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Abstract. Vision Transformers achieved outstanding performances across
vision tasks due to their generalization ability to large models and datasets.
As a main component of the Transformer, the self-attention layer has
high flexibility in capturing long-range dependencies from input tokens.
Recent advancements in visual backbones have jointly modeled local and
global features via the integration of convolution and self-attention. How-
ever, the existing methods do not fully investigate bidirectional interac-
tions between local and global features. This paper introduces Bidirec-
tional Local-to-Global (BL2G) attention for capturing local and global
features as well as information exchange between two features. First,
BL2G utilizes window self-attention to extract local features. Modeling
long-range dependencies from high-resolution image tokens can result
in high memory and computation. To mitigate this problem, this work
groups image tokens together by exchanging information with a fixed
number of learnable group tokens. Then, grouped features are fed into
the spatial MLPMixer to model the global context. Second, bidirectional
interaction across local and global branches is performed to provide com-
plementary information. Typically, in the local-to-global branch, each
local query attends to global-grouped tokens, and each global query
interacts with local image tokens in the global-to-local branch. These
two designs are achieved by efficient cross-attention layers. To verify the
effectiveness of the proposed method, experiments are conducted and
evaluated on the benchmark dataset, ImageNet-1K image classification,
MS-COCO object detection and instance segmentation, and ADE20K
semantic segmentation. As a result, BL2G with 10.1M and 1G FLOPs
achieves 79.1% of Top-1 accuracy, which outperforms the recent Con-
vNets and Vision Transformers with similar costs. When transferring
the BL2G Transformer to dense prediction tasks, the proposed method
achieves comparative performances with previous methods.

Keywords: Vision Transformer · Local-to-Global Learning · Visual Rep-
resentation.

1 Introduction

Transformer [27] was originally designed for machine translation and attained
remarkable performance in both data modeling and efficiency. In the vision field,



2 X.-T. Vo et al.

DETR [1] integrates Transformer decoders into the detection head to model the
relationship between image features and object queries. ViT [7] fully employs
Transformer encoders for image classification and achieves promising perfor-
mances compared to ConvNets. From this milestone, many methods are pro-
posed to improve ViT in both efficiency and accuracy.

As a core component of ViT, self-attention captures long-range dependencies
from input tokens. However, self-attention has quadratic complexity with token
lengths. When transferring ViT models to dense prediction tasks, it creates huge
computational costs. Recent methods try to mitigate this issue by introducing
spatial reduction attention [29, 30, 34, 35] and window self-attention [17, 6]. In
spatial reduction attention, each query attends to down-sampled key and value
tokens. Although this design can reduce the computational cost to N2

r2 (N is a
number of tokens and r is the reduction ratio), relevant regions are ignored while
unimportant regions are still kept. Window self-attention [17] performs attention
on non-overlapped windows and requires the cyclic shift operation to commu-
nicate information across windows. Window-based Vision Transformers [17, 6, 2,
25, 33] have improved the efficiency of ViT where self-attention results in linear
complexity with token length. Spatial reduction attention can model global inter-
actions among tokens from coarse features, while window self-attention captures
local features inside windows. Both local and global information are complemen-
tary. Leveraging these two features into model blocks results in better feature
representation and modeling ability [3, 9, 4, 20]. However, these methods only
extract local-to-global features, and the bidirectional interaction between two
features is further designed to improve performances. Based on the observation,
this work promotes bidirectional local-to-global attention for visual representa-
tion.

In this paper, following methods [17, 3], window self-attention is used to
model short-range dependencies between input tokens. Instead of extracting
global information from down-sampled input features, this paper defines learn-
able group tokens that exchange information with image tokens via a cross-
attention layer. Otherwise, image tokens are grouped into a fixed number of
learnable tokens that are much smaller than image tokens (e.g., 8 tokens). There-
fore, feeding grouped tokens into Spatial MLPMixer can result in global informa-
tion at a low computational cost. To achieve bidirectional interaction across local
and global features, two cross-attention layers with different {q, k, v} pairs are
adopted to efficiently exchange information between two branches. Specifically,
in local-to-global modeling, local features are set as queries, and keys and values
are taken from global-grouped tokens. Similarly, in the global-to-local branch,
each global query interacts with local image tokens. Based on this design, infor-
mation exchange between two features is fully captured.

From the bidirectional local-to-global attention layer, the BL2G network is
introduced by stacking the number of attention layers across four stages in a
hierarchical manner. Extensive experiments are conducted to clarify the effec-
tiveness of the proposed BL2G network. For image classification, BL2G is trained
and evaluated on the benchmark dataset, ImageNet-1K. With 10.1M parame-
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ters and 1 GFLOP, BL2G achieves 79.1% of Top-1 accuracy, which surpasses
previous methods under similar computational costs. For object detection and
instance segmentation, BL2G is fine-tuned and evaluated on the MS-COCO
dataset using common detectors, RetinaNet, and Mask R-CNN. As a result,
BL2G outperforms existing backbones with smaller computational costs.

2 Related Works

2.1 Vision Transformers

Transformer [27] views words as tokens and proposes the Transformer encoder
and decoder to capture long-range dependencies from long sequences with weak
inductive biases. However, the self-attention layer in the Transformer encoder
has quadratic complexity with the token lengths. When adopting self-attention
to visual tasks and treating a pixel as a token, the models suffer large memory
access and computational costs due to the high input resolution. To address
this issue, ViT [7] defines a 16×16 patch as a token via 16×16 convolution with
stride 16, and leverages the Transformer encoder into the non-hierarchical net-
work to extract relations across patches. With these designs, ViT establishes a
new paradigm in modeling image and video inputs while achieving competitive
performances with ConvNets. Remarkably, Transformer architecture can be ap-
plicable to large language models, large vision models, and multimodal models
due to their strong generalization ability and high flexibility.

Self-attention captures global information from the input token, yet it has
high costs and lacks inductive biases such as locality and translation invariance.
PVT [29] attempts to reduce costs and proposes spatial reduction attention
that sub-samples key and value tokens. PVTv2 [30] enhances inductive biases
by adding convolution to the MLP layer. Swin Transformer [17] limits atten-
tion inside non-overlapped windows and requires the additional cyclic shift to
exchange information across windows. Swin Transformer attains high efficiency,
while the model stacks more layers to enlarge receptive fields slightly. Recent
methods try to capture global receptive fields and achieve linear complexity by
proposing window expanding [6, 10], window shuffling [25, 28], window shifting
[17, 31], and window sliding [26, 2, 33, 21, 11].

2.2 Local-to-Global Attentions

Existing methods combine the strengths of convolution and self-attention to
build hybrid networks. Strong inductive biases of convolution and high modeling
capabilities of self-attention are integrated into each layer or stage of the hybrid
networks. EdgeViT [20] extracts local and global features via sequential compo-
sition of depthwise convolution and spatial reduction attention. Twins [3] replace
shifted window attentions in Swin Transformer with spatial reduction attention
to take advantage of local-to-global features. MixFormer [2] models bidirectional
interactions across spatial and channel dimensions of window self-attention and
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depthwise convolution based on channel attention and spatial aggregation. Al-
though MixFormer efficiently exchanges information across branches, the model
still has limited receptive fields. Differently, this paper captures bidirectional
local-to-global interactions across local self-attention and group self-attention to
achieve better visual feature representation.

3 Methodology

An overview of the hierarchical BL2G architecture is shown in Figure 1. Follow-
ing [29, 17, 2], the BL2G network includes four stages, and spatial dimension is
progressively downsampled with a stride of {4, 8, 16, 32}. The channel dimension
is doubled twice for each stage based on the base channel C. In the following,
the detailed structure of BL2G attention is described in Figure 2.
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Fig. 1: (a) Overview of the BL2G network and (b) BL2G block. C,H,W are
the base channel number, height, and width of the input feature. L denotes the
number of stacked BL2G blocks. MLP indicates multi-layer perception.

3.1 BL2G Attention

The goal of BL2G attention is to extract local and global features and fully
exchange information between two features. Local features are captured by per-
forming attention inside non-overlapped windows. To mitigate the high computa-
tional cost of global self-attention, this paper introduces group attention that can
extract global receptive fields and has linear complexity with image resolution.
Bidirectional interaction between two branches is performed via cross-attentions
with different query features.

Group Attention. Given image tokens X ∈ RN×C , cross-attention groups
image features into a fixed number G, where N = H ∗ W is the number of
image tokens. This is achieved by performing interaction between learnable group
tokens T as query and image tokens as a pair of key and value. Each group token
attends to image features globally, and performing all interactions results in the
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Fig. 2: Detail structure of BL2G Attention. Image tokens are grouped into a
fixed number of group tokens via cross-attention. Spatial MLPMixer is used to
exchange information across group features to capture global receptive fields.
For image tokens, local self-attention is adopted to achieve linear complexity
with image resolution. Bidirectional interaction across local and global features
is captured by performing two cross-attentions with different q and k, v pairs.

attention matrix. Softmax δ is applied to each row of the attention matrix to
output the attention map. Briefly, group attention is summarized as follows:

MHGA(X) = Concat(GA1, . . . ,GAh), (1)

GAi(X) = softmax(
QGK

T
I√

Ch

)VI , (2)

where GAi is group attention for head i and h is the number of head. Y =
MHGA(X) indicates multi-head group attention composed of h GAs to produce
output Y. QG = TWG

Q ∈ RG×Ch is the group query updated with network
parameters. KI = XWI

K ,VI = XWI
V ∈ RN×Ch are key and value matri-

ces. {WG
Q,W

I
K ,WI

V } ∈ RCh×Ch are linear projections. Group attention matrix
AG = QGK

T
I ∈ RG×N means that N image tokens are grouped into G tokens.

Obviously, the proposed GA has a linear computational cost with N while still
capturing long-range dependencies from the image tokens.

After obtaining the grouped tokens, SpatialMLPMixer [23] is adopted to
revise and exchange global features between grouped tokens. SpatialMLPMixer
attains balances between parameter numbers, GFLOPs, and accuracy. Moreover,
SpatialMLPMixer efficiently works with a fixed number of input tokens, which is
well-appropriate for the grouped tokens. Typically, SpatialMLPMixer consists of
two fully connected (FC) layers, and the GELU() activation function is inserted
between them to learn the non-linear function in high spatial dimension:

Ỹ = WY ⊗ FC2(GELU(FC1(Y
T))), (3)

where Y ∈ RG×C is the output of group attention. FC1,FC2 are fully connected
layers applied across the spatial dimension. WY ∈ RC×C denotes linear projec-
tion that mixes grouped tokens across the channel dimension (Channel MLP).
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Fig. 3: Illustration of SpatialMLPMixer across spatial and channel dimension.

Figure 3 illustrates information mixing across spatial and channel dimensions.
Each grouped token is fully connected to all other tokens. Therefore, global
information across grouped tokens is updated.

Window Attention. The goal of window attention [17] is to capture local
features from the image tokens. Window attention achieves high efficiency com-
pared to global self-attention, which is compatible with high input resolution.
Specifically, the image tokens are partitioned into non-overlapped windows, and
self-attention performs interactions inside each window. The output of window
attention is the local features X̃L:

X̃L = softmax(
QKT

√
C

)V, (4)

where Q = XWWQ,K = XWWK ,V = XWWV ∈ RNW×w2×C are query, key,
value matrices projected from no-overlapped windows XW ∈ RNW×w2×C , where
NW is number of windows and w2 is window area.

Bidirectional Interaction. After revising the grouped tokens Ỹ and acquiring
local features X̃L, global information to the local image features and vice versa
are propagated through Global-to-Local Attention (G2L) and Local-to-Global At-
tention (L2G) processes.

For (G2L) attention, the global features Ỹ produced by SpatialMLPMixer
are ungrouped via cross-attention operation. Where local features, as queries,
attend to global features as a pair of keys and values, global information is
returned to the image features. Formally, global-to-local attention is computed
as follows:

G2L(X̃L, Ỹ) = softmax(
QW K̃T

G√
C

)ṼG, (5)
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Table 1: Results on ImageNet-1K Image Classification
Method #params(M) GFLOPs Top-1 Acc.(%)
DeiT-T [24] 6.0 1.3 72.2
MobileViTv1-XS [18] 2.3 1.0 74.8
LVT [22] 3.4 0.9 74.8
PVT-T [29] 13.2 1.6 75.1
MobileViTv2-0.75 [19] 2.9 1.0 75.6
ResT-Lite [34] 10.5 1.4 77.2
PoolFormer-S12 [32] 11.9 1.8 77.2
Swin-1G [17] 7.3 1.0 77.3
EdgeViT-XS [20] 6.7 1.1 77.5
DFvT-S [8] 11.2 0.8 78.3
PVTv2-B1 [30] 13.1 2.1 78.7
BL2G (Ours) 10.1 1.0 79.1

where QW = X̃LW
W
Q , K̃G = ỸWG

K , ṼG = ỸWG
V are query, key, and value

features, and WW
Q ,WG

K ,WG
V are linear projections.

For L2G attention, the local features acquired by Window Attention interact
with global features, which enable local-to-global relations to flow from the win-
dow attention branch to the other. This is achieved by the cross-attention layer,
where the local image features are queried by global group features:

L2G(X̃L, Ỹ) = softmax(
Q̃GK

T
W√

C
)VW , (6)

where Q̃G = ỸWG
Q,KW = X̃LW

W
K ,VW = X̃LW

W
V are query, key, and value

features, and WW
Q ,WG

K ,WG
V are linear projections.

Finally, ungrouped features and local-to-global features are fused via sum-
mation and the shortcut connection.

3.2 Model Configuration

Based on the proposed attention, the BL2G block is obtained, which includes two
layer normalizations, BL2G attention (spatial mixing), MLP (channel mixing),
and two residual connections inserted between two mixings. Similar to hierarchi-
cal backbones [29, 17, 6, 9], the BL2G network is introduced by stacking BL2G
blocks across four stages, and spatial dimension is downsampled through Patch
Embedding. Specifically, the number of BL2G blocks is set to {2, 2, 6, 6} and
the base channel is 32. The number of heads in BL2G attention is configured
with {2, 4, 8, 16}, and an MLP ratio of 4 is kept unchanged across 4 stages.

4 Experiments

4.1 Image Classification

Settings. The BL2G is trained and evaluated on the ImageNet-1K [5] which
includes 1.2M training images and 50K validation images. Following common
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Fig. 4: Throughput comparison between baseline attention: L2G Attention in
EdgeViT [20], Spatial Reduction Attention in PVTv2 [30], Window Attention in
Swin Transformer [17], and our BL2G Attention. Throughput is measured with
full precision and the same batch size (256 on GPU and 16 on CPU).

settings [29, 17, 2, 24], the model is trained for 300 epochs with a batch size of
1280. The optimizer is AdamW with a learning rate of 3e−3, a warmup epoch
of 5, a weight decay of 0.05, and a momentum of 0.9. The input images are
resized to 224×224. Standard data augmentations [24, 17, 29, 30] are adopted to
improve performance, such as drop path, cut mix, mixup, rand augment, and
label smoothing.

Results. Table 1 reports the results on ImageNet-1K image classification. With
10.1M parameters and 1 GFLOPs, BL2G achieves 79.1% of Top-1 accuracy
which outperforms baseline Swin Transformer [17] by 1.8%, PVT-T [29] by 4.0%,
competitive method EdgeViT-XS [20] by 1.6%, and recent method DFvT-S [8]
by 0.8%. Figure 4 shows throughput comparisons between efficient methods. As
a result, BL2G attention achieves similar speeds while attaining better accuracy
than baseline attention.

4.2 Object Detection and Instance Segmentation

Settings. The proposed method is conducted on dense prediction tasks to val-
idate the effectiveness of the BL2G backbone. MS-COCO [16] is used to train
and evaluate the models. This dataset includes 118K training images and 50K
validation images with 80 categories. The original backbone ResNet [13] in the
detection model [15] and instance segmentation model [12] is replaced with the
BL2G backbone. 1× training schedule (12 epochs) is employed to compare per-
formances with common methods [15, 12, 32, 29]. The AdamW is adopted as an
optimizer with a learning rate of 1e−4, a weight decay of 0.05, and a momentum
of 0.9. Input images are resized to 1333×800 and a batch size of 16 is configured.
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Table 2: Results on MS-COCO object detection using RetinaNet [15]
Backbone #params(M) GFLOPs AP box

ResNet-18 [13] 21 189 31.8
EMO-2M [33] 12 167 36.2
PoolFormer-S12 [32] 22 207 36.2
ResNet-50 [13] 38 250 36.3
PVT-T [29] 23 183 36.7
BL2G (Ours) 18 167 37.5

Fig. 5: Qualitative results of the BL2G Transformer with detection head Mask
R-CNN [12].

Results. Table 2 compares our BL2G with other backbones [13, 33, 32, 29] us-
ing detector RetinaNet [15]. BL2G achieves 37.5% APbox that surpasses recent
method EMO [33] by 1.3% with similar GFLOPs, baseline ResNet-50 [13] by
1.2% while saving 33% GFLOPs, and PVT-T [29] by 0.8% with smaller compu-
tational costs.

Table 3 shows that the BL2G achieves consistent improvements compared
to other competitors [13, 29]. The BL2G outperforms the baseline ResNet-50 by
2.0% APmask while saving 28% GLFOPs, and the PVT-T by 1.3% APmask while
saving 11% GLFOPs. Qualitative results of the proposed method are illustrated
in Figure 5.
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Table 3: Results on MS-COCO instance segmentation using Mask R-CNN [12]
Backbone #params(M) GFLOPs AP box APmask

ResNet-18 [13] 31 207 34.0 31.2
ResNet-50 [13] 44 260 38.0 34.4
ResNet-101 [13] 63 336 40.4 36.4
PVT-T [29] 33 208 36.7 35.1
BL2G (Ours) 28 185 38.9 36.4

4.3 Semantic Segmentation

Settings. The backbone BL2G is trained and evaluated on ADE20K dataset [36]
using the semantic segmentation method [14]. Experimental configuration [14,
29] is adopted to train and evaluate the BL2G backbone. The model is trained
for 80K interactions with a batch size of 16. The optimizer is AdamW with a
learning rate of 2e−4 and a weight decay of 1e−4. Input images are resized to
512×512. The metric mIoU is used to evaluate the models, and only single-scale
testing is adopted.

Table 4: Results on ADE20K semantic segmentation using Semantic FPN [14]
Backbone #params(M) GFLOPs mIoU
ResNet-18 [13] 15.5 32.2 32.9
PVT-T [29] 17.0 33.2 35.7
ResNet-50 [13] 28.5 45.6 36.7
PoolFormer-S12 [32] 16.2 31.0 37.2
BL2G (Ours) 12.6 25.7 38.8

Results. Table 4 shows that the BL2G Transformer obtains better mIoU per-
formances with less computational cost and parameters. In particular, BL2G
achieves 38.8 mIoU which outperforms the PVT-T [29] by 3.1% while saving
22% GFLOPs, the baseline ResNet-50 [13] by 2.1% while saving 43% GFLOPs.
It verifies that the proposed BL2G Transformer enables better visual represen-
tation learning.

5 Conclusion

This paper proposes the BL2G Vision Transformer as an efficient and versatile
backbone. BL2G is designed to capture local and global features, and introduce
a new bidirectional interaction between two features. Addressing issues in the
Transformer encoder, group attention is proposed to alleviate the high computa-
tional cost of global self-attention while effectively modeling global information.
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Bidirectional interaction promotes modeling ability in local and global features
for window attention and group attention. Extensive experiments are conducted
to validate the effectiveness of the proposed method on ImageNet-1K image
classification, MS-COCO object detection, instance segmentation, and ADE20K
semantic segmentation. As a result, BL2G Transformer achieves competitive
performances compared to recent methods across visual tasks. In the future,
the proposed network will be scaled to include more variants and deployed for
real-world applications.

Acknowledgement

This result was supported by “Region Innovation Strategy (RIS)” through the
National Research Foundation of Korea (NRF) funded by the Ministry of Edu-
cation (MOE)(2021RIS-003).

References

1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European conference on computer
vision. pp. 213–229. Springer (2020)

2. Chen, Q., Wu, Q., Wang, J., Hu, Q., Hu, T., Ding, E., Cheng, J., Wang, J.: Mix-
former: Mixing features across windows and dimensions. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 5249–5259
(2022)

3. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.:
Twins: Revisiting the design of spatial attention in vision transformers. Advances
in Neural Information Processing Systems 34, 9355–9366 (2021)

4. Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: Marrying convolution and attention
for all data sizes. Advances in neural information processing systems 34, 3965–3977
(2021)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

6. Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., Guo, B.: Cswin
transformer: A general vision transformer backbone with cross-shaped windows.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12124–12134 (2022)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,
Houlsby, N.: An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=YicbFdNTTy

8. Gao, L., Nie, D., Li, B., Ren, X.: Doubly-fused vit: Fuse information from vision
transformer doubly with local representation. In: European Conference on Com-
puter Vision. pp. 744–761. Springer (2022)

9. Guo, J., Han, K., Wu, H., Tang, Y., Chen, X., Wang, Y., Xu, C.: Cmt: Convolu-
tional neural networks meet vision transformers. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12175–12185 (2022)



12 X.-T. Vo et al.

10. Hassani, A., Shi, H.: Dilated neighborhood attention transformer. arXiv preprint
arXiv:2209.15001 (2022)

11. Hassani, A., Walton, S., Li, J., Li, S., Shi, H.: Neighborhood attention transformer.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 6185–6194 (2023)

12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. pp. 6399–6408 (2019)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)

16. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

17. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

18. Mehta, S., Rastegari, M.: Mobilevit: Light-weight, general-purpose, and mobile-
friendly vision transformer. In: International Conference on Learning Representa-
tions (2022), https://openreview.net/forum?id=vh-0sUt8HlG

19. Mehta, S., Rastegari, M.: Separable self-attention for mobile vision
transformers. Transactions on Machine Learning Research (2023),
https://openreview.net/forum?id=tBl4yBEjKi

20. Pan, J., Bulat, A., Tan, F., Zhu, X., Dudziak, L., Li, H., Tzimiropoulos, G., Mar-
tinez, B.: Edgevits: Competing light-weight cnns on mobile devices with vision
transformers. In: European Conference on Computer Vision. pp. 294–311. Springer
(2022)

21. Pan, X., Ye, T., Xia, Z., Song, S., Huang, G.: Slide-transformer: Hierarchical vision
transformer with local self-attention. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 2082–2091 (2023)

22. Pan, Z., Zhuang, B., He, H., Liu, J., Cai, J.: Less is more: Pay less attention in vision
transformers. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 36, pp. 2035–2043 (2022)

23. Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner,
T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., et al.: Mlp-mixer: An all-
mlp architecture for vision. Advances in neural information processing systems 34,
24261–24272 (2021)

24. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
conference on machine learning. pp. 10347–10357. PMLR (2021)

25. Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: Maxvit:
Multi-axis vision transformer. In: European conference on computer vision. pp.
459–479. Springer (2022)



Bidirectional Local-to-Global Attentions for Visual Representation 13

26. Vaswani, A., Ramachandran, P., Srinivas, A., Parmar, N., Hechtman, B., Shlens, J.:
Scaling local self-attention for parameter efficient visual backbones. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
12894–12904 (2021)

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

28. Vo, X.T., Nguyen, D.L., Priadana, A., Jo, K.H.: Hierarchical vision transformers
with shuffled local self-attentions. In: 2023 International Workshop on Intelligent
Systems (IWIS). pp. 1–6. IEEE (2023)

29. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF international conference on
computer vision. pp. 568–578 (2021)

30. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media 8(3), 415–424 (2022)

31. Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., Gao, J.: Focal attention
for long-range interactions in vision transformers. Advances in Neural Information
Processing Systems 34, 30008–30022 (2021)

32. Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., Yan, S.: Metaformer
is actually what you need for vision. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 10819–10829 (2022)

33. Zhang, J., Li, X., Li, J., Liu, L., Xue, Z., Zhang, B., Jiang, Z., Huang, T., Wang,
Y., Wang, C.: Rethinking mobile block for efficient attention-based models. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
1389–1400 (2023)

34. Zhang, Q., Yang, Y.B.: Rest: An efficient transformer for visual recognition. Ad-
vances in neural information processing systems 34, 15475–15485 (2021)

35. Zhang, Q., Yang, Y.B.: Rest v2: simpler, faster and stronger. Advances in Neural
Information Processing Systems 35, 36440–36452 (2022)

36. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Se-
mantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision 127, 302–321 (2019)


