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Abstract. Object detected in drone imagery is an interesting topic in
the Computer Vision field. This work was widely applied in traffic anal-
ysis and control, rescue systems, smart agriculture, etc. However, many
challenges exist in developing and optimizing applications because of ob-
ject density, multi-scale objects, and blur motion. To partly solve the
above problems, this research focuses on improving the performance of
the YOLOv5m network based on the advantages of the Bi-directional
Feature Pyramid Network (BiFPN), Transformer, and Convolutional
Block Attention Module (CBAM). The experiments achieve 68.6% and
42.6% of mAP on the proposed datasets (ISLab-Drone) and VisDrone
2021, respectively. That demonstrates the outperformance of the network
comparable to other networks under the same testing conditions.

Keywords: Convolutional neural network (CNN) · BiFPN · CBAM ·
UAV imagery · YOLOv5m · ViT.

1 Introduction

For a long time, researchers have focused on object detection from the air us-
ing unmanned aerial vehicles (UAVs). AUVs can collect ground images from
different altitudes and speeds. These techniques are widely deployed in forest
protection [5], wildlife protection [9], and surveillance systems [4]. In particular,
with the rapid development of smart cities, the support tools for the operation,
monitoring, and protection process become more and more necessary. The im-
age processing and analysis techniques are also required to accommodate the
mobility, compactness, and power limitations of UAVs. An ideal choice for these
applications is object detection based on the YOLO [14,15,16,7,8] network fam-
ily. Most objects detected in drone imagery methods face some common prob-
lems, such as object density, multi-scale objects, and blur motion. Object density
caused by the overlap of objects hinders the detection of hidden objects. UAVs
capture images with variable altitudes, resulting in images that also vary in scale
from tiny, small, and medium to large. The flight speed of UAVs leads to the
image having a certain blurry quality, which affects the locating and detecting



2 Duy-Linh Nguyen et al.

of objects in the image. From the above observations, this paper proposes an
improved method for the YOLOv5m network used in detecting drone-captured
objects. Research focuses on optimizing the backbone and neck networks based
on the Bi-directional Feature Pyramid Network (BiFPN) [18], Transformer [2],
and Convolutional Block Attention Module (CBAM) [20]. Besides, this work
also provides a drone-captured image dataset with diverse scenarios for object
detection tasks.

The main contribution enlists as follows:
1 - Redesigns the backbone and neck networks of YOLOv5m architecture with
a combination of BiFPN, Transformer, and CBAM.
2 - Adds one more detection head with new anchor sets to improve the tiny
object detection task.
3 - Proposes a drone-captured image dataset used in the Computer Vision field.
The rest of the paper is organized as follows: Section 2 introduces the related
works to object detected in drone imagery tasks. Section 3 explains the pro-
posed method. Section 4 analyzes and proves the experimental results. Section
5 summarizes the important issue and future orientation.

2 Related work

2.1 Deep neural network-based method

These methods leverage the advantage of deep learning neural networks (DNNs)
to consider the differences between foreground and background to cluster and
detect objects in drone-captured scenarios. The work [21] proposed a framework
that combines clustering and detection by sequentially searching the clustered
areas and detecting drone-captured objects belonging to these regions. Observ-
ing the issues of [21], the method [1] added an efficient self-adaptive region to
build the global-local detection network to improve the accuracy of high-density
and large-scale object detection. Another approach [23] used a region estima-
tion network to find the high-density drone-captured objects in diverse areas.
For drone-captured vehicle image challenges, the study [24] aligns the feature
between different viewpoints, backgrounds, illumination, and weather in the
domain adaptation. DNN-based methods achieved high accuracy in detecting
objects but the computational cost is still a huge problem.

2.2 Convolutional neural network-based method

In recent years, the strong development of convolutional neural networks (CNNs)
in the objects detected in drone imagery topic has attracted the attention of
many researchers. The research [17] evaluated different backbone architectures,
prediction heads, and model pruning techniques to select a better combination
in a fast object detection network. TPH-YOLOv5 [27] combined the ideas of the
transformer detection head and original detection head in the YOLOv5 network
architecture to improve the accuracy in detecting large-size variation objects and
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high-density objects. Inheriting previous work, the work in [25] work proposed
a cross-layer asymmetric transformer (CA-Trans) to replace the additional pre-
diction head in TPH-YOLOv5 for more efficiency in tiny object detection. The
outstanding advantage of CNN-based methods is achieving ideal object detec-
tion accuracy with flexible integration of other techniques such as Transformer
or Attention algorithms.

3 Methodology

Fig. 1 presents in detail the proposed object detected in drone imagery network.
This method is improved from the original YOLOv5m architecture [7] with three
components: Backbone, Neck, and detection head.
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Fig. 1. The proposed object detected in drone imagery network. Numbers 92/60 is
detector output coefficients for ISLab-Drone and VisDrone 2021 datasets, respectively.
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3.1 Proposed network architecture

Backbone module: The backbone network plays a very important role in ex-
tracting features for the entire network. Based on the existing architecture of
YOLOv5, this work evaluates and replaces several components to reduce com-
putational complexity and network parameters while still ensuring feature ex-
traction capabilities. Specifically, the Focus module is replaced by a simpler
architecture, named the Conv block. This block includes one 2D convolution
(Conv2D), one batch normalization (BN), and one Sigmoid Linear Unit (SiLU)
activation function. The design of the Conv block is shown in Fig. 2 (a). The
body of the backbone network still uses a combination of Conv blocks and Cross
Stage Partial modules (CSP) with ratios of 3, 6, and 9. Fig. 2 (b) describes
the architecture of the CSP module. The end of the backbone network adds
three Transformer blocks and replaces the Spatial Pyramid Pooling (SPP) mod-
ule with the Spatial Pyramid Pooling Fast (SPPF) module. The SPPF module
applies all of the max pooling (MaxPooling) layers with the same kernel size
(k = 5). The architecture of SPP and SPPF modules are depicted in Fig. 2
(c) and Figs. 2(d). This block is inspired by the Vision Transformer (ViT) [2]
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Fig. 2. The architecture of basic modules.
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which is used to capture global information and rich contextual information [27].
The structure of the Transformer blocks is depicted in Fig. 3. Each Transformer
block is built from two sub-blocks, the Multi-head Attention (MA) layer and the
Multilayer Perceptron (MLP) layer (fully connected layers). Besides, Residual
connections are used between two sub-blocks. Therefore, Transformer bock also
increases the ability to extract rich local information. Based on Neck’s existing
architecture in YOLOv5m, this work adds a CBAM at the end of each level in
the multi-level feature map (small, medium, and large). On the other hand, the
Neck also appends a feature map level to detect extremely small objects (Tiny).
In total, this module has four feature map levels.
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Fig. 3. The Transformer block.

Fig. 4. The architecture of the CBAM module.

Neck module: The Neck module is designed based on the combination of the
Path Aggregation Network (PAN) [12] and the Bi-directional Feature Pyramid
Network (Bi-FPN) [19]. These two architectures support each other to synthesize
the current feature map with the feature maps in previous stages to enrich the
information for the feature maps in the next stages. Based on Neck’s existing
architecture in YOLOv5m, this work stacks the SPP module and CBAM at
the end of each level in the multi-level feature map (small, medium, and large).
Especially in the last level, three transformer blocks are stacked between the
SPP and CBAM modules to enrich the useful information for large-size object
detection. On the other hand, the Neck also adds a feature map level to detect
extremely small objects (tiny). In total, this module generates four feature map
levels. The architecture of the CBAM module is presented in Fig. 4.
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Detection head module: The detection head module leverages three feature
map levels of the YOLOv5m architecture from the Neck module, including 80×
80× 256, 40× 40× 512, and 20× 20× 1024. Besides, this study adds one more
detection head at 160 × 160 × 128 feature map level to increase tiny object
detection ability. The number of anchor boxes is set at four and their sizes are
redesigned to be suitable for the objects in the ISLab-Drone and VisDrone 2021
datasets. The details of each detection head and the anchor size are described
in Table 1.

Table 1. Detection heads and anchors.

Head Input Anchors Ouput Object

1 (Added) 160× 160× 128 (7, 9), (9, 17), (17, 15), (13, 27) 160× 160× 92/60 Tiny

2 80× 80× 256 (21, 28), (36, 18), (23, 47), (35, 33) 80× 80× 92/60 Small

3 40× 40× 512 (58, 29), (43, 60), (82, 46), (66, 88) 40× 40× 92/60 Medium

4 20× 20× 1024 (133, 77), (111, 135), (206, 137), (197, 290) 20× 20× 92/60 Large

3.2 Loss function

The loss function is defined as follows:

Loss = λboxLbox + λobjLobj + λclsLcls, (1)

in which, Lbox is the bounding box regression loss using CIoU loss, Lobj is the
object confidence score loss using Binary Cross Entropy loss, and Lcls is the
classes loss also using Binary Cross Entropy loss to calculate. λbox, λobj , and
λcls are balancing parameters.

4 Experiments

4.1 Dataset

The experiments in this paper are trained and evaluated on two datasets, ISLab-
Drone and VisDrone 2021 [26]. The ISLab-Drone dataset was proposed by the
Intelligent Systems Laboratory (ISLab) at the University of Ulsan, South Ko-
rea. This dataset includes 10,000 images collected using a UAV under different
weather and altitude conditions in Ulsan City and Daegu City, South Korea. It
contains 18 categories: tree, person, animal, house, apartment/building, school,
office, traffic sign, traffic light, streetlamp/telephone pole, banner, milestone,
bridge, tower, car vechicle, bus vehicle, truck vehicle, motorcycle/bike vehicle.
The number of images is divided based on the ratio 5:2.5:2.5 for the training,
evaluation, and testing sets. The VisDrone Dataset 2021 is a large-scale bench-
mark created by the AISKYEYE team at the Lab of Machine Learning and
Data Mining, Tianjin University, China. VisDrone 2021 consists of four subsets,
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including a training set, validation set, test-dev set, and test-challenge set. These
experiments only use the training set, the validation set, and the test-dev set
with 6,471, 548, and 1,610 images, respectively. The images are separated into
10 classes: pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle,
bus, motor.

4.2 Experimental setup

This experiment applies the original YOLOv5 [7] as a code base using Python
programming language and the Pytorch framework. The training and evaluation
processes are conducted on a GeForce GTX 1080Ti GPU. The Adam optimiza-
tion is used. The learning rate is initially set to 102 and the final by 105. The mo-
mentum began at 0.8 and then increased to 0.937. The training process takes 300
epochs with a batch size of 32. The balancing parameters λcls=0.5, λbox=0.05,
and λobj=1, respectively. Several data augmentation methods are applied such
as mosaic, mix-up, flip left-right, and flip up-down.

4.3 Experimental result

For the ISLab-Drone dataset, this experiment conducts training and evaluation
from scratch YOLOv5 (n, s, m, l, x) series, proposed network, and then com-
pares the performance between them. As the results are shown in Table 2, the
proposed network achieves 68.6% mean Average Precision (mAP) which demon-
strates that the network outperforms the whole of the YOLOv5 series. When
compared with the best competitor (YOLOv5l), the proposed network achieves
better performance at 2.5% of mAP while the number of parameters and GLOPS
are lower nearby twice. Compared to YOLOV5m, the size and computational
complexity of the proposed network are light larger than YOLOv5 but the per-
formance is better than YOLOv5m at 6.4% of mAP.

Table 2. The comparison result of the proposed detection network with YOLOv5
series on the test set of the ISLab-Drone dataset.

Model Parameter GFLOPs Weight (MB) mAP (%)

YOLOv5x 86,287,807 204.1 173.3 65.6
YOLOv5l 46,199,823 107.9 114.3 66.1
YOLOv5m 20,921,631 48.1 42.3 62.2
YOLOv5s 7,058,671 15.9 14.5 63.6
YOLOv5n 1,783,519 4.2 3.9 55.3

Proposed method 27,377,416 67.1 55.8 68.6

In the case of the VisDrone dataset, this experiment compares the proposed
network with recent work under the same conditions. As a result, Table 3 shows
that the proposed network still outperforms existing studies and better best
competitor by 0.5% of mAP. However, when compared to the latest version of
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YOLO (YOLOv8m), the proposed network is 2.4% of mAP worse. This poses
many challenges for continuously improving the proposed network in the future.
The proposed network can present a better ability in object detection tasks.
However, this experiment also issues several problems when detecting objects
with very small scale and overlapping objects. The qualitative results of the
proposed network on the test set of the ISLab-Drone and the test-dev-set of the
VisDrone datasets are shown in Fig. 5.

Table 3. The comparison result of the proposed method with other networks on the
test-dev set of the VisDrone dataset. The symbol “†” denotes the re-trained models.

Model Parameter GFLOPs Weight (MB) mAP (%)

YOLOv5m† 20,889,303 48.1 42.3 29.6

YOLOv8m† 25,845,550 78.8 52.0 45.0

HawkNet [11] N/A N/A N/A 25.6
ClusDet [21] N/A N/A N/A 28.4
DMNet[10] N/A N/A N/A 29.4

Method in [23] N/A N/A N/A 30.3
DSHNet [22] N/A N/A N/A 30.3
CDMNet [3] N/A N/A N/A 31.9
GLSAN [1] N/A N/A N/A 32.5
DCRFF [13] N/A N/A N/A 35.0

UFPMP-Net [6] N/A N/A N/A 39.2
TPH-YOLOv5++ [25] N/A N/A N/A 41.4
TPH-YOLOv5 [27] N/A N/A N/A 42.1

Proposed method 27,331,208 66.9 55.7 42.6

4.4 Ablation study

To evaluate the influence of each module in the proposed network, this study
also conducts several ablation studies. By replacing the proposed modules with
the original YOLOv5m network architecture, training, and evaluating on the test
data set of the ISLab-Drone dataset. The results in Table 4 show that the Bi-FPN
network plays an important role in enriching information for feature maps. Be-
sides, Transformer and CBAM modules support the information capture process
from local to global. That is why this work chooses the perfect combination of
Bi-FPN, CBAM, and Transformer modules to improve the YOLOv5m network
from 62.2% to 68.6% of mAP.

5 Conclusion

This paper conducted a technique to improve the original YOLOv5m architec-
ture for objects detected in drone imagery. Based on YOLOv5m, the proposed
network contains three parts: backbone, neck, and head modules. The backbone
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Fig. 5. The qualitative results of the proposed network on the test set of the ISLab-
Drone and the test-dev-set of the VisDrone datasets.
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Table 4. Ablation studies with different proposed networks on the test set of the
ISLab-Drone dataset.

Module Proposed network

Transformer D D
Bi-FPN D D
BAM D D
SPPF D D D D
SPP D D D D

Parameter 24,494,767 26,954,255 25,330,744 27,377,416

Weight (MB) 55.3 55.5 54.9 55.8

GFLOPs 66.5 66.9 64.7 67.1

mAP(%) 58.8 65.2 51.2 68.6

is redesigned using simple architectures and Transformer modules. The neck is
redesigned with the bi-FPN network, CBAM, and Transformer. A new head
for tiny object detection is added to the detection head module and resized
the anchors to fit the detection tasks. The experimental result presented the
outstanding performance of the proposed network. This study will be further
developed with tiny and overlapping object detection integrated with the idea
in the latest YOLOv8 architecture for the future.
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