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Abstract. Deep learning is heavily influenced by the quantity and qual-
ity of data. Moreover, most deep learning models are developed and
tested on servers equipped with high-performance GPUs and large mem-
ory capacities. However, for practical application in industrial fields or
real-world scenarios, optimal performance must be achieved using lim-
ited resources and equipment. Therefore, this paper proposes the FMC
(Feature Maximizer Convolution). This method aims to enhance per-
formance with limited data by extracting as diverse features as possible
and assigning more weight to crucial feature maps, which are then passed
on to the next layer. Additionally, to ensure real-time performance on
limited hardware, DSC (Depthwise Separable Convolution) is employed
instead of standard convolution to reduce computational load. The ap-
proach is applied to deep learning models on datasets such as COCO,
VisDrone, VOC, and xView, and its performance is compared with ex-
isting networks. Inference experiments are also conducted on the edge
device Odroid H3+. The proposed network shows a 30% average reduc-
tion in the number of parameters compared to existing networks and a
5% increase in inference speed. On the Odroid H3+, the inference speed
improved by an average of 2.5ms, resulting in an increase from 19FPS
to 20FPS.
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1 Introduction

As deep learning rapidly evolves, it has begun to be applied across various in-
dustries. A typical deep learning process involves extracting features from data
through Convolution operations, computing these features to produce proba-
bilistic outcomes, and then determining the most probable formula by compar-
ing these outcomes with the Ground Truth. This process signifies that the deep
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learning process is influenced by the accuracy and characteristics of the data.
Consequently, in recent years, many countries have been focusing on acquiring
and constructing data, and research into learning methods such as Data Aug-
mentation [1, 2], semi-supervised learning [3], and Few-shot learning [4] that
yield good results with limited data has been extensive. Moreover, from the per-
spective of computer vision, object detection, which deals with various datasets
(COCO [5], VOC [6], xView [7], VisDrone [8], etc.), is a significant challenge.
These datasets include objects of various appearances and sizes, from those that
are clearly visible to those that are hardly discernible due to high altitude or dis-
tance. Therefore, it is common to use pre-trained models on various datasets and
apply transfer learning according to specific conditions and tasks. However, to
enhance the performance of transfer learning, the pre-trained model itself must
also be high-performing. To ensure good performance in any task, a network
capable of effectively extracting features of various sizes and shapes is necessary.
Faster R-CNN improved accuracy by quickly generating candidate regions for
objects using the RPN (Region Proposal Network) [9], while the SSD (Single
Shot MultiBox Detector) [10] and YOLO (You Only Look Once) [11–13] series
demonstrated good performance on objects of various sizes using feature maps of
different scales. In this paper, we propose the FMC (Feature Maximizer Convo-
lution) module, which maximizes the diversity of limited features and effectively
extracts features through computations among feature maps, utilizing superior
feature maps.
As mentioned earlier, extracting features effectively from data and the quantity
and quality of data are crucial for enhancing the performance of deep learning.
However, the amount and quality of data are expected to increase over time,
leading to improved learning outcomes. Yet, deploying these data-driven models
in real-world applications presents another challenge. This is because inference
using servers with high-performance GPUs and large memory capacities is dif-
ficult to apply in actual industries. In reality, devices such as smartphones, au-
tonomous vehicles, and CCTV cameras do not have servers equipped with high-
performance GPUs or large memory capacities. Therefore, to use deep learning
efficiently in real-world scenarios, it is necessary to achieve good performance
with limited power and hardware specifications. This task is referred to as Edge
Computing or Edge AI. With the growing trend of edge computing, there is an
increasing need for lightweight yet powerful models that can operate efficiently
on edge devices. Recent research focuses on enhancing the practicality and effi-
ciency of deep learning technologies in Edge Computing and Edge AI. For exam-
ple, Lian et al. (2023) [14] proposed a new method for testing and strengthening
the vulnerability of deep learning models in Edge Computing environments. This
suggests that Edge AI can play a significant role in enhancing reliability and effi-
ciency in real-world settings. Additionally, Zeng et al. (2023) [15] developed a new
task scheduling algorithm for efficiently allocating large and dynamic workloads
on Edge Computing nodes. These studies contribute significantly to improving
the efficiency and performance of Edge AI. In this paper, we propose applying
DSC (Depthwise Separable Convolution) instead of standard convolution oper-
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ations to the main modules of the Object Detection model YOLOv5, reducing
computational load for efficient operation on Edge Devices. We also introduce
experimental results showing the improved performance of the proposed model
implemented on the Edge Device Odroid H3+ compared to existing models. The
main contributions of this article are summarized as follows:

– We propose the FMC (Feature Maximizer Convolution) module to extract
as diverse features as possible from limited feature maps and to use only the
most effective features.

– We implement model lightening by applying DSC (Depthwise Separable Con-
volution) instead of standard convolution operations in the main modules of
YOLOv5.

– We conduct experiments and analyze the performance changes compared to
existing models using the Edge device Odroid H3+.

2 Related Work

2.1 Edge Computing

Edge Computing (EC) is a technology that can overcome the limitations of Cloud
Computing (CC). The typical limitations of cloud computing include: a. the
latency involved in sending data to a server capable of computation, processing
it, and then receiving the results, b. the increased costs and network congestion
due to the high bandwidth required to transfer large volumes of data to the
cloud, and c. cyber security issues that can arise during data transmission. The
core technologies of EC to solve these problems include: a. real-time response
by processing data immediately at the site of data generation, b. distributed
processing that reduces system load and increases efficiency by distributing data
across multiple edge devices, and c. enhanced security by processing data on-
site, thereby protecting against data breaches and hacking. In terms of recent
research in computer vision, Guanchu Wang et al. (2022) [16] demonstrated a
system called BED (oBject detection system for Edge Devices), which creates
a small DNN (Deep Neural Network) model of 300kb through an end-to-end
pipeline of model training, quantization, synthesis, and deployment. Shihan Liu
et al. (2023) [17] achieved results of over 30FPS on Nvidia jetson AGX Xavier
using Data Augmentation with Mosaic and an Efficient Decoupled Head. This
paper also improves results by efficiently adjusting the feature map.

2.2 Efficient Feature Extraction

Efficient feature extraction is a crucial research topic in the fields of deep learn-
ing and computer vision, particularly in real-time image processing and object
detection on edge devices with limited computing resources. Recent studies focus
on maintaining high performance while reducing model complexity. Notably, in
the MobileNet series by Andrew G. Howard et al. (2017) [18], techniques like
DSC were used to reduce the number of parameters and increase computational
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efficiency. Tsung-Yi Lin et al. (2017) proposed the FPN [19], extracting feature
maps of various scales to achieve significant results in detecting small objects.
The reason for applying these methods is to achieve good performance and fast
inference speed in limited environments and data. Reducing computational load
while maintaining object detection performance can speed up inference, ensuring
real-time processing. Conversely, improving object detection performance while
maintaining computational load allows for more effective application of models
in real life and industry. The DSC used in this paper can be seen in Figure 1.

Fig. 1: The Computational Process of Depthwise Separable Convolution (DSC)

3 Proposed Method

In this paper, YOLOv5 is used as the base model. Instead of the core C3 module
of YOLOv5, the FMC module is used to extract more diverse features from the
feature map. To reduce computational load, DSC (Depthwise Separable Convo-
lution) is employed instead of standard convolution operations.

3.1 Feature Maximizer Convolution

In this paper, the C3 module used in YOLOv5, which consists of multiple layers
of convolution operations, is discussed. The C3 module is based on the CSP
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(Cross Stage Partial) structure. This structure divides the input feature map
into two parts, applies convolution operations intensively to one part, and then
merges them back together. However, most of these operations are carried out
using 1x1 convolutions. While 1x1 convolutions have the advantage of combining
features across channels and reducing dimensions with less computational load,
they are limited in capturing spatial information. To address this, the FMC
is proposed in this paper. Like the C3 module, the FMC also consists of two
branches. The first branch applies a 3x3 convolution to the input feature map to
compensate for the shortcomings of 1x1 convolutions, but uses DSC to reduce
computational load. It does not reduce the channel dimension to retain as di-
verse features as possible. Then, the feature map processed by 3x3 DSC and the
input feature map are concatenated, followed by a 1x1 convolution to adjust the
weights for extracting important features. The second branch applies another
3x3 DSC to the feature map processed by the first branch’s 3x3 DSC. Finally,
the first and second branches are concatenated to output the final feature map.
This configuration is designed to generate as diverse feature maps as possible
and extract features that effectively enhance performance with limited data. The
C3 and FMC modules are illustrated in Figure 2.

3.2 Lightweight Strategy

The existing YOLOv5 pipeline consists of a sequence of C3 and Conv modules.
As seen in Figure 2, the C3 module predominantly applies 1x1 convolutions. As
shown in Equation (1), 1x1 convolution is the operation with the least number
of parameters among standard convolution operations. Therefore, as indicated
in Equation (2), applying DSC with the same kernel size increases the number
of parameters by the number of input channels.

k ∗ k ∗ cin ∗ cout = 1 ∗ 1 ∗ cin ∗ cout = cin ∗ cout (1)

k ∗ k ∗ cin + 1 ∗ 1 ∗ cin ∗ cout = 1 ∗ 1 ∗ cin + 1 ∗ 1 ∗ cin ∗ cout = cin(1 + cout) (2)

k represents the kernel size, while cin and cout denote the number of input and
output channels, respectively. As per the above formula, the number of param-
eters for the C3 and FMC modules can be calculated as shown in Equations 3
and 4, respectively.

cout(cin + 2.25 ∗ cout) (3)

cin(18 + cin + 1.5 ∗ cout) (4)

To compare Equations (3) and (4), let’s assume that the number of input and
output channels are the same (cin = cout = C). As a result, the number of
parameters for the C3 module is 3.25C2, and for the FMC module, it is 2.5C2+
18C. Upon comparison, it is evident that the C3 module has more parameters
when C > 24, and the FMC module has more when C < 24. Since most deep
learning networks typically have more than 32 channels, it can be inferred that
the FMC module has fewer parameters than the C3 module.
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Fig. 2: Images of the computational processes of the C3 and FMC modules
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The Conv module involves standard convolution operations followed by batch
normalization and an activation function. However, in YOLOv5, most Conv
operations have a kernel size of 3. If k is applied as 3 in Equations (1) and
(2), standard convolution is calculated as shown in Equation (5), and DSC is
calculated as shown in Equation (6), indicating that DSC has fewer parameters.
Therefore, in this paper, all Conv modules in the YOLOv5 Backbone have been
modified to DSC modules for model lightening.

k ∗ k ∗ cin ∗ cout = 3 ∗ 3 ∗ cin ∗ cout = 9 ∗ cin ∗ cout (5)

k ∗ k ∗ cin + 1 ∗ 1 ∗ cin ∗ cout = 3 ∗ 3 ∗ cin + 1 ∗ 1 ∗ cin ∗ cout = cin(9 + cout) (6)

Fig. 3: The result image of xView dataset

4 Experiment

4.1 Dataset

COCO: The COCO (Common Objects in Context) dataset contains a variety
of objects found in everyday life. It consists of approximately 200,000 images
and includes 80 different classes. COCO is widely used for various computer vi-
sion tasks such as object detection, segmentation, and keypoint detection, and
is characterized by its complex backgrounds and a range of object sizes.
VOC: The PASCAL VOC (Visual Object Classes) dataset is a benchmark
dataset for object detection, image classification, and object segmentation. It
includes 20 object categories and has evolved through the VOC challenge. Its
main features and challenges are the variety of object sizes, overlapping objects,
and diverse poses and backgrounds.
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Fig. 4: The result of big size human, YOLOv5n (Left) Proposed method (Right)

Fig. 5: The result of small size human, YOLOv5n (Left) Proposed method
(Right)

Fig. 6: The result of various object, YOLOv5n (Left) Proposed method (Right)

Fig. 7: The result of many objects, YOLOv5n (Left) Proposed method (Right)
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VisDrone: The VisDrone dataset is based on images and videos captured by
drones for object detection and tracking. It includes high-resolution images and
videos shot in various urban, rural, and coastal areas. The main challenges of
this dataset are small objects captured from high altitudes, varying lighting con-
ditions, and blur caused by camera movement.
xView: The xView dataset is for object detection based on satellite imagery.
It contains over one million object instances and more than 60 object cate-
gories. Providing data captured in various geographical locations through high-
resolution satellite imagery, its main challenges are detecting small objects and
handling objects of various scales.

4.2 Evaluation Metric

For the evaluation metric, we measure the number of parameters, which affects
the computational speed, and FLOPS (Floating Point Operations Per Second).
Additionally, to assess the object detection accuracy of the generated model, we
set mAP50 and mAP50-95 as indicators. Finally, to determine if the conditions
are suitable for operation on Edge Devices, we compare the size of the generated
model (in Mb) and the inference speed.

Table 1: Comparison of YOLOv5 and Proposed Network Performance Results
on Four Datasets

Dataset Result
Model YOLOv5 nano Proposed nano Change

COCO

Parameters 1,867,405 1,309,673 -29.87%
GFLOPS 4.5 3.2 -28.89%
mAP50 40.9 35.3 -13.69%

mAP50-95 24 20.2 -15.83%

VOC

Parameters 1,786,225 1,228,493 -31.22%
GFLOPS 4.2 2.9 -30.95%
mAP50 64.2 62.5 -2.65%

mAP50-95 37.5 35.7 -4.8%

VisDrone

Parameters 1,772,695 1,214,963 -31.46%
GFLOPS 4.2 2.9 -30.95%
mAP50 18.2 16.1 -11.54%

mAP50-95 8.77 7.11 -18.93%

xView

Parameters 1,840,345 1,282,613 -30.31%
GFLOPS 4.4 3.1 -29.55%
mAP50 0.141 0.143 +1.42%

mAP50-95 0.0465 0.0474 +1.94%



10 Jehwan Choi et al.

4.3 Experimental Setting

All training was conducted under the same environment and conditions, and the
model training was carried out on a server equipped with an Intel Core i9-9960X,
Nvidia RTX 2080 Ti x 4EA, and 125.5 GB of memory. The best-performing
results out of 100 epochs were used for all models. Model performance evaluation
was conducted on both the training server and the edge device, Odroid H3+.

Table 2: Comparison of YOLOv5 and Proposed Network Performance Results
on Four Datasets

Dataset Result
Model YOLOv5 nano Proposed nano Change

COCO Model size(Mb) 3.82 2.74 -28.27%
Inference time(ms/image) 55.21 53.12 -3.79%

VOC Model size(Mb) 3.68 2.61 -29.08%
Inference time(ms/image) 50.94 47.67 -6.42%

VisDrone Model size(Mb) 3.65 2.57 -29.59%
Inference time(ms/image) 42.38 40.42 -4.62%

xView Model size(Mb) 3.87 2.79 -27.91%
Inference time(ms/image) 62.28 59.62 -4.27%

4.4 Result

The experiment used four datasets on two networks: the original YOLOv5 nano
model and a modified nano model with our proposed modules. Results for Pa-
rameters, GFLOPS, mAP50, and mAP50-95 are presented in Table 1. Our find-
ings indicate a reduction in the number of parameters and computational load
by about 30% for the proposed model compared to the original. However, this
reduction also led to a decrease in object detection accuracy, varying from 3%
to 19%. In the case of the xView dataset, the detection accuracy is increased.
As shown in Figure 3, considering that the images are satellite photos and most
objects in the dataset’s 60+ classes are concentrated in buildings, this appears
to be an exceptional result with significantly reduced accuracy.

The results of inference on the Odroid H3+ using the same models and
datasets as in Table 1 can be found in Table 2. Parameters, GFLOPS, and accu-
racy are omitted as they showed no significant deviation from Table 1, and the
comparison focuses on model size and average inference speed per image. With
the reduction in the number of parameters and GFLOPS, the model size also
decreased by an average of about 29%. The inference time for the original model
was already fast, showing an average performance of about 19FPS with 50-60ms.
Although the proposed model showed a relatively small reduction in inference
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time compared to the decrease in parameters and model size, it demonstrated a
performance improvement of about 1FPS, averaging 20FPS with 45-55ms.

5 Conclusion

This paper investigates methods to achieve good performance with limited en-
vironments and data, and studies the impact of applying a deep learning model
with the proposed methods on edge devices in real-world settings. We propose the
FMC (Feature Maximizer Convolution) to extract as diverse features as possible
from the given data, ensuring that features beneficial for performance enhance-
ment are passed on to the next layer. FMC is applied in place of the C3 module
in YOLOv5. Additionally, to maintain performance while reducing computa-
tional load, DSC (Depthwise Separable Convolution) is applied. DSC replaces
the Conv module in YOLOv5, significantly reducing computational load while
maintaining similar performance to 3x3 convolutions. The original YOLOv5-
trained model’s nano version averages 3.755 MB, but the model trained with
the proposed method averages 2.7 MB, a reduction of about 28.1%. On the edge
device Odroid H3+, the inference time also improved by an average of 2.5ms.
Although the object detection accuracy decreased by 6.6% based on mAP 50,
the actual output results were not significantly different from the original model.
Therefore, the application of FMC and DSC proposed in this paper has been
proven effective for object detection in edge computing.
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