
formers, Vision Tasks

I. INTRODUCTION

Recent advanced ConvNets [1]–[4] and Vision Transformers
[5]–[8] have attempted to improve performance by extracting
both local and global features from the input images. Vision
Transformers become dominant networks in solving vision and
multimodal tasks as the self-attention layer directly captures
long-range dependencies from the input sequences without
inductive biases. This makes the model unify different input
sequences and also stack more layers to achieve deeper and
wider networks. Inspired by this line of research, advanced
ConvNets expand the receptive fields of the model by enlarg-
ing kernel sizes [3], [4] and convolutional modulation [9], [10].

The main bottleneck of the Transformer is that self-attention
has quadratic computational costs with the image length.
Transferring the vision Transformers to dense prediction tasks
results in extremely large computational costs due to the high-
resolution inputs of these tasks. One possible solution is to use
sparse attention where each query attends to smaller image
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Fig. 1: Comparison between the proposed method and recent
ConvNets/Vision Transformers. The results are reported on
ImageNet-1K [11] validation set

regions. PVT [6] achieves this goal by reducing the size
of key and value features. Swin Transformer [7] proposes
window self-attention that has linear complexity with image
resolutions. However, these methods still capture global and
local features separately, and attentions are performed on
irrelevant regions. DAT [12] introduces deformable attention
that shifts key and value features to important regions. Another
line of this research is to design hybrid methods [13]–[16] that
combine the locality of convolution and long-range depen-
dencies of self-attention into hierarchical networks. Although
hybrid methods achieve better trade-offs between accuracy and
computation costs, the interaction between local and global
operations is not well explored in the literature. Modeling this
interaction is crucial for biological foveal systems.

In global self-attention (Figure 2 (a)), all tokens closer or
far to the query’s location are treated evenly. This results in
global features while local features are alleviated. Otherwise,
local self-attention in Figure 2 (b) captures detailed infor-
mation inside each window and the model requires further
operations to exchange information across windows. Figure 2
(c) illustrates pooling self-attention where each query attends
to coarse-grained features to obtain global context. Similar to
global self-attention, pooling self-attention lacks fine-grained
information from the query’s position to its nearest regions.
Unifying local and pooling self-attention into one layer can
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Fig. 2: Comparison between self-attention: (a) global self-attention [5] (each query attends to all spatial locations); (b) local
self-attention [7] or convolution (each query attends to window regions); (c) pooling self-attention [6] (each query attends to all
pooled locations); (d) foveal self-attention (ours) (each query attends to both fine-grained regions for modeling local features
and coarse-grained regions for modeling global context). Figure (e) shows the biological foveal system that is partitioned into
multiple contour regions: central/para-central, and far peripheral.

get better visual representations.
Figure 2 (e) illustrates a biological foveal system, consisting

of multiple contour regions: central/para-central and far pe-
ripheral regions. Fine-grained detail information is processed
at the center regions, high-resolution regions. Coarse-grained
information is processed at the far peripheral regions, low-
resolution regions. Inspired by foveal processing, this paper
proposes foveal self-attention with two attentions shown in
Figure 2 (d). The first attention is to capture detailed infor-
mation from the fine-grained input where each query attends
to its nearest regions. The second attention is to model far
peripheral regions, extracting global context information from
coarse-grained input. In second attention, each query attends
to coarse-grained regions (down-sampled input features). Both
attentions can fully extract both local and global perceptions
at low computational costs. Furthermore, the features of two
attentions are aggregated via the reweighting module. The key
intuition of this design is to highlight the importance of each
captured feature.

Extensive experiments are conducted on image classifica-
tion, object detection, and semantic segmentation tasks to
validate the effectiveness of the proposed RF Transformers.
Figure 1 shows the comparison among methods. As a result,
RF Transformers achieve better trade-offs between Top-1
accuracy and computational costs (GFLOPs). For other visual
tasks, RF Transformers attain consistent improvements in both
efficiency and effectiveness.

II. RELATED WORKS

A. Vision Transformers

Transformer [17] was originally designed for language
research, improving parallel computing of recurrent layers.
The main advance of the Transformer is that self-attention
layers can capture long-range dependencies from the sequence
length and result in better next-token prediction. This moti-
vates researchers to apply Transformers for vision tasks. The
pioneering work for object detection is DETR [18] which
adopts Transformer encoders and decoders to model the re-
lation between image features and object queries. With this

successful adaptation, DETR achieves competitive results with
anchor-based detectors [19]–[21] while having high flexibility
in capturing the object’s locations. In visual extraction, ViT
[5] explores Transformer encoders for image classification
tasks and attains better performance and scalability compared
to ConvNets [22]. From this milestone, many methods are
introduced to significantly improve the performance of ViT by
reducing model complexity [6], [7] and integrating inductive
biases into self-attention layers [7], [13], [15], [16], [23].

PVT [6] builds hierarchical vision Transformers, and pools
key and value features to mitigate the quadratic complexity
of original self-attention layers. PVTv2 [15] improves PVT
networks by inserting convolution to the MLP layer and attains
great performances on both classification and dense prediction
tasks. Swin Transformer [7] partitions images into window
regions and applies self-attention layers for capturing the
relationship between tokens inside each window. Even though
Swin Transformer computes attention with linear complexity,
the modeling ability and receptive fields are weak and the
network requires additional designs to expand them. DAT
[12] deforms key/value features to relevant regions based on
pixel locations and learnable offsets. PerViT [23] augments
relative inductive biases by introducing special designs of
kernel weights.

B. Hybrid Networks

The goal of hybrid networks is to take the strengths of
convolution and self-attention into account. Convolution has
locality and strong inductive biases while self-attention results
in global features without inductive biases. Combining convo-
lution and self-attention layers can model both local and global
features, and obtain better efficiency. EdgeViT [13] follows
this line of research and proposes sequential local-to-global
layers based on convolution and pooling self-attention. FAT
[16] captures bidirectional interaction between local and global
features based on gated aggregation. MixFormer [14] models
bidirectional interaction between convolution and window
attention in a parallel way to improve information exchange
between channel and spatial directions. EMO [24] builds a



Patch Em
bedding

RF Block

Patch Em
bedding

RF Block

Patch Em
bedding

RF Block

Patch Em
bedding

RF Block

Classification

Detection

Segmentation

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 3: Overall architecture of the proposed RF Vision Transformer for visual tasks: image classification, object detection,
and segmentation. Following [6], [7], [15], the RF network is the hierarchical backbone, consisting of four stages. The spatial
dimension is progressively down-sampled with ratio {1/4, 1/8, 1/16, 1/32} across stages through Patch Embedding layers.
Along with the reduction of spatial sizes, channel dimension is progressively increased across stages to make the network
deeper and wider. RF Block is the proposed Reweighting Foveal Block. {L1, L2, L3, L4} is the number of stacked RF blocks
across four stages. H,W,C are the height, width, and channel dimensions of the feature map.

sequential window self-attention and convolution layer for
efficient networks.

Capturing local and global features in deep neural networks
[8], [13], [14], [16], [24] is similar to biological foveal
systems. However, biological foveal systems contain multiple
regions based on the distance from the center of the gaze to the
token’s location. Different regions are treated unevenly, e.g.,
the nearest regions to their query location are modeled on fine-
grained attention, and the far regions to their query location
are captured on coarse-grained attention. Existing works have
not fully explored the line of research and also the relationship
between multiple regions.

III. THE PROPOSED METHOD

An overview of the proposed method is shown in Figure 3.
Similar to the existing methods [6], [7], [15], RF Transformers
extract features in a hierarchical manner. Earlier stages tend to
capture local features and later stages extract global features.
The proposed network is divided into four stages and each
stage consists of one Patch Embedding layer and stacked RF
blocks. Patch Embedding separates the input feature map into
a sequence of patches via convolution with kernel size p and
stride p where p is patch size. Spatial information of each
patch is embedded into channel direction with dimension H

p ×
W
p × Cp2. Following the meta block [5], [25], the RF block

includes two main layers: RF attention (spatial mixing) and
MLP (channel mixing) as follows:

Before processing spatial and channel mixing, layer normal-
ization is used to normalize the input features and stabilize
training. Two residual connections for two main layers are
applied to avoid vanishing and exploding gradient and stack
the layers to be deeper. MLP is a multi-layer perceptron,
consisting of two fully connected layers and one GELU() non-
linear activation function inserted between two fully connected
layers. The proposed RF Attention is discussed in the next
section.
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Fig. 4: The detailed structure of the RF (Reweighting Foveal)
block

A. RF Attention

To model the biological foveal system, RF attention is
proposed to perform attention on central/para-central and far
peripheral regions. These two regions are treated unevenly
based on the distance from the determined regions to the
query’s position. Similar to the biological foveal system, the
center of the gaze is viewed as the query’s position in the input
feature map. For the nearest tokens to their query position,
each query interacts with fine-grained regions to model local
features. For the far tokens to their query position, each query
attends to coarse-grained regions to capture global informa-
tion. Both features are aggregated via a reweighting module
that controls the importance of fine-grained and coarse-grained
features based on softmax attention. Figure 5 shows the
illustration of RF attention.

Given the input feature map X ∈ RH×W×C and query
location qi,j , pooled tokens and nearest tokens to the qi,j are
obtained by pooling operation and convolution window.

1) Pooled Tokens: The input feature map is pooled into a
set of keys k ∈ RNp×C and values v ∈ RNp×C (Np is the
number of pooled tokens) as follows:

k = AvgPool(X)Wk, (1)
v = AvgPool(X)Wv, (2)

where AvgPool(.) is Average Pooling that down-samples
the input feature map to coarse-grained features. Wk ∈
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Fig. 5: Detailed structure of the RF attention. Central/para-central regions (nearest tokens to their red query location) are
processed by local convolution to capture fine-grained features and far peripheral regions (far tokens from the red query
location) are processed by pooling self-attention to model coarse-grained features. Both features are fused through reweighting
module to emphasize the importance of each feature to the model learning. 8×8 feature map, 4×4 pooling size, and 3×3
convolution are shown for example.

RC×C ,Wv ∈ RC×C are linear projections. The multi-head
self-attention is performed on coarse-grained key and value
regions to model global features, defined as:

yp
i,j = concat

h∈[Nh]
[SAh(q,k,v)]Wo, (3)

SAh(q,k,v) = Softmax

(
qk⊤
√
Ch

)
v, (4)

where yp
i,j is the coarse-grained output at location (i, j) for

pooled tokens. Nh is the number of heads and Ch = C
Nh

is
the head dimension. SAh denotes self-attention operation for
head h. Wo ∈ RC×C indicates linear transformation to mix
information across heads. concat[.] stands for concatenation
operation.

2) Nearest Tokens: The nearest regions around query qi,j

are extracted inside each window centered at location (i, j).
Fine-grained features are captured by using local convolution
to model geometric detail information. Technically, this pro-
cess is defined as follows:

yn
l =

∑
m∈S

w (m) · x (l+m) , (5)

where yn
l is the fined-grained output at location l = (i, j) for

nearest regions centered at location (i, j). w(m) is the kernel
weights (gray color in Figure 5) at location m ∈ S and S
is the sampling grid centered at location (i, j) to 8 neighbor
tokens:

S = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}. (6)

x(l + m) is the input feature at location (l + m). Equation
5 is equivalent to elementwise multiplication between kernel

weights and nearest regions centered at location (i, j), and
information aggregation from neighbor tokens to center tokens
(blue tokens in Figure 5).

3) Reweighting Module: After acquiring fine-grained and
coarse-grained features, the reweighting module is proposed to
control the importance of each feature based on their context
information. This is achieved by softmax attention:

αi,j = Sofmax(BM(GAP(yp
i,j + yn

i,j))), (7)

where ri,j = [αi,j , βi,j ]
⊤ ∈ R2×C is reweighting coefficients

conditioned on the content of the output fine-grained features
yn
i,j and output coarse-grained features yp

i,j . GAP() is global
average pooling applied across the spatial dimension to obtain
the context score with dimension 1 × C. BM() indicates
bottleneck module that including two fully-connected layers
and GELU() inserted between them. The output of BM() is
the context vector with dimension 2 × C and Softmax() is
applied across the first dimension to create the context score,
redistributing the shape of each context value. The context
score is used to reweight the importance of fine-grained and
coarse-grained features as follows:

yi,j = (αi,j · yp
i,j + βi,j · yn

i,j)Wp, (8)

where yi,j is the final output at location (i, j). Wp is the
linear projection matrix. The coefficients are constrained as
αi,j + βi,j = 1.

B. Model Configuration

Based on the obtained RF attention and RF block, the RF
Vision Transformer is introduced in Figure 3. By configuring
the number of RF blocks and number of channels across



TABLE I: Model Configurations of RF Transformers

Variant #Blocks C #heads MLP exp. #params GFLOPs
RF-0 [2, 2, 6, 6] 24 [2, 4, 8, 16] 4 5.412 0.422
RF-1 [2, 2, 6, 6] 32 [2, 4, 8, 16] 4 8.492 0.717
RF-2 [2, 2, 8, 6] 48 [3, 6, 12, 24] 4 18.142 1.702

stages, RF variants are obtained in Table I.
#Blocks is the number of stacked RF blocks [L1, L2, L3, L4]
across four stages. Following [7], [14], [16], putting more
blocks in stage 3 and stage 4 achieves a better trade-off be-
tween accuracy and computational costs while the model can
capture more global features. C is the base channel changed
across stages with scales {1, 2, 4, 8}. #heads is the number
of heads in pooling self-attention across four stages. MLP
exp. indicates the MLP expansion ratio to expand channel
dimension in MLP layers, unchanged across stages.

IV. EXPERIMENTS AND RESULTS

To validate the effectiveness of the proposed method, the
RF Transformers are trained and evaluated on the ImageNet-
1K [11] image classification. After finishing the experiments
on the ImageNet-1K dataset, the trained weights of the RF
models are transferred to dense prediction tasks such as MS-
COCO [26] object detection and instance segmentation, and
ADE-20K [27] semantic segmentation. The goal of transferred
models is to validate the versatile and general-purpose RF
vision Transformers.

TABLE II: Results on ImageNet-1K image classification

Method Input #params(M) GFLOPs Top-1 Acc.
PVTv2-B0 [15] 224 3.7 0.6 70.5
EdgeViT-XXS [13] 256 4.1 0.6 74.4
Swin-0.7G [7] 224 4.4 0.7 74.4
MobileViT-XS [28] 256 2.3 1.1 74.8
LVT [29] 224 5.5 0.9 74.8
PVT-T [6] 224 13.1 1.6 75.1
EMO-2M [24] 224 2.3 0.5 75.1
RF-0 (Ours) 224 5.4 0.4 75.5
EfficientViT-M5 [30] 224 12.4 0.5 77.1
ResT-Lite [31] 224 10.5 1.4 77.2
Swin-1G [7] 224 7.3 1.0 77.3
EdgeViT-XS [13] 256 6.7 1.1 77.5
ConvNeXtV1-F [1] 224 5.2 0.8 77.5
tiny-MOAT-0 [32] 224 3.4 0.8 77.5
FAT-B0 [16] 224 4.5 0.7 77.6
RF-1 (Ours) 224 8.5 0.7 78.2
MobileViT-S [28] 256 5.6 2.0 78.4
PVTv2-B1 [15] 224 13.1 2.1 78.7
PerViT-T [23] 224 7.6 1.6 78.8
Swin-2G [7] 224 12.8 2.0 79.2
ConvNeXtV1-P [1] 224 9.1 1.4 79.5
ResT-S [31] 224 13.7 1.9 79.6
RF-2 (Ours) 224 18.1 1.7 80.8

A. Image Classification

Settings: The image classification experiments are conducted
on the ImageNet-1K [11] dataset that includes 1.2M training
and 50K validation images with 1,000 categories. The RF
Transformers are trained for 300 epochs with a batch size of
1024. The optimizer is AdamW with a learning rate of 10−3,
and a weight decay of 0.05. Standard data augmentations
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Fig. 6: Speed comparison between local-to-global attention
(L2G Attention) [13], spatial reduction attention (SRA) [15],
window attention [7], and our RF Attention. Throughput is
measured on the same batch size.

are used to train the model such as Rand Augment, Cutmix,
Mixup, and label smoothing, similar to existing methods [6],
[7], [33]. The input images are resized to 224×224.
Results: Table II reports comparison among recent methods.
RF-0 with 5.4M parameters and 0.4 GFLOPs achieves 75.5%
Top-1 accuracy that outperforms PVTv2-B0 [15] by 5.0%,
competitive method EdgeViT-XXS [13] by 1.1%, and state-
of-the-art method EMO-2M [24] by 0.4%. RF-1 gets 78.2%
Top-1 accuracy, higher than strong method ResT-Lite [31]
by 1.0% with only a half of GFLOPs and lower parameters,
ConvNeXtV1-F [1] by 0.7%, and recent method FAT-B0 by
0.6%. For larger settings, RF-2 achieves 80.8% Top-1 accuracy
that surpasses MobileViT-S [28] by 2.4%, PerViT-T [23]
by 2.0%, and ResT-S [31] by 1.2%. The results verify the
efficiency and effectiveness of the proposed methods.

The speed comparisons between recent attentions are pro-
vided in Figure 6. As a result, the RF Transformer has a similar
speed with SRA [15], window attention [7], and faster than
L2G attention [13] on the GPU device. On the CPU device,
the proposed RF attention runs faster than other methods while
achieving better accuracy shown in Table II.



B. Object Detection

Settings: MS-COCO [26] is used to validate the efficient
and general-purpose RF Transformers. MS-COCO has 118K
training and 5K validation images with 80 categories. Follow-
ing recent methods [6], [7], [15], ResNet-50 [22] is replaced
with the proposed RF Transformer backbone, and other model
settings are kept the same as in RetinaNet [20] for the object
detection task. The integrated models are trained for 12 epochs
with a batch size of 16. Similar to training receipts [6], [7],
AdamW is used as the optimizer with a learning rate of 10−3,
and a weight decay of 0.05. The input images are resized to
1333×800. The final results are reported on the MS-COCO
validation set.

TABLE III: Object detection results on MS-COCO dataset

Method #params(M) GFLOPs AP AP 50 AP 75

ResNet-18 [22] 21 189 31.8 49.6 33.6
ResNet-50 [22] 38 239 36.3 55.3 38.6
ResNet-101 [22] 57 315 38.5 57.8 41.2
PVT-T [6] 23 183 36.7 56.9 38.9
PVT-S [6] 34 226 40.4 61.3 43.0
PVTv2-B0 [15] 13 160 37.2 57.2 39.5
PVTv2-B1 [15] 24 187 41.2 61.9 43.9
Swin-T [7] 38 245 41.5 62.1 44.2
RF-0 (Ours) 13 158 38.4 59.3 40.3
RF-1 (Ours) 16 164 40.6 61.5 43.2
RF-2 (Ours) 26 183 43.1 64.6 45.9

Results: Table III shows the comparison between methods.
The RF Transformer achieves consistent improvements com-
pared to other methods. Typically, RF-0 surpasses the baseline
ResNet-50 [22] by 2.1% AP while saving 34% GFLOPs and
65% parameters. RF-1 outperforms PVT-T [6] by 3.9% AP
with lower GFLOPs and parameters. RF-2 achieves 43.1%
AP greater than recent methods, such as PVTv2-B1 [15] by
1.9% AP with similar costs, and competitive method Swin-T
[7] by 1.6% AP with only 74% GFLOPs. The results clarify
the general and scalable ability of the RF Transformers.

C. Semantic Segmentation

Settings: The proposed RF Transformers are trained and eval-
uated on ADE-20K [27] for semantic segmentation task using
Semantic FPN [34]. For fair comparisons, the training receipts
in [6], [7], [15] are adopted to evaluate the performance. The
model is trained for 80K iterations with a batch size of 16. The
optimizer is AdamW with a learning rate of 10−3 and a weight
decay of 0.05. The input images are resized to 512×512.
Results: Table IV reports the performance on ADE-20K
[27] dataset using Semantic FPN [34]. The RF Transformers
gain performance better than the improvement in the object
detection task. For instance, RF-0 achieves 40.8 mIoU which
outperforms the baseline ResNet-50 [22] by 4.1 mIoU with
only a half of GFLOPs and much lower parameters. RF-1 with
11M parameters and 24 GFLOPs gets 42.0 mIoU greater than
PVT-S [6] by 2.2% while saving 54% GFLOPs, and PVTv2-
B0 by 4.8% with similar costs. RF-2 achieves 44.2 mIoU
which surpasses other methods by clear margins, such as the
recent method Swin-T by 2.7% with only 63% GFLOPs, and

TABLE IV: Results on ADE-20K semantic segmentation

Method Crop size #params(M) GFLOPs mIoU
ResNet-18 [22] 5122 16 32 32.9
ResNet-50 [22] 5122 29 45 36.7
ResNet-101 [22] 5122 48 65 38.8
PVT-T [6] 5122 17 33 35.7
PVT-S [6] 5122 28 44 39.8
PVTv2-B0 [15] 5122 8 25 37.2
PVTv2-B1 [15] 5122 18 34 42.5
Swin-T [7] 5122 32 46 41.5
RF-0 (Ours) 5122 8 23 40.8
RF-1 (Ours) 5122 11 24 42.0
RF-2 (Ours) 5122 20 29 44.2

PVTv2-B1 by 1.7% with lower GFLOPs. The performance
on visual tasks verifies the efficient and general-purpose RF
Transformers.

V. CONCLUSION

This paper introduces efficient and versatile RF vision
Transformers that leverage biological foveal processing into
deep neural networks. The proposed method partitions the
image feature map into multiple regions: coarse-grained and
fine-grained regions based on the distance from the query
location to their contour. In RF attention, each query attends
to both fine-grained regions for capturing local features and
coarse-grained regions for extracting global features. With this
design, the RF Transformer has better efficiency as global
self-attention is only performed on low-resolution input while
modeling global context. Furthermore, a reweighting module is
proposed to capture the relationship between multiple regions
based on their features. The proposed RF Transformers are
trained and evaluated on various visual tasks: image clas-
sification, object detection, and semantic segmentation. In
the future, the investigation of the biological foveal system
will be further explored in other visual tasks such as video
understanding and vision-language models.
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