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Abstract—Person re-identification holds significant research value
within supervised systems characterized by non-overlapping
multiple cameras. In recent years, unsupervised learning has
made notable strides and has gradually approached the training
efficacy of supervised learning. This paper focuses on exploring
the influence and analysis of various sampling strategies on
overall unsupervised training. We initially delineate a proxy-
level memory bank scheme based on camera labels and employ
a hard sample mining strategy for selecting negative pairs in
a contrastive learning loss. Various sampling strategies, Random
sampling, triplet sampling with dissimilar labels, and group sam-
pling yield markedly distinct outcomes across three large-scale
datasets, i.e. Market-1501, DukeMTMC-reID, and MSMT17.
Detailed analysis and discussion of these results are provided
in this study.

Index Terms—Person Re-identification, unsupervised learning,
sampling strategy.

I. INTRODUCTION

In recent years, numerous computer vision tasks based on
deep learning have achieved remarkable results [1, [2]]. This
paper focuses on person re-identification (RelD) tasks with
an unsupervised training scheme. With the widely applied
convolutional neural network (CNN), unsupervised person
RelD achieves increasingly better performance and is gradu-
ally approaching the performance of supervised training [3} 4.
Thanks to its characteristic of not requiring manual annotation,
unsupervised training mode has gained extensive research and
exploration [5| |6, |7, |8. Among them, unsupervised domain
adaptive methods [[7} [8] trained the backbone network on the
source dataset with the ground truth and then transferred it to
the target unlabeled dataset. While fully unsupervised methods
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[5} 6] directly trained the model on the target unlabeled dataset
without leveraging any annotations.

As researchers delve deeper into unsupervised person RelD, a
pipeline based on clustering algorithm [9, |10] and contrastive
learning [5} 6] has gradually formed and demonstrated excel-
lent performance. Under that pipeline, a backbone network
[11] is applied to extract the features. And using clustering
algorithms to generate pseudo labels for each training sample.
Then the contrastive pipeline constructs a memory bank [|12]]
to store the representations of each cluster. It should be em-
phasized that this paper follows the camera-aware contrastive
pipeline [6], so the clusters would be divided into multiple
proxies with the camera ID. And the memory bank also stores
the representation of every proxy instead of the cluster.

After obtaining the clustering results, the DBSCAN would di-
vide the whole training set into inliers and outliers. A sampling
strategy [6, |13} [14]lis applied to choose real training samples
for each mini-batch from the inliers. This paper considers four
kinds of sampling strategies with the camera-aware contrastive
pipeline, i.e. random sampling, triplet sampling with cluster
label [3]], triplet sampling with camera-ware proxy label [6],
and group sampling [[14]].

In this paper, we introduce the fully unsupervised person RelD
training pipeline and analyze the advantages and disadvan-
tages of multiple sampling strategies. Extensive experiment
results on three large-scale person relD datasets, i.e. Market-
1501 [15], DukeMTMC-relD [16], and MSMT17 [17], are
demonstrated in this paper.

The remaining content is organized as follows. Section II



introduces the related work for the unsupervised person relD
methods and sampling strategy. The main methodology is
shown in section III. Extensive experiments are demonstrated
in section IV, and the section V concludes this paper.

II. RELATED WORKS
A. Unsupervised Person Re-ID

Due to its significant advantage of not requiring manual
annotation, unsupervised learning has attracted widespread
attention and research. In recent years, the unsupervised person
re-ID was divided into many subtasks due to the different
training settings, e.g. the unsupervised domain adaptation
(UDA) case would train the model on single or multiple source
datasets and then transfer to target unlabeled dataset to get
great performance [7} (8} 18] [19]], the fully unsupervised person
re-ID would only focus on the target dataset without leveraging
any other data with annotations [J5] |6].

The research training with the contrastive learning algorithm
achieved great success and gradually became mainstream. In
these works, although the sampling plays a crucial role, it has
not received focused research attention.

B. Sampling strategy

Given the training set, sampling is a necessary operation to
assign samples into successive mini-batch. A good sampling
strategy would help reduce bias and accelerate convergence
during the training process. Random sampling strategy was
applied in many classic papers [11]] but was not suitable to
the contrastive learning pipeline for unsupervised person re-
ID. The triplet sampling [20] is often applied in person re-
ID task. In each mini-batch, a certain number of samples
from the same clusters are randomly selected [[7, |5]]. For some
works that utilized the camera ID, the triplet sampling would
take a certain number of samples from a proxy instead of a
cluster randomly [6]]. In the paper on group sampling [14],
they proposed a new group sampling strategy that takes all
the training samples inside the training process and improves
the performance of the contrastive pipeline.

III. METHODOLOGY
A. Camera-aware contrastive pipeline

Given the target unlabeled dataset X = {mi}fvzl, a backbone
network is utilized to extract feature embedding F = {f;}*_,,
where N denotes the number of samples in the training set.
To generate the pseudo labels Y = {yi}f.vzl for the samples,
a clustering algorithm DBSCAN [9] is utilized. Thanks to
the inherent characteristics of DBSCAN, the training set is
effectively partitioned into inliers and outliers, minimizing
the impact of outliers on the overall data analysis. So the
samples would be remarked as outliers when y; = —1.
Following [6f], the clusters obtained by DBSCAN would be
divided into multiple proxies based on the corresponding
camera ID. Each inlier sample would obtain a proxy pseudo
label y;. The memory bank M is constructed by storing the
average embedding of the samples belonging to the same

proxy as the representation of each proxy, e.g. M|[y;] denotes
the representation of the proxy which contains sample z;.
Successively, the inlier samples would be sampled for each
mini-batch and the loss function. Different from the unified
contrastive loss function [7]], this paper chooses the limited
number of negative proxies instead of all the proxies which
not belong to the corresponding cluster, which is computed as,

B B 1 S(u,zi)
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where S(u,z;) = exp(M[u]T fi/7), PT and P~ denote the
positive proxies set and negative proxies set, simultaneously. ||
denotes the cardinality operation. Note that the positive proxies
set contain the proxies which belong to the same clusters. The
negative proxies set chooses the K -nearest proxies that do
not belong to the corresponding cluster, called hard negative
mining [21]]. Finally, the memory bank is updated by a moving
average scheme [7]].

B. Random Sampling

Given the inliers X' = {x;}f\ll generated by the clustering
algorithm, the sampling method is applied for sampling a fixed
number of samples into a mini-batch, where the N’ denote the
number of inliers.

Random sampling is the simplest sampling strategy but is
widely applied in computer vision tasks. When obtaining
the training dataset X’, random sampling is just randomly
shuffling all the samples’ order and getting the sampling list.
As shown in Fig. 1, the left part of the figure shows a part
of the samples in X', and the example sampling results are
shown in group (a).

C. Triplet Sampling

Based on its name, triplet sampling [22] samples a certain
number K of samples from the same class to construct a
complete mini-batch. If the number of samples in a class is
more than K, then randomly selected only K samples from the
class. Otherwise, some samples would be sampled repeatedly
to reach the K samples from one class. Following [7], the
papers in the unsupervised person re-ID task often adopt the
P x K mode to construct a mini-batch, where K denotes
the number of samples taken from one class as mentioned
above, and P denotes the number of classes in a mini-batch,
i.e. B = P x K. Additionally, in unsupervised re-ID work, the
training set is divided into clusters, so we sample K samples
from the P clusters. In this paper, we called it triplet sampling
with cluster labels.

For the paper which utilized camera ID [6] as mentioned in
the Section III. A, triplet sampling with proxy labels would
sample K samples from P proxies instead of a cluster.

D. Group Sampling

Different from triplet sampling, group sampling considers all
the samples in X’ into the sampling list. When a proxy con-
tains relatively more samples, triplet sampling would discard
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Fig. 1: lustration of three kinds of sampling strategies, where group (a) denotes the random sampling, group (b) denotes the
triplet sampling with K = 2 for example, group (c) describes the group sampling with N = 2 for instance.

the extra samples and only sample the K samples into a
mini-batch. Obviously, we cannot make sure the K samples
could represent visual information from all the samples in that
class and the discarded samples’ feature would not be updated
iteratively.

Different from the triplet sampling, group sampling would
take all the inliers into the sample list. Group sampling will
first group inliers together according to clustering labels, with
every N inliers combined, where N is referred to as the group
number. If the number of samples in a certain cluster cannot
be divided evenly by N, the remaining samples will still be
treated as one group, and then the order of all groups will be
shuffled. Note that in this context, the group sampling used
does not mix outliers into the sample list, which differs from

[14].

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Dataset. Three large-scale person re-ID datasets are applied
in this paper, i.e. Market-1501 [15]], DukeMTMC-reID [16],
and MSMT17 datasets. Among them, the Market-1501
dataset captured pedestrian samples from 6 cameras and has a
relatively smaller inter-camera domain gap. The DukeMTMC-
relD dataset used 8 cameras to catch samples and contains
relatively more occlusions. The samples in the MSMT17
dataset are derived from 15 cameras and possess a relatively
bigger inter-camera domain gap.

Evaluation metrics. The mean Average Precision (mAP) and
Cumulative Matching Characteristic (CMC) are adopted to
evaluate the performance.

B. Implementation Details

Model hyper-parameters. The ResNet-50 is utilized
as the backbone network. The final fully connected layer is
replaced by a global average pooling, a batch normalization,
and an L2-normalization layer. The other structure of the
backbone network is pre-trained on the ImageNet [24].

Other settings. The maximum distance between the closest
samples is set to 0.5. The temperature factor is set to 0.09. The
batch size is 32. The experiments for different numbers of K
in triplet sampling with cluster labels and proxy labels are set
to 1, 2, 4, 8, 12, 16, and 32. The experiments for different
group sizes of N in group sampling are set to 1, 2, 4, 8, 12,
16, and 32 (same with triplet sampling to fairly compare).
Other settings are following [6].

C. Comparisons with other researches

In this paper, the results of four different sampling strategies
are shown in Table. I. The experiment results are compared
with the state-of-the-art, i.e. MMCL [19]], SpCL [[7], GCL [23],
and CAP [6]. The results for different sampling strategies
are performed by different detailed settings and the best
performances are shown in the Table. I. The triplet sampling
with cluster labels and camera-aware proxy labels obtain
a relatively higher performance than random sampling and
group sampling. In terms of group sampling, it performs
well on the largest dataset MSMT17 with the same settings.
The comparisons of different detailed settings for the various
sampling strategies except random sampling are shown in
Table. II, Table. III, and Table. IV.



TABLE I: Comparison between the proposed method and state-of-the-art algorithms. The results on three target person Re-ID
datasets, Market-1501 [15]], DukeMTMC-Re-ID [16|, and MSMT17 [17].

Methods Market1501 DukeMTMC MSMT17
mAP/% R1/% R5/% R10/% | mAP/% R1/% R5/% R10/% | mAP/% RI1/% R5/% R10/%
MMCL[19] 45.5 80.3 89.4 923 40.2 65.2 759 80.0 11.2 354 44.8 49.8
SpCL[7] 73.1 88.1 95.1 97.0 - - - - 19.1 423 55.6 61.2
GCL[23] 66.8 87.3 93.5 95.5 62.8 82.9 87.1 88.5 21.3 45.7 58.6 64.5
CAP[6] 79.2 91.4 96.3 97.7 67.3 81.1 89.3 91.8 36.9 67.4 78.0 81.4
This paper-Random Sampling 11.5 24.8 33.4 37.6 0.8 2.5 4.0 5.1 9.9 243 32.1 36.3
This paper-Triplet Sampling! 82.7 93.3 97.1 98.3 69.4 83.4 90.6 92.8 38.6 70.6 80.5 83.9
This paper-Triplet Sampling® 83.7 93.3 97.7 98.6 66.2 80.7 88.9 91.2 37.1 68.6 78.8 82.2
This paper-Group Sampling 80.2 92.2 97.2 98.3 63.0 80.2 87.9 90.3 40.2 71.5 80.9 84.0

! Triplet sampling strategy with cluster labels.
2 Triplet sampling strategy with camera-aware proxy labels.

TABLE II: The results obtained from training with triplet sampling using cluster labels of varying K on three person Re-
identification (Re-ID) datasets—Market-1501 [15]], DukeMTMC-Re-ID [16], and MSMT17 [[17]—are presented.

K Market1501 DukeMTMC MSMT17
mAP/% R1/% R5/% R10/% | mAP/% R1/% RS5/% R10/% | mAP/% R1/% R5/% RI10/%

1 36.2 61.9 70.5 73.5 23.8 41.8 50.4 53.8 12.0 29.4 40.0 44.7
2 48.8 72.6 79.6 82.2 43.8 63.8 71.9 74.8 22.0 48.3 59.3 64.3
4 78.8 91.2 96.2 97.6 64.5 79.5 86.8 89.2 352 64.9 75.4 79.1
8 82.7 93.3 97.1 98.3 69.4 83.4 90.6 92.8 38.6 70.6 80.5 83.9
12 80.5 92.3 97.0 98.0 68.1 82.8 90.8 93.0 325 66.5 76.9 80.6
16 452 73.8 87.4 91.4 41.9 65.5 78.1 82.3 17.6 47.1 59.1 64.1
32 0.8 2.0 4.5 7.3 0.4 1.0 2.4 4.0 0.1 0.4 1.3 2.1

TABLE III: The results obtained from training with triplet sampling using proxy labels of varying K on three person Re-
identification (Re-ID) datasets—Market-1501 [[15], DukeMTMC-Re-ID [16]], and MSMT17 [17]—are presented.

K Market1501 DukeMTMC MSMT17
mAP/% R1/% R5/% R10/% | mAP/% R1/% R5/% R10/% | mAP/% R1/% R5/% RI10/%

1 65.1 84.2 91.4 93.7 50.8 70.9 79.3 82.8 20.4 46.1 58.8 64.4
2 78.0 89.5 95.3 96.7 58.8 76.0 84.0 85.7 30.7 59.9 715 75.6
4 81.6 92.0 96.7 97.7 64.5 79.5 86.8 89.2 37.1 68.6 78.8 82.2
8 83.7 93.3 97.7 98.6 66.2 80.7 88.9 91.2 36.6 67.9 719 81.5
12 80.4 91.5 96.7 97.9 67.9 81.8 90.2 92.7 31.9 63.7 74.8 78.8
16 56.3 80.6 90.5 93.7 48.1 68.9 80.7 84.6 2.7 7.7 13.4 16.9
32 0.6 1.2 3.7 5.8 0.3 0.8 2.3 3.5 0.1 0.1 0.6 1.0

TABLE IV: Comparison between the proposed method and state-of-the-art algorithms. The results on three target person Re-ID
datasets, Market-1501 [15]], DukeMTMC-Re-ID [16|], and MSMT17 [17].

N Market1501 DukeMTMC MSMT17
mAP/% R1/% R5/% R10/% | mAP/% R1/% R5/% R10/% | mAP/% R1/% R5/% RI10/%

1 20.9 414 52.6 57.4 2.4 7.0 9.9 11.3 6.4 159 21.9 25.1
2 37.2 58.5 69.6 74.0 24 7.0 10.2 115 12.2 30.7 40.3 44.6
4 41.6 62.7 72.6 75.9 32 9.4 12.4 13.5 27.1 54.2 65.1 69.4
8 719 90.6 96.1 97.2 19.0 343 39.0 40.8 40.2 71.5 80.9 84.0
12 75.8 90.3 96.1 97.3 63.8 80.0 87.0 88.9 39.1 71.1 81.2 84.1
16 80.2 92.2 97.2 98.3 63.0 80.2 87.9 90.3 35.7 68.9 79.0 82.4
32 73.9 89.9 95.9 97.4 63.5 79.2 86.8 88.6 31.4 66.1 76.6 80.4

D. Discussions

This paper provides extensive experiments on the different
key parameters in triplet sampling with cluster labels, triplet
sampling with proxy labels, and group sampling.

In Table. IT and Table. III, the experiments for triplet sampling
with different labels are shown, where the key parameter is the
different number of K. The larger value of K takes more
samples from the same cluster/proxy, and vice versa. The
range of K is taken from {1,2,4,8,12,16,32}. Although the
settings for achieving optimal results differ between the two

experimental groups, the observed trends in the data varia-
tions are similar. For datasets Market1501 and DukeMTMC-
relD, optimal outcomes are typically achieved at K=8 or
12, whereas for dataset MSMT17, optimal performance is
observed at K=4 or 8. Although the optimal K values for
maximizing peaks are not identical, they are remarkably close.
This phenomenon arises from variations in the population
size and the number of cameras utilized across different
datasets. Database MSMT17 notably encompasses a larger
population of training individuals compared to Market1501
and DukeMTMC-relD, along with a greater number of cam-



eras, resulting in a lower average sample count per proxy.

Compared to group sampling, triplet sampling exhibits a
notable drawback in its sensitivity to changes in the value
of K. This is distinctly evident from Tables II and III, where
experimental outcomes markedly deteriorate when K is small,
and significantly worsen for larger K values (greater than
16), to the extent that the fitting can be deemed nonexis-
tent. Regarding the substantial degradation in experimental
performance when K is large, this stems from the excessive
size of the sample list, resulting in a scarcity of traversed
clusters/proxies within a single epoch. For instance, when
K=32, for MSMT17, the number of clusters traversed in
one epoch significantly exceeds 1000 (even during the initial
training stages). Consequently, the length of the sample list
surpasses 32,000, while within one epoch, only BatchSize x
Niteration, 1.€., 32 x 400 = 12800 samples are processed,
where Njieration denotes the number of the iterations in one
epoch which is equal to 400 in the experiments. Thus, in such
instances, training not only encounters issues with a plethora
of duplicates among the K samples extracted from a single
cluster or proxy but also faces the challenge of numerous
clusters/proxies failing to compute loss, leading to pronounced
training imbalances.

From Table IV, it can be observed that the deterioration in
experimental performance is less pronounced when we alter
the value of N, especially when NN is large, in contrast to
triplet sampling. From the experimental results, two issues can
be discerned: 1) When N is small, the performance of group
sampling relative to triplet sampling is comparatively inferior
across all three datasets. This is primarily attributed to the
scarcity of samples grouped together within a batch, rendering
it challenging to provide efficient and accurate gradient descent
directions. 2) Under consistent experimental conditions, the
optimal performance of group sampling on the Market1501
and DukeMTMC-reID datasets is inferior to triplet sampling,
with only MSMT 17 exhibiting superior performance to triplet
sampling.

V. CONCLUSIONS

The significance of sampling strategies in unsupervised person
re-identification tasks is elucidated in this paper. Building upon
a baseline contrastive learning framework involving camera-
aware memory bank construction and hard sample mining, ex-
tensive experimentation is conducted on four sampling strate-
gies. Furthermore, a comprehensive analysis is undertaken to
delve into the experimental outcome disparities arising from
each sampling strategy.
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