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Abstract—This paper introduces a novel Group Spatial Atten-
tion Module (GSAM) for enhancing 3D Human Pose Estima-
tion (3DHPE) accuracy in complex scenes. Traditional 3DHPE
approaches often struggle with occlusions and varied human
poses, leading to decreased precision. GSAM addresses these
challenges by leveraging group spatial attention mechanisms that
dynamically focus on relevant spatial features and interactions
among multiple figures within a scene. Our method incorporates
a deep learning architecture that integrates GSAM with a state-
of-the-art 3DHPE framework, facilitating the extraction of rich,
contextual spatial information. We evaluate our approach on
standard benchmarks, including Human3.6M and MPI-INF-
3DHP, demonstrating significant improvements over existing
methods in terms of accuracy and robustness against occlusions
and pose variations. GSAM sets a new standard for 3DHPE,
offering substantial advancements for applications in augmented
reality, surveillance, and interactive systems.

Index Terms—3D Human pose estimation, efficient attention
module, transformer.

I. INTRODUCTION

The advent of 3D Human Pose Estimation (3DHPE) has
marked a pivotal advancement in computer vision, offering
profound implications for various applications, including aug-
mented reality, sports analysis, human-computer interaction,
and surveillance. Despite significant progress, accurately esti-
mating 3D human poses in complex environments remains a
formidable challenge due to factors such as occlusions, the
diversity of human poses, and interactions among multiple
individuals.

Background and Challenges: Early attempts at 3DHPE were
primarily focused on controlled environments with minimal
occlusions and interactions. However, real-world applications
demand robust performance in much more complex scenarios.
Traditional methods often rely on single-frame analysis or
simplistic spatial feature extraction techniques, which are not
sufficient to handle the intricate dynamics of real-life scenes.

The Emergence of Spatial Attention Mechanisms: Rec-
ognizing the limitations of conventional approaches, recent
research has turned to spatial attention mechanisms as a means
to enhance feature extraction by dynamically prioritizing re-
gions of interest within an image. These methods have shown
promise in improving the accuracy of 3DHPE by enabling
models to focus on relevant features while minimizing the
impact of occlusions and irrelevant background information.

Introducing Group Spatial Attention Module (GSAM):
Building on the foundation of spatial attention, we propose the

Group Spatial Attention Module (GSAM), a novel component
designed to revolutionize 3DHPE by specifically addressing
the challenges posed by group interactions and occlusions in
complex scenes. Unlike traditional attention mechanisms that
treat figures independently, GSAM considers the spatial rela-
tionships and dependencies among multiple figures, enabling
a more nuanced understanding of the scene.

Technical Overview: GSAM integrates seamlessly with ex-
isting 3DHPE frameworks, employing a deep learning archi-
tecture that leverages both global and local spatial contexts. It
utilizes group-wise attention layers to dissect and analyze the
spatial dynamics among individuals within a scene, enhancing
the model’s ability to discern occluded or closely interacting
figures. This is achieved through a sophisticated algorithm
that dynamically adjusts the focus of attention based on the
configuration and orientation of figures concerning each other.

In summary, the main contribution of the paper is described
in two-fold:
• We design and apply a new module called the group

spatial attention that makes the data of 2D Keypoint can solve
the occluded problem.
• We comprehensively evaluate and compare the proposed

method with the original method on the Human3.6M and
MPII-INF-3DHP benchmark dataset, which is the most popu-
lar dataset for keypoint.

II. RELATED WORK

2D-Human Pose Estimation Joint detection and its re-
lationship to spatial space are the most crucial elements of
human pose estimation, as shown in Fig. 2. The bottom-up
method and the top-down method are the two basic approaches
used for estimating human pose. Simple baseline uses joint
prediction for the bottom-up technique, Deeppose [1], em-
ploying an end-to-end network with a higher parameter. Later,
Newell minimizes the number of settings while keeping high
accuracy by using the Stacked hourglass network [2]. All the
approaches used Gaussian distributions to model local joints.
An estimation of human posture was then performed using a
convolution neural network. For the top-down method, first,
we apply a detector for the human proposal region, and after
that, we use the crop region for pose estimation. Because the
top-down method uses the detector the accuracy can be better
than the bottom-up. And bottom-up is an end-to-end method
so the inference time can be better than the top-down.



Fig. 1. Illustrating the architecture of the proposed 3D-human-pose estimator. The proposed network training with the 2D GrouthTruth and 2D information
from HRNet

In the proposed paper, we apply the top-down method for
the whole architecture which is illustrated in Fig.2, From
the input images, the model utilizes the existing detector for
human detection. YOLO [?] is of diversity kind of detector,
which has many versions for different cases such as real-time,
high accuracy, or for mobile devices. To balance everything,
the proposed method utilizes the YOLO-V3. After applying
the detector to the human region, the whole network utilizes
the pose estimator to perform training tasks in the human
region. Additionally, data augmentation will apply in this
stage. In comparison, the top-down strategy employs enough
viewpoint for implementing a network, which makes the
network increase the accuracy but lose the sufficient speed

3D Pose Estimation: Existing single-view 3D pose esti-
mation methods can be divided into two mainstream types:
one-stage approaches and two-stage methods. One-stage ap-
proaches directly infer 3D poses from input images without
intermediate 2D pose representations [3], [4], while two-
stage network first obtain 2D keypoints from pretrained 2D
pose detections and then feed them into a 2D-to 3D lifting

network to estimate 3D poses. Benefiting from the excellent
performance of 2D HPE, this 2D-to-3D pose lifting method
can efficiently and accurately regress 3D poses using detected
2D key points. Despite the promising results achieved by
using temporal correlations from fully convolutional [?], [1] or
graph-based [2] architectures, these methods are less efficient
in capturing global-context information across frames.
Recently, vision transformers advanced all the visual recogni-
tion tasks [5]. Following PoseFormer [6], the transformer has
been used to lift 2D poses to the corresponding 3D poses.
To eliminate the redundancy in the sequence with temporal
information, Li et al. [7] proposed a strided transformer net-
work. spatial-temporal transformer is used for 3D HPE tasks.
Using transformers in HPE showed significant improvement
overall. However, pre-training on a large dataset is required
to learn more representative and effective representations for
the sequence HPE data. The proposed method is different
from the previous methods in leveraging the cross-interaction
between the joints of the body parts in the spatial and temporal
domains.



III. METHODOLOGY

A. 3D Pose Estimation Network
1) Baseline network: This work adopts a Transformer-

based architecture, depicted in Fig. 4, known for its robust
performance in modeling long-range dependencies. Initially,
we briefly describe the core components of the Transformer,
as introduced in [8], which include a multi-head self-attention
(MSA) and a multi-layer perceptron (MLP). The inputs x ∈
Rn×d are linearly projected to queries Q ∈ Rn×d, keys
K ∈ Rn×d, and values V ∈ Rn×d, where n represents the
sequence length and d the dimensionality. The scaled dot-
product attention is computed as:

MSA(Q ,K ,V ) = Softmax

(
QKT

√
dm

)
V, (1)

where Q , K , and V are split into h heads and processed in
parallel, and the results are concatenated. The MLP includes
two linear layers for non-linear transformation and feature
processing:

MLP(x ) = GELU (xW1 + a1)W2 + a2, (2)

with W1 ∈ Rd×dm and W2 ∈ Rdm×d being the weights, and
a1 ∈ Rdm and a2 ∈ Rd the biases. A Layer Normalization
(LN) precedes both MSA and MLP to optimize accuracy and
computational efficiency.

2) Spatial Transformer: The Spatial Transformer captures
detailed pose information through a new Spatial Attention
(SA) module, focusing on groups of five keypoints. This
module, embedded between the LN and the MLP within the
N1× transformer block, employs two depth-wise convolutions
with a kernel size of 5, group normalization, and GELU
activation. A skip connection is also included to prevent
overfitting. The transformations applied to the output of the
patch embedding step P0 are given by:

P0 = Conv(Norm(GELU (Conv(P)))) + P , (3)

where Conv applies a 1× 5 kernel and Norm represents the
normalization process referenced in [6]. The spatial encoders
in a transformer layer are represented by:

MLP(x0 ) = GELU (xW1 + a1)W2 + a2, (4)

3) Temporal Transformer: Similarly, the Temporal Trans-
former (TA) within the N2× transformer blocks captures
temporal dynamics by learning pairwise feature correlations
through an outer product mechanism. Each element of the cor-
relation matrix Cij =

∑
F PiPj represents the dot product of

embedded features from frames i and j, pooled by summation,
where Pi ∈ RJ×D are the features of frame i. This process
involves a transformation that combines positional information
with the frame features:

K = PWk , Q = PWq , V = PWv , (5)

The TA module operates similarly to the SA module but with
a convolution kernel size of 1× 3. The processed embeddings
and MLP transformations are defined by:

P1 = Conv(Norm(GELU (Conv(P)))) + P , (6)

B. Loss Function

The Proposed network utilizes Heat maps to demonstrate
body Keypoint locations in whole Loss Function. In Fig. 3
the GrouthTruth coordinate by a = {ak} k = 1K , where
ak = (xk, yk) is the spatial position of the k th keypoiny in the
trained sample. The heat map value Hk of groundtruth is then
constructed after applying the Gaussian function with variance∑

and the mean ak as shown below.

Hk(p) ∼ N (ak,
∑

) (7)

where p ∈ R2 illustrate the coordinate, and
∑

is experimen-
tally defined as an identity matrix I. In the final process of
training, the network will predict K heat maps, i.e., Ŝ ={
Ŝk

}
k = 1K for K body joints. Mean Square error is the

main Loss, which is calculated as follows:

L =
1

NK

N∑
n=1

K∑
k=1

∥∥∥Sk − Ŝk

∥∥∥2 (8)

N denotes the total of images in the training process. Using
information from the backbone network’s last layer, The pro-
posed architecture generated the predicted heatmap keypoint
by using the ground truth.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols

About the 3D human pose, this approach evaluate proposed
model on two general datasets: Human3.6M [9], MPI-INF-
3DHP [10] and Industrial dataset individually.

1) Human3.6M: is the most commonly used indoor dataset
for the 3D human pose estimation tasks. Following the same
policy of the base method [5], the 3D human pose in Hu-
man3.6M is adopted as a 17-joint skeleton, and the subjects
S1, S5, S6, S7, S8 from the dataset are applied during
training, the subjects S9 and S11 are used for testing. The two
commonly used evaluation metrics (MPJPE and P-MPJPE) are
involved in this dataset. In addition, mean per-joint velocity
error (MPJVE) is applied to measure the smoothness of the
prediction sequence.

2) MPI-INF-3DHP: is a recently proposed large-scale
dataset, which consists of three scenes, i.e., green screen,
non-green screen, and outdoor. By using 14 cameras, the
dataset records 8 actors performing 8 activities for the training
set and 7 activities for evaluation. Following the works [6],
the proposed network adopts the MPJPE (P1), percentage of
correct keypoints (PCK) with 150mm, and area under the
curve (AUC) results as the evaluation metrics.

B. Implementation Details

The proposed model is implemented with Pytorch that use
2D keypoints from HRNet detector [11], CPN Detector or
2D ground truth to analyze the performance. In this paper,
the 2D pose detector was implemented based on AlphaPose
[12] codebase while the 3D pose estimator followed the
PoseFormer codebade [6]. Although the proposed model can
easily adapt to any length of the input sequence, to be fair,



we select some specific sequence lengths T for three datasets
to compare our method with other methods which must have
a certain 2D input length: Human3.6M (T=81, 243), MPI-
INF-3DHP (T=1, 27). Analysis about the frame length setting
is discussed in the ablation study Section III.E.3. The batch
size, dropout rate, and activation function for datasets are set
to 1024, 0.1, and GELU. This proposed architecture utilizes
the stride data sample strategy with interval is as same as the
input length to make there no overlapping frames between
sequences(more details in the supplementary material). All
experiments are implemented on the PyTorch framework with
two NVIDIA Geforce GTX 2080 Ti. The network is trained
using Adam optimizer [13]. The learning rate is 0.001 with a
shrink factor is 0.95 after 2 epochs. The learning rate is also
this paper’s contribution, which is explained in Section III.E.3.

1) Result for Human3.6M dataset: For the 2D-to-3D pose
lifting task, the accuracy of the 2D detections directly. To
guarantee fair comparisons, the input is taken from CPN in
the form of 2D keypoints for training and testing. Table I
shows the comparison of the SOTA methods with the proposed
method (81 frames). In Table II, the proposed method achieves
the state-of-the-art on Human3.6 on all the metrics and it out-
performs the state-of-the-art (Chen at al) with a considerable
margin of 0.9%, 1.3% for Protocols 1 and 2, respectively. It is
worth noting that the across-joint modules in the spatial and
temporal cases are crucial to infer the body-joint dependencies.
Comparing the proposed method with PoseFormer (with no
pre-training used) shows the significance of the across-joint
correlation modules. Our method outperforms with a large
margin of 2% the SOTA. In terms of accuracy, it achieve
1% better than the second best accuracy. Additionally, the
proposed method achieves the best performance amongst all
the compared methods in protocol 2 in Table II (bottom).
In some selected difficult poses such as walk together, walk,
smoke, where the poses change very quickly, the proposed
method showed a significant improvement ranging from 1.1%
to 2.5% over the baseline. This highlights the ability of our
method to encode the long-range interactions between the
body joints. Considering the pre-trained baseline, the proposed
method achieves better performance for all the actions. These
results show the importance of plugging the Spatial-temporal
attention modules in the transformers.

Further experiments on Human3.6 using ground-truth 2D
poses as input have also been performed. This shows the
power of the proposed method where there is no noise
in the input as in the previous case. Table III shows the
comparisons of our method and the baselines. Overall, the
proposed method achieved the best performance amongst the
baselines. It achieved 28.3% MPJPE, whereas the second-best
approach achieved 31.0 with gain of 3%. The proposed method
outperforms the baselines in all the actions with a considerable
improvement range from 2.4% as the minimum difference and
4.8% for the largest.

2) Result for MPII-INF-3DHP dataset: The approach fur-
ther compares the proposed methods to the baseline Pose-

Former on MPP-INF-3DHP using 9 frames. This is important
because it illustrates the ability of the proposed method to
train with fewer training samples in outdoor settings. As Table
IV shows, this paper obtains the best performance among the
compared approaches.

3) Result for ISLAB Industrial dataset: Fig.5 shows the 3D
Human Pose Testing results on the ISLAB industrial dataset.
The proposed utilizes the result from the proposed 2D detector.

C. Ablation Study

1) Effect of attention in 2D Detector and 3D Estimator:
In Table V, To evaluate the impact and performance of the
2D for the whole 3D model, The proposed network evaluates
and investigates the result in the Human3.6M dataset. The
result shows that applying the attention module in the 2D pose
estimator makes the 2D input accurate and then helps the final
3D result. Fig.4 shows the impact of the attention mechanism
when the arm in the picture is straight compared to the baseline
HRNet looks folding the arms while in the testing image, the
person is straight his arm.

Table VI is a comparison of different module in a proposed
system, focusing on the presence or absence of specific
modules and their impact on the Mean Per Joint Position
Error (MPJPE). The modules include 2D Attention, 3D SAM
(Spatial Attention Module), and 3D TAM (Temporal Attention
Module). Each row in the table corresponds to a specific
configuration, indicating the presence or absence of these
modules. The MPJPE values for each configuration serve
as a quantitative measure of the accuracy of joint position
predictions. Notably, the proposed method exhibits improved
performance when incorporating all three modules simultane-
ously, achieving the lowest MPJPE at 42.2, which decreases
by 3.2% in accuracy compared to the baseline.

2) Position of Attention Module in 2D Detector and 3D
Estimator: Table VII investigates the result when applying
different AM in each subnetwork and each stage in HRNet.
In conclusion, the result when applied in the attention module
in all stages (9 Attention modules got added) got the best
result however it also got the highest number of parameters
in the computational cost. Besides, Table VII also shows that
AM had the most effect in the first sub and stage than in the
remaining. Hence, this paper only applies the module for the
first sub-network and stage (only 4 were added) to not only
balance the computational cost but also keep the high accuracy.

Table VIII showcases the influence of different positions of
the Spatial Attention Module (SAM) and Temporal Attention
Module (TAM) on Mean Per Joint Position Error (MPJPE).
For SAM, positioning it after Multi-Head Self-Attention
(MSA) or after Multi-Layer Perceptron (MLP) yields lower
MPJPE (44.1 and 44.9) compared to before MSA (45.2).
Similarly, for TAM, placing it after MSA results in the lowest
MPJPE (44.9), while before MSA and after MLP have slightly
higher errors (45.0 and 46.2, respectively). This highlights the
importance of the relative positioning of attention modules
in achieving optimal accuracy in joint position predictions.



TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ON HUMAN3.6M DATASET USING CPN DETECTOR UNDER PROTOCOL #1 AND PROTOCOL #2

FOR FULLY-SUPERVISED METHODS. THE BOLD NUMBER IS THE BEST PERFORMANCE IN EACH CASE, ⋆ DENOTES THAT THE 2D KEYPOINT DETECTION IS
THE CASCADED PYRAMID NETWORK(CPN) WHILE ∗, † REFERS TO 3D NETWORK APPLY TRANSFORMER-BASED MODEL

.
Protocol # 1 - CPN Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [14] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Fang et al. [15] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Li et al. [16] 47.0 47.1 49.3 50.5 53.9 58.5 48.8 45.5 55.2 68.6 50.8 47.5 53.6 42.3 45.6 50.9
Zhen [11] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Xu et al. [3] 45.2 49.9 47.5 50.9 54,9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Yang et al. [6] 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Our 45.0 48.3 46.6 49.8 46.6 59.0 48.7 41.9 57.7 60.2 45.1 48.2 45.8 41.0 45.1 43.1
Protocol # 2 - CPN Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Fang et al. [15] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Pavllo et al. [4] ⋆ 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Yang et al. [17] 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Yang et al. [6] 30.0 33.6 29.9 31.0 30.2 35.4 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Li et al. [16] 34.5 34.9 37.6 39.6 38.8 45.9 34.8 33.0 40.8 51.6 38.0 35.7 40.2 30.2 34.8 38.0
Our 34.1 36.0 36.4 39.9 39.4 45.0 35.9 32.8 43.1 52.1 37.3 36.6 39.7 30.2 35.8 38.3

TABLE II
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ON HUMAN3.6M DATASET USING GROUNDTRUTH AS 2D KEYPOINT UNDER PROTOCOL #1

WITH 2D GROUND-TRUTH INPUT. BOLD NUMBER IS THE BEST PERFORMANCE IN EACH CASE

.
Protocol # 1 - GrouthTruth Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [14] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Fang et al. [15] 32.1 36.6 34.3 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 30.3 37.6 35.6 38.4
Li et al. [16] † 32.9 38.7 32.9 37.0 37.3 44.8 38.8 36.1 41.2 45.6 36.8 37.7 37.7 29.5 31.6 37.2
Zhen [11] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 31.7 38.5 45.5 35.4 36.6 36.2 28.9 30.8 35,8
Xu et al. [3] 35.8 38.1 47.5 31.4 39.6 35.8 45.5 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Xue et al. [18] 35.0 37.2 46.6 30.8 38.7 35.1 44.3 34.9 40.1 41.0 32.1 33.6 32.5 26.0 26.1 33.3
Chen et al. [19] - - - - - - - - - - - - - - - 32.3
Yang et al. [6] 34.8 32.1 29.8 31.5 36.9 35.6 30.5 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.6 32.0
Our 27.9 29.9 26.6 27.8 28.6 32.8 31.1 26.7 36.5 35.5 30.0 29.8 27.5 19.6 19.7 31.0

TABLE III
PERFORMANCE COMPARISION IN TERMS OF PCK, AUC AND P1 WITH

THE STATE-OF-THE-ART METHODS ON MPI-INF-3DHP

Method PCK ↑ AUC ↑ MPJPE ↓
Pavllo et al. [4] (f=81) 86.0 51.9 84.0
Lin et al. [8] (f=25) 83.6 51.4 79.8
Li et al. [16] 81.2 46.1 99.7
Chen et al. [19] 87.9 54.0 78.8
Yang et al [6] (f=9) 88.6 56.4 75.5
Our (f=9) 89.1 57.5 76.3

TABLE IV
COMPARISION RESULT FOR APPLYING THE ATTENTION MODULE IN

HRNET WITH OTHER DETECTORS

Detector Protocol #1 Protocol #2 MPJVE ↓
CPN 47.6 37.4 3.20
Detectron2 [17] 45.7 37 3.02
Hourglass [20] 52.3 41.2 4.11
HRNet-W32 [11] 45.1 36.3 2.91
HRNet-W32+AM (our) 43.6 35.1 2.77
GroundTruth 28.6 24.5 0.98

Hence, this paper decided to put SAM and TAM between the
MSA and MLP.

3) Effect of modifying the setting in 3D network: Table
IX presents a comparative evaluation of different backbone
architectures for human pose estimation under varying stride
frame configurations. Three methods, Pavllo et al.’s approach
[4], PoseFormer by PoseFormer et al. [6], and a proposed

TABLE V
COMPARISION RESULT OF EACH MODULE IN THE PROPOSED SYSTEM

Method 2D Attention 3D SAM 3D TAM MPJPE ↓
PoseFormer 44.3
Our ✓ 43.6
Our ✓ 43.7
Our ✓ 43.8
Our ✓ ✓ 43.3
Our ✓ ✓ ✓ 42.2

TABLE VI
THE RESULT WHEN UTILIZING THE ATTENTION MECHANISM FOR EACH

SUB-NETWORK AND EACH STAGE OF HIGHRESOLUTION NETWORK

Backbone Sub-Net AP #Param
HighResolutionNet-W32 - 74.4 28.5M
HighResolutionNet-W32 1 75.4 31.1M
HighResolutionNet-W32 2+1 75.9 33.8M
HighResolutionNet-W32 3+2+1 76.3 35.5M
HighResolutionNet-W32 4+3+2+1 76.4 36.4M
Backbone Stage #Param AP
HighResolutionNet-W32 1 75.5 30.2M
HighResolutionNet-W32 2+1 76.0 32.9M
HighResolutionNet-W32 3+2+1 76.4 36.4M
HighResolutionNet-W32 Sub-1 + Stage-1 75.7 31.9M

method are analyzed. For Pavllo et al.’s method, adjusting
the stride frame from the default 243 to 81 leads to a
slight reduction in the number of parameters from 12.75M to
12.70M, with a marginal increase in the Mean Per Joint Posi-



TABLE VII
THE RESULT WHEN APPLYING DIFFERENT POSITIONS OF SAM AND TAM

Module Before MSA After MSA After MLP MPJPE ↓
SAM ✓ 45.2
SAM ✓ 44.1
SAM ✓ 44.9
TAM ✓ 45.0
TAM ✓ 44.9
TAM ✓ 46.2

tion Error (MPJPE) from 47.5 mm to 47.9 mm. PoseFormer
demonstrates improved accuracy with reduced MPJPE values
when the stride frame is decreased from 81 to 27, resulting
in MPJPE values of 44.3 mm and 44.6 mm, respectively. The
proposed method (”Our”) consistently outperforms the other
methods, achieving lower MPJPE values as the stride frame
decreases from 81 to 27 to 9, while maintaining a relatively
stable parameter count of around 9.86M. This suggests that
the proposed method is effective in producing accurate pose
estimations with different stride frame configurations.

TABLE VIII
THE RESULT FOR APPLYING DIFFERENT LEVELS OF FRAME. THE DEFAULT

SETTING FOR LEARNING RATE IS 0.25

Method Stride Frame #Param (M) MPJPE ↓
SimplePose et al. [4] 243 (default) 12.75M 47.5
SimplePose et al. [4] 81 12.70M 47.9
PoseFormer et al. [6] 81 (default) 9.59M 44.3
PoseFormer et al. [6] 27 9.60M 44.6
Our 9 9.85M 44.3
Our 27 9.86M 43.6
Our 81 9.86M 43.3

TABLE IX
THE COMPARISON RESULT FOR APPLYING DIFFERENT LEARNING RATES
FOR 3D MODEL. THE DEFAULT FRAME WAS SET AT 81 FOR ALL OF THE

EXPERIMENT

Method Learning rate #Param (M) MPJPE ↓
SimplePose et al. [4] 0.25 (default) 12.70M 47.9
SimplePose et al. [4] 0.1 12.70M 47.5
PoseFormer et al. [6] 0.25 (default) 9.60M 44.3
PoseFormer et al. [6] 0.1 9.60M 44.6
Our 0.25 9.86M 43.3
Our 0.2 9.86M 43.3
Our 0.1 9.86M 43.1
Our 0.05 9.86M 43.4

Table X shows the result when changing the learning rate
setting. While other papers set the learning rate as 0.25 and
do not consider this. This paper found based on the gradient
descent, 0.1 in learning rate is truly a perfect match for 3D
model. Only simple changing with our increase the compu-
tational cost but significantly improve the accuracy which
decreases almost 1% of the error. The side effect of changing
the learning rate is only making training time increase from
20 hours to 22 hours.

V. CONCLUSION

This research shows the effect of the data augmentation
on CNNs especially for occluded human keypoint, focusing

on mosaic and mix-up for human proposals. Furthermore,
our work demonstrates that not increasing the computation
cost, the data augmentation utilized has a more considerable
effect. Moreover, the mosaic and mix-up focused more on
the essential feature map than the other element. The network
will become more effective as a consequence, particularly for
various computer vision-related tasks.

Besides, human pose estimation has several problems that
need to be solved. First, the occluded joints were challenging
to train and predict for the architecture. Second, human key
points appear in the low-resolution images. The next issue is
the sample has a crowd, which is usually difficult to identify
where each participant’s joint location. Last but not least, The
lacking of data with partial body part appear with human
posture. The proposed method tries to solve the first problem
is also the most complex case compared to all of the issues.
Hence, future research will try to focus on the remaining
problem and also try to apply the technique to other state-
of-the-art pose estimators.
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