
Collision Prediction using LiDAR Sensor in Digital
Twin Environment

Minseung Kim and Jongchae Lee and Kanghyun Jo
Dept. of Electrical, Electronic and Computer Engineering

University of Ulsan
Ulsan, South Korea

{kmsoiio, rkdsudgjs78, acejo}@ulsan.ac.kr

Abstract—Various research utilizing LiDAR sensors is cur-
rently underway, with collision prediction being one of the
key topics. However, obtaining data for researching collision
prediction algorithms in the real world incurs challenges such
as time, cost, and safety concerns. Therefore, this paper solves
this problem on real data and virtual target objects in digital
twin [1], which brings actual sensor information to Unity. When
supervised learning is performed for object tracking and collision
detection, there is a problem that cannot be dealt with if an
object that was not present in the training dataset appears.
So, this paper uses clustering(unsupervised learning). Ground
removal and pre-measured points information are utilized for dy-
namic object classification using clustering. For tracking dynamic
objects, the clusters from the previous frame and the current
frame are compared. The closest clusters in terms of distance are
classified as belonging to the same cluster. Then, the direction
of movement is predicted through the position change of the
classified cluster. Through this, the collision with the target object
is predicted by firing a ray in the corresponding direction. The
experiment is conducted on the accuracy of predicting collision
and measuring the location error of reality and Unity in a fixed
LiDAR environment indoors. As a result of the experiment, the
average accuracy of 72.5% is shown at the 10cm Threshold
for position error, and the accuracy of collision prediction was
96% for predicting non-collision. The prediction of the collision
achieved an accuracy of 74%.

Index Terms—LiDAR, Digital Twin, Object tracking

I. INTRODUCTION

Recent research on collision prediction with LiDAR has
become extensive. Constructing environments for collision
prediction requires accident data. However, collision data is
rare in the real world, and creating it directly entailed signifi-
cant time and costs. An approach to address this is to construct
virtual environments to obtain sensor data. This method can ef-
ficiently reduce time and costs. However, obtaining data about
real-world situations such as sensor noises in virtual environ-
ments is challenging. Therefore, this study predicts collisions
using information obtained from real LiDAR sensor data in a
digital twin environment. The experimental setup is limited to
an indoor environment with fixed LiDAR. Identifying objects
is crucial for anticipating collisions. There are three methods
for distinguishing objects: object detection, segmentation, and
clustering. Accurate object detection is possible with deep

This result was supported by ”Regional Innovation Strategy (RIS)” through
the National Research Foundation of Korea(NRF) funded by the Ministry of
Education(MOE)(2021RIS-003)

learning methods like object detection or segmentation through
training datasets. However, creating 3D datasets requires a
significant time, and it is practically impossible to train every
object. Accordingly, this paper employs unsupervised learning,
specifically clustering, to differentiate obstacles. To predict
collisions, the velocity and direction of objects are essential.
Thus, the mean of each cluster is utilized to calculate the
central position and employed for tracking [2].

II. RELATED WORK

A. LiDAR Point clustering

Clustering methods for data include K-means [3], K-
medians, and DBSCAN [4]. For K-means and K-medians, the
process involves selecting the number of clusters and initializ-
ing centroids randomly. Subsequently, the euclidean distance
between data points and centroids is calculated iteratively to
cluster the data. However, this approach doesn’t suit the paper
environment, where the number of obstacles is undetermined,
as the number of clusters needs to be predefined. Density-
Based Spatial Clustering with Applications (DBSCAN) is an
algorithm that performs clustering based on the density of data.
The algorithm operates by setting the euclidean distance and
minimum points for the data, then exploring internal points
within the specified distance to find clusters. It functions by
designating a cluster only if the number of internal points
found within it exceeds the minimum points threshold. This
method has the drawback that its performance can vary de-
pending on the hyperparameters, such as euclidean distance
and minimum points. However, by appropriately setting the
min points parameter, it is possible to eliminate noise data
from the LiDAR and perform clustering based on density
regardless of the data format. Therefore, this method is applied
in this paper. Experimentally, the euclidean distance is set to
20cm, and the minimum points are set to 15.

B. Aligning coordinate systems between Ouster and Unity

If the data output from Ouster is directly applied to Unity,
the actual position of the point cloud can’t be represented. This
is because the Ouster data represents the height along the z-
axis, while Unity uses a coordinate system where the y-axis
represents height. So, dimensional transformation is necessary
to map this information to match reality. In this paper, the point
cloud from Ouster was stored in Unity with the Vector3(x, z,



Fig. 1. This figure illustrates the overall algorithm of the paper, detailing the process of sampling the point cloud acquired through Ouster LiDAR and importing
it into Unity. Additionally, Ground removal is conducted to enhance the accuracy of object clustering. After that, the Static object and the Dynamic object
are distinguished. Clustering & Tracking and Collision prediction are performed only on the dynamic object. Finally, all results are visualized on the screen.

y) order to align the coordinate systems, and the dimensions
in this paper are described based on Unity dimensions.

III. PROPOSED METHOD

A. Ground removal

When DBSCAN uses LiDAR point cloud data, a problem
arises, as shown in Fig.2, where obstacles are recognized as a
single cluster with the ground due to their attachment to the
ground.

Fig. 2. The image shows improper clustering of objects due to the ground
point cloud. Because the object within the green box is attached to the ground,
without removing the ground, all objects in that area are classified into the
same cluster.

To address this issue, Principal Component Analysis(PCA)
was used to distinguish between the ground [5], [6] and obsta-
cles. The LiDAR data was structured in three dimensions as
shown in Eq.(1), and eigenvectors could be obtained through
PCA. The equation followed Eq.(2,3,4).

X = {x(1), x(2), · · · , x(n)}, x(n) ∈ R3 (1)

x̄ =
1

n

n∑
i=1

x(i) (2)

Σ =
1

n

n∑
i=1

(x(i) − x̄)(x(i) − x̄)T (3)

ΣV = V Λ (4)

vpc1 = argmaxv(Λ) (5)

In this paper, the eigenvector vpc1 with the largest eigen-
value, as shown in Eq.(5), is utilized. Because the ground
has vpc1 aligned parallel to the xz-axis, while obstacles are
perpendicular to the xz-axis. Therefore, it is possible to
distinguish between the ground and objects based on the angle
of vpc1. PCA is applied to the data within each grid, which is
set according to the LiDAR range. As for the grid structure,
it is created as a tall cuboid along the y-axis, as depicted in
Fig.3.(A). Through the tall structure along the y-axis, when
obstacles are present, as shown in Fig. 3.(B), vectors closer to
the vertical direction can be obtained. Conversely, in the case
of the ground, as depicted in Fig. 3.(C), vectors closer to the
horizontal direction can be obtained. The vectors obtained in
this way, as depicted in Fig. 3.(D), are used to measure the
angle concerning the Y-axis. If θ is greater than the threshold,
the point is classified as ground. Otherwise, the points within
that grid are deleted. To prevent the deletion of flat objects
other than the ground, an algorithm is added to only delete
points when the mean position of the points after applying
PCA is lower than the mean position of all points. In this paper,
the threshold for θ is set to 60 degrees, considering surfaces
with slopes. Additionally, the height of each grid is set to the
maximum height of the points, and the width is set to 10cm.
The reason for 10cm is that the edge length of the Voxel grid
sampling grid is set to 5cm, allowing for a minimum of 2 data
points to be included. The applied results are depicted in Fig.
4. Compared to Fig. 4.(A) before ground removal, Fig. 4.(B)
after using vpc1 for ground removal effectively demonstrates
the removal of ground clutter.

B. Distinguish static and dynamic objects

LiDAR points do not measure the same location, but there is
a slight change every frame. This variation causes fluctuations
in the average values between the previous and current frames,
leading to the problem of recognizing static objects as dynamic
ones. Therefore, information about static objects measured in
advance for one frame is stored, enabling the identification of



Fig. 3. The shape of the grid for calculating domain-specific PCA is
represented in (A). By setting the height of the grid to the maximum value
for the respective domain, the computation is reduced by distinguishing areas
only along specific x and z axes. (B) and (C) refer to the eigenvectors obtained
through PCA of the data within the grid. When there are obstacles in the area,
pc1 is a vector perpendicular to the x and z axes, as shown in (B), whereas in
the ground area, as shown in (C), a horizontal vector is formed. (D) represents
a graph of pc1 with respect to the Y-axis, indicating the angle θ. In this paper,
considering sloped ground, the surface is defined when θ is 60◦ or more.

Fig. 4. (A) represents the ground point not removed. Clustering is not being
properly performed due to the point cloud from the ground, as shown in
Fig.(2). (B) shows that the point cloud from the ground is erased by the
proposed algorithm. Compared to (A), the point cloud of the ground has been
effectively removed in (B).

static object positions. Subsequently, clustering is conducted
for the remaining areas excluding those positions. Due to the
mentioned LiDAR points, an issue arises where static object
division for points does not work properly when using 3D
information for 1 frame. Therefore, when classifying static
objects, the LiDAR points were projected in the x-z plane to
reduce the dimension to two dimensions. Nevertheless, errors
that occur are rounded off to two decimal places, and matching
points are classified as dynamic objects.

C. Tracking method

As shown in Fig.5 DBSCAN is employed to generate
clusters for each LiDAR point, and tracking is performed using
the center points of the clusters. When tracking, the average
position of the previous frame is compared with the average

position of the current frame clusters, and the cluster with
the smallest dist is set to the same cluster. At this time, the
euclidean distance is used for the distance between clusters.

Fig. 5. This is a figure of the clustering and tracking method for LiDAR
points. Clustering of the observed LiDAR points is performed using DB-
SCAN, and tracking is performed by matching the cluster with the closest dist
to the current cluster using the average value of the clusters of the previous
frame and the current frame.

D. Collision prediction

Because the moving direction and distance of an object
can be obtained through tracking, collisions in the moving
direction are predicted using the Unity raycast function. In the
function of raycast, a ray can be fired in a specified direction
and a collision with an object can be predicted by detecting
the collision of the ray. When using raycast alone, collision
detection is limited to a specific point and does not account
for the area of a cluster. Therefore, a box-shaped ray is fired
using the Unity function Physics.BoxCast to determine the
target object in the direction of the cluster. The size of the
box uses the min and max values for the x, y, and z axes of
the cluster to create a box containing all points of the cluster,
as shown in Fig.6. If the created box collides with the target
object, a collision is predictable.

Fig. 6. This figure illustrates the process of creating a cuboid that matches
the size of the dynamic object, firing a cuboid-shaped ray in the direction of
movement, and predicting the possibility of collision based on whether the
ray intersects with the target object.



IV. EXPERIMENT

A. Accuracy of dynamic object actual and virtual locations

To evaluate the alignment between the actual positions of
dynamic objects and the positions of Unity-based clusters,
tracks are constructed as depicted in Fig. 7. The formula
for accuracy measurement is presented in Eq.(6,7). While
moving along the track until reaching the destination, the
distance(dist) between the track and the mean position of
clusters along the x and z axes(ni) at each frame is compared
with the error threshold[10cm(T10), 5cm(T5), 3cm(T3)]. The
average(Eq.(6)) is calculated by dividing the total number of
points(Ntotal) falling within the error bounds(Ni). Each track
is iterated 30 times, and the results are as follows in the table
below.

Ntotal∑
i=1

Ni

Ntotal
(6)

Ni =

{
1 if dist(ni, track) < Tk, k ∈ 3, 5, 10

0 else
(7)

Fig. 7. This figure is constructed to measure the accuracy of the position of
a dynamic object in the real environment and the measured position in Unity.
Track A is marked with a white line, and Track B is marked with a blue line.

TABLE I
THE ACCURACY RESULT OF ACTUAL AND VIRTUAL LOCATION

T10 T5 T3

Track A 0.76 0.5 0.32
Track B 0.69 0.32 0.2

In the case of measurement results, it is confirmed that the
accuracy of Track A tended to be higher than that of Track
B. Because Track B is a track that is relatively farther than
Track A.

B. Collision Prediction Accuracy

The accuracy measurement for collision detection is con-
ducted with human subjects physically moving. The exper-
iment aims to evaluate whether individuals can accurately
predict the likelihood of collision when a target object is
present in the direction of their movement and whether they
perceive no collision when there is no target object in their
path. The experiment involved varying the location of the

target object, resulting in a total of 3,022 data points. The
results are shown in the table below. The accuracy for collision

TABLE II
THE RESULT ACCURACY OF COLLISION PREDICTION

predict
actual collision (X) collision (O)

collision (X) 0.96 0.26
collision (O) 0.04 0.74

(O) is measured at 73.5%, and the accuracy for collision (X)
is measured at 96%. In the case of collision (X), the measure-
ment accuracy for not colliding because the moving direction
of the observed object does not match the target object is
100%, but the measurement accuracy for not colliding when
the object stops is 93.8%. The reason is that, as mentioned
earlier, the measurement position of the LiDAR point changes
slightly every frame and the change causes an error in which
an unmoving target moves, resulting in a decrease in accuracy.

V. FUTURE WORK

Currently, the experiment is conducted in situations where
the location of the target object is fixed, assuming an indoor
environment where LiDAR is fixed. As a result of the experi-
ment, it is confirmed that even in limited situations, accuracy
is greatly reduced due to the position of the LiDAR point
changing every frame. Therefore, we plan to first conduct
filtering research to reduce measurement errors. Afterward,
we plan to study how collision prediction for moving targets
can be applied to mobile LiDAR.

REFERENCES

[1] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8, pp.
108 952–108 971, 2020.

[2] T. Eppenberger, G. Cesari, M. Dymczyk, R. Siegwart, and R. Dubé,
“Leveraging stereo-camera data for real-time dynamic obstacle detection
and tracking,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 10 528–10 535.

[3] K. P. Sinaga and M.-S. Yang, “Unsupervised k-means clustering algo-
rithm,” IEEE access, vol. 8, pp. 80 716–80 727, 2020.

[4] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in kdd,
vol. 96, no. 34, 1996, pp. 226–231.

[5] H. Lim, M. Oh, and H. Myung, “Patchwork: Concentric zone-based
region-wise ground segmentation with ground likelihood estimation using
a 3d lidar sensor,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 6458–6465, 2021.

[6] A. Nurunnabi, D. Belton, and G. West, “Diagnostics based principal
component analysis for robust plane fitting in laser data,” in 16th Int’l
Conf. Computer and Information Technology, 2014, pp. 484–489.


