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Abstract—The development of Artificial Intelligence has led
to remarkable advancement in agriculture. Many automatic
tools have been developed to reduce human labor and improve
accuracy. One of the most popular applications in harvesting and
packaging agricultural products is the fruit classification system
based on ripeness level. This paper focuses on improving the
YOLOv8n architecture by replacing the original convolution op-
erations with a new convolution module called the Receptive Field
Convolution Block Attention Module for fruit ripeness detection.
This module leverages the advantages of group convolution and
Convolution Block Attention Module mechanisms to enhance
the feature extraction ability. The experiments are trained and
evaluated on the Fruit Ripening Process and Mango And Banana
datasets. As a result, the proposed network achieves the best
performance at 99.4% of mAP@0.5 and demonstrates superiority
over other methods under the same experimental conditions.

Index Terms—CBAM, convolutional neural network, fruit
classification systems, fruit ripeness detection, YOLOv8.

I. INTRODUCTION

According to statistics from the Food and Agriculture Or-
ganization of the United Nations (FAO), in 2021 world fruit
production reached about 910 million tons and this number
may change from year to year depending on natural conditions
[1]. Among them, the top-producing countries are China, USA
India, Mexico, etc. With such a large annual production,
it requires quick and accurate classification and packaging
before delivering to the market. These tasks are essential to
ensure the best quality of fruit. However, classifying fruits
with different kinds and ripeness levels is not an easy task
because of similarities in color, shape, and size [2]. Typically,
this stage will be conducted by a group of experts or trained
people with the main factors to evaluate being the color and
quality of the fruit product. Manual testing often generates
many errors depending on each individual’s experience and
judgment. Therefore, the quality of classification is not as
uniform as expected. Recently, many researchers have focused
on the agricultural field and provided a variety of solutions
and applications for fruit detection and classification. The
techniques aim to partly address complex challenges such
as diversity, unevenness, and inconsistency in shape, color,
and texture [3]. Prominent among them are those Computer
Vision-based methods. These approaches take advantage of
machine learning algorithms, especially Convolutional Neural
Networks (CNNs), to distinguish the inherent characteristics of

fruits. Following that trend, this paper proposes a technique to
improve the YOLOv8n network architecture for fruit ripeness
classification by carefully analyzing the original network
architecture and completely replacing standard convolutions
with Receptive Field Convolution Block Attention Module
Convolution (RFCBAMConv) inside the backbone and neck
modules. With the combination of lightweight architectures,
CBAM attention mechanism, and computational complexity
optimization, the proposed network has high accuracy and
the potential to be deployed in low-computing devices for
automatic fruit ripeness classification systems.

The paper provides several main contributions as follows:
1 - Proposes an efficient fruit ripeness detector based on
YOLOv8n architecture for automatic fruit classification sys-
tems.
2 - The proposed method achieves better performance than
other approaches on the Fruit Ripening Process and Mango
And Banana datasets.

The remaining parts of the paper are arranged as follows:
Section II presents related work to fruit ripeness detection
and recognition. Section III introduces the proposed technique
in detail. Section IV analyzes and assesses the experimental
results. Section V concludes the issue and future development
direction.

II. RELATED WORK

This section will introduce related work to fruit ripeness
detection and classification. They can be separated into
traditional machine learning methodologies and CNN-based
methodologies.

A. Traditional machine learning methodologies

To detect and recognize fruit ripeness, traditional machine
learning methods often apply spectral and hyperspectral analy-
sis methods. The authors in [4] proposed an automatic method
to distinguish the ripeness of bananas using spectral and
RGB data. It used classifiers such as random forests, multi-
layer perceptrons, and feedforward neural networks to classify
spectral data. In [5], hyperspectral reflectance images were
used to evaluate and classify three common peach diseases
by analyzing spectral and image information. A study in [6]
provided hyperspectral systems to combine spectral informa-
tion on each pixel for fruit and vegetable quality assessment.
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Fig. 1. The overview of the proposed fruit ripeness detection network.

These traditional machine learning methods generally achieve
quite good accuracy but have high computational cost and
implementation complexity. These factors hinder deployment
in real-time applications.

B. CNN-based methodologies

An improved MobileNetV2 [7] network based on pre-
trained weights from ImageNet was used to classify six fruit
classes. In another study in [8], AlexNet, ResNet50, and VGG-
16 were also used to classify the above six kinds of fruit. The
work in [9] improved the U-Net model to detect rotten or
fresh apples from peel defects. The research in [10] shows
that the YOLO (You Only Look Once) network structures
can automate different tasks on various fruit datasets, bringing
more effective applications in the agricultural automation
process. The advantage of these methodologies is their high
speed and accuracy. However, the main drawback is that it
requires high hardware specifications and expensive supporting
devices.

III. METHODOLOGY

The fruit ripeness detection network overview is described
in detail as shown in Fig. 1. This is an improved YOLOv8
architecture that consists of three parts: Backbone, Neck, and
Detection head.
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Fig. 2. The architecture of Cross Stage Partial Fast BottleNeck (C2f) (b),
Conv (b), and Spatial Pyramid Pooling (SPP) (c) blocks.

A. Proposed network architecture

This work thoroughly analyzes and evaluates each compo-
nent in the original YOLOV8 architecture [11]. From those
analytic results, the research focuses on refining several blocks
in the Backbone and Neck modules. Specifically, the Cross
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Fig. 3. The Receptive Field Convolution Block Attention Module architecture.

Stage Partial Bottleneck with two convolutions (C2f) block is
reused, the Spatial Pyramid Pooling Fast (SPPF) and Conv
blocks are replaced by the Spatial Pyramid Pooling (SPP) and
the Receptive Field Convolution Block Attention Module Con-
volution (RFBAMConv) [12], respectively. The architecture
details of Conv, C2f, and SPP blocks are shown in Fig. 2.

The Backbone module is redesigned based on a Conv block,
followed by four identical combination blocks, and ending
with an SPP block. In which, the same intermediate blocks are
sequentially stacked with several C2f blocks (with repetition
ratios of 3, 6, 6, and 3 times) and an RFCBAMConv block.
Fig. 3 shows the architecture of RFCBAMConv which is a
combination of the Receptive Field Convolution Block Atten-
tion Module (RFBAM) mechanism and a standard convolution
(Conv2D). Besides, the Channel Attention Module (CAM) is
replaced by the Squeeze-Excitation Attention Module (SE).
The RFCBAMConv is designed to address the convolution
kernel parameters sharing problem and improve the feature
extraction ability for standard convolution operation. This
RFCBAMConv block conducts the group convolutions which
can save a large number of parameters. On the other hand, the
CBAM attention mechanism guides the network to learn the
important information on each feature map level. Assume that,
F ∈ RW×H×C is the input feature map and F ′ ∈ RW×H×C

is the output feature map. The operating process of RFCBAM-
Conv can be described as follows:

F ′ = f3×3(FChannel × FMain × FSpatial), (1)

where f3×3 is the standard convolution operation with kernel
size 3 × 3. FChannel, FMain, and FSpatial are the output
feature maps of channel attention, main, and spatial attention
branches, respectively. FChannel, FMain, and FSpatial are

computed as below equations:

FChannel = σ(FC(ReLU(FC(GAP (F )))), (2)

FMain = Reshape(BN(ReLU(g3×3(F ))), (3)

FSpatial = σ(f1×1([Avg(FM ),Max(FM )])), (4)

in which, GAP is the Global Average Pooling layer. FC is
the fully connected layer. ReLU is the Rectified Linear Unit
activation function. Avg and Max are Average Pooling and
Max Pooling layers, respectively. The operation [·] describes
the Concatenation layer. f1×1 denotes the standard convolu-
tion operation with kernel size 1×1. The symbol σ stands for
the Sigmoid activation function. At the end of the backbone
module, this work uses the SPP block from YOLOv5 [13] to
replace the SPPF block. The kernel size of the Max Pooling
layers varies from 3×3 to 5×5 to ensure reasonable network
parameters.

The Neck module leverages the Path Aggregation Network
(PAN) architecture as in the YOLOv8 network and also
replaces the whole of the Conv blocks with the RFCBAMConv
blocks. This module upsamples the current feature maps and
aggregates them with previous low-level feature maps from the
backbone module using Concatenation operations. The three
scale output feature maps corresponding to the three scales
of the object (small, medium, and large) are generated by the
Neck module. Three feature maps have enriched the important
information and go through the detection head module.

The detection head module also reuses the architecture of
three detection heads from the original YOLOv8 with the
decouple head and free-anchor technique. The feature maps
from the output of the Neck module go to two siblings of
a combination of a Conv block and standard convolution
for bounding box regression (four coordinates of the box:
x, y, h, w) and classification (number of classes: c) on three
object scales. The Conv block is described in Fig. 2 (b). This
block uses a 1×1 standard convolution layer (Conv2D), a BN,
and a ReLU activation function. The Conv blocks are only
used in the detection head module of the proposed network.
Table 1 presents the detection head module in detail.

TABLE I
THE DETAILS OF THE DETECTION HEAD MODULE.

Heads Input Anchor Ouput Object
1 80× 80× 256 Free 80× 80× 4/80× 80× 2 Small
2 40× 40× 512 Free 40× 40× 4/40× 40× 2 Medium
3 20× 20× 512 Free 20× 20× 4/20× 20× 2 Large

B. Loss function
The proposed network using the loss function is defined as

follows:

L = λBoxLBox + λDFLLDFL + λClsLCls, (5)

where the bounding box regression loss combines LBox and
LDFL and applies the CIoU loss and Distribution Focal Loss
(DFL), respectively. The classification loss LCls uses the
Binary Cross Entropy loss to compute. The λBox, λCls, and
λdfl are balancing parameters.
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Fig. 4. The qualitative result of the proposed network on the validation set of the Fruit Ripening Process Dataset and the Mango And Banana Dataset.

IV. EXPERIMENTAL RESULTS

A. Dataset

The experiments conduct training and evaluation on the
Fruit Ripening Process Dataset and the Mango And Banana
Dataset. The Fruit Ripening Process Dataset [14] is collected
from the Roboflow website. This dataset includes 6,789 ba-
nana images with ripeness levels (fresh ripe, fresh unripe,
overripe, ripe, rotten, unripe) selected from many different
sources. The dataset is divided into two subsets with 5,264
images for training and 1,525 images for evaluation. The
Mango And Banana Dataset [15] is an RGB image dataset.

This dataset contains 5,000 images with 640×480 resolution of
bananas and mangoes focusing on classifying ripe and unripe
fruits tasks. The data set is split into a training set and an
evaluation set at the rate of 80% (4,000 images) and 20%
(1,000 images).

B. Experimental setup

The proposed network is built using the Python program-
ming language and the Pytorch framework. The experiments
are trained and evaluated on a GeForce GTX 1080Ti 11GB
GPU. The training phase applies the Stochastic Gradient



TABLE II
THE COMPARISON RESULTS OF THE PROPOSED NETWORK WITH OTHER METHODS ON THE FRUIT RIPENING PROCESS AND MANGO AND BANANA

DATASETS.

Fruit Ripening Process Mango and Banana
Method Parameter GFLOPs Weight (MB) mAP1 mAP2 Inf. (ms) mAP1 mAP2 Inf. (ms)

YOLOv5n 1,769,329 4.2 3.8 91.6 64.1 1.4 99.3 83.6 1.4
YOLOv8n 3,006,428 8.1 6.2 92.8 69.9 0.6 99.2 86.6 0.6

YOLOv8s-RFCBAMConv 11,243,112 29.0 22.8 93.4 70.6 2.3 99.3 86.8 4.2
YOLOv8m-RFCBAMConv 34,109,656 86.1 68.6 93.1 70.6 4.1 99.4 86.8 6.8
YOLOv8l-RFCBAMConv 76,910,856 192.9 154.4 93.2 71.1 6.4 99.4 87.0 7.8
YOLOv8x-RFCBAMConv 120087934 301.0 240.8 93.1 70.8 9.4 93.0 70.8 9.4

Proposed mothod 3,064,472 8.3 6.4 93.8 70.3 1.9 99.4 87.1 1.1
- mAP1: mAP@0.5 (%).
- mAP2: mAP0.5:0.95 (%).
- Inf.: Inference time (ms) is evaluated on a GeForce GTX 1080Ti GPU.
- Red color: Best competitor.

Descent (SGD) optimization. The initial learning rate is set at
10−2 and ends at 10−4. The momentum is set at 0.937. The
training process uses 200 epochs with a batch size of 16. The
balance parameters are set as follows: λBox=1.5, λCls=0.5,
and λDFL=1.5. To enhance the training dataset and avoid over-
fitting problems, several data augmentation methods (such as
mosaic, translate, scale, and flip) are used. In the inference
phase, argument configurations are set as an image size of
640 × 640, a batch size of 16, a confidence threshold = 0.5,
and an IoU threshold = 0.5. The inference time is reported in
milliseconds (ms).

C. Experimental results

To evaluate the performance of the proposed network, this
work retrains from scratch the nono architectures of YOLOv5
and YOLOv8 (nano version). On the other hand, the study
also conducts the same with different versions of the proposed
network from small to extra-large versions (s, m, l, x). As a
result, the proposed network achieves 93.8% of mAP@0.5,
70.3% of mAP@0.5:0.95 and 99.4% of mAP @0.5, 87.1%
of mAP@0.5:0.95 respectively on the two datasets mentioned
above. From the comparison results in Table 2, it is seen that
the proposed network outperforms most of the competitors.
More specifically, for the Fruit Ripening Process Dataset the
performance of the proposed network is comparable to the
large version YOLOv8l-RFCBAMConv (0.8%↓) and better
than YOLOv8s-RFCBAMConv (0.4%↑). Meanwhile, the pa-
rameter and GFLOPs are equivalent to YOLOv8n and speed is
the same as YOLOv5n (0.5 ms↓). For the Mango And Banana
Datase, the performance of the proposed network is better
than YOLOv8l-RFCBAMConv (0.1%↑) and better speed than
YOLOv5n (0.3 ms↓). These high performances promise the
proposed network to be deployed on low-computing devices
for in real-time fruit ripeness classification systems. Several
qualitative results on two datasets are shown in Fig. 4.
The comparison results between the proposed network and
YOLOv8n are clearly shown in Fig. 5. From this visualization
result, it can be seen that the proposed network has better
object detection ability in obscured situations, similar colors
between ripeness levels context, and rotten parts inside the

Proposed YOLOv8n

Fig. 5. The comparison result between the proposed and YOLOv8n networks
on the validation set of the Fruit Ripening Process Dataset.

fruit. However, because several fruit ripeness levels are rela-
tively close in color, detecting and differentiating them remains
a huge challenge. Therefore, it requires the development of
powerful object detectors and rich datasets to optimize the
performance of automatic fruit ripeness classification systems.



D. Ablation study

This research also assesses the effectiveness of each pro-
posed module through several ablation studies. To build the
different versions of the proposed network, these modules
are replaced one by one, and then conducts the training and
evaluation processes on the Mango And Banana dataset. The
experimental results in Table III demonstrate that using the
first Conv block can significantly reduce network parameters
and computational complexity while the network still ensures
accuracy and increases processing speed. On the other hand,
replacing the SPPF block with the SPP block also increases de-
tection accuracy and inference time. From those experiments,
this study chose the combination of Conv, RFCBAMConv, and
SPP blocks to improve the YOLOv8n network to achieve the
best performance.

TABLE III
ABLATION STUDIES WITH DIFFERENT PROPOSED NETWORKS ON THE

VALIDATION SET OF THE MANGO AND BANANA DATASET.

Blocks Proposed backbones
First Conv ✓ ✓

RFCBAMConv ✓ ✓ ✓ ✓
SPPF ✓ ✓
SPP ✓ ✓

Parameter 3,064,472 3,064,915 3,064,915 3,064,472
GFLOPs 8.3 8.4 8.4 8.3

Weight (MB) 6.4 6.4 6.4 6.4
mAP@0.5 99.4 99.4 99.4 99.4

mAP@0.5:0.95 86.6 86.6 86.7 87.1
Inf. time (ms) 1.1 3.1 2.7 1.1

V. CONCLUSION AND FUTURE WORK

This paper proposes a technique to improve the YOLOv8n
architecture for fruit ripeness detection supporting the au-
tomatic fruit ripeness classification systems. The proposed
method is composed of three parts: backbone, neck, and
detection head modules. The backbone and neck modules are
redesigned by replacing the Conv blocks with the RFAConv
blocks except the first Conv block. Besides, the SPPF block
is also replaced by the SPP block with the small kernel sizes
of the Max pooling layer. The detection head leverages the
idea from the original architecture in YOLOv8n. The proposed
network achieves the best mAP at 99.4% and is compa-
rable to existing methods. The optimization of the number
of parameters, computational complexity, inferent time, and
detection precision provides the promise to deploy on real-time
systems. In future work, this research will try to implement
the experiment on a larger fruit dataset and compare the
performance to YOLOv9.
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