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Abstract—Developed for specific missions, CNNs have gradu-
ally improved the performance of object classification networks
by using various architectures. The weight of the convolutional
layer is a crucial factor in feature extraction. However, as the
number of layers increases, performance degradation can occur
due to problems such as the vanishing gradient. To overcome
this problem, networks have evolved to continuously incorporate
information from previous feature maps using various attention
mechanisms. In this study, a Channel-wise Similarity Attention
(CSA) method is proposed to measure the similarity of feature
maps between channels and enhance positive information by
highlighting it. Additionally, a deformable convolutional kernel
is embedded to apply a flexible receptive field around the object
area in the image, replacing the fixed receptive field of the
conventional CNN layer. The network is trained end-to-end to
classify the condition of vehicles on the road using collected
drone flight images. The proposed model achieves an accuracy of
86.13% and 302 frames per second with a number of parameters
of 1,273,504.

Index Terms—Vehicle state classification, Drone flight image,
channel-wise similarity attention, deformable convolution

I. INTRODUCTION

Drones have various applications, and the image data cap-
tured by their cameras is analyzed using convolutional neural
networks (CNN). In the domain of traffic monitoring, con-
ventional closed-circuit television (CCTV) cameras are only
capable of capturing traffic conditions from fixed locations.
However, drone images offer valuable insights into traffic
conditions across large areas and from diverse perspectives.
The analysis of image data collects from autonomous vehicles
and CCTV cameras requires distinct approaches, necessitating
research on CNN.

The field of computer vision is rapidly evolving due to the
improvement of computing hardware performance. Learning
models with hundreds of millions to billions of parameters
can quickly achieve high performance. However, promising
performance requires significant computing power, leading to
high costs. Models like VGG [1] and ResNet [2] have signifi-
cantly contributed to CNN research, although they have a large
number of parameters (138M for VGG-16 and 39.32M for
ResNet-34) for image classification. To address this challenge,
the aim is to reduce the weight of learning strategies and
models to enable efficient learning.

Convolutional neural network (CNN)-based applications
[3], [4] that ensure performance in various areas can be

combined for specific purposes, such as vehicle state classifi-
cation. This process involves vehicle detection, data selection,
and image classification, following a sequence of steps. The
YOLOv5 learning model, from the YOLO series [5], [6], [7],
[8], is utilized for real-time vehicle detection. This model
is capable of predicting the location, size, and class of an
object through a single neural network architecture, allowing
for real-time object detection. Vehicles with short distances
are selected based on the detected vehicles, and the image
area containing all five vehicles is cut. Data augmentation
techniques such as geometric transformation [9] and mixup
[10], [11] are used to help the learning model learn consis-
tently from various data and diversify the images. To install
these kinds of systems into the mobile or application, the light
model is an inevitable condition. Mobilenet [12], [13], [14] is a
representative model that is an extremely light model than the
previous classification model like VGG [1], ResNet [2], and
DenseNet [15]. The other proposed method puts the module
to squeeze the feature map. Squeeze and excitation [16]
block adaptively recalibrates channel-wise feature responses
by explicitly modeling interdependencies between channels.
A noble model can also be developed by improving these
models or adopting some modules. The proposed learning
model utilizes the residual block from ResNet and applies it
to the task. Object detection and data augmentation are pre-
processed, and a classification model is developed to deter-
mine vehicle conditions. The channel-wise similarity attention-
based vehicle state classification model is used in the proposed
method, applied by an attention mechanism to address the
vanishing gradient problem and pixel-to-pixel similarity in
feature maps that occur as the deeper convolution layer.
The proposed method explains detailed information about the
vehicle state classification model.

II. PROPOSED ALGORITHM

The classification network requires the following pre-
processing to understand the proposed vehicle state. First,
vehicle detection and data preparation are performed through
drone flight images. In the last, this work is proposed the
channel-wise similarity maps attention-based vehicle state
classification architecture.



Fig. 1: Overall architecture for vehicle state classification. There are two parts, WAFE module, wide area feature extraction,
and DR module, deformable residual module. CSA: Channel-wise similarity attention module in the green box.

A. Proposed architecture
1) Wide area feature extraction module: In Fig 4(b), the

distance between vehicle positions in the input image is
large, which may include unnecessary area information. To
address this issue, a Wide area feature extraction module is
proposed in this work. The initial convolutional layer of the
module has a kernel size of 5×5, 64 channels, a stride of 4,
and a dilated ratio of 3. The subsequent 1x1 layer increases
the number of channels from 64 to 128, allowing for the
sharing of information between channels on the reduced
feature map. Gaussian Error Linear Units (GELU) [17] is
used as the activation function in the proposed convolutional
layer. Maxpooling is employed to reduce the size of the input
feature map by half. The feature map is then divided into four
groups, and each group is subjected to a 3x3 convolutional
layer with dilated ratios of [1,3,5,7]. The resulting feature
maps in the four groups are concatenated, and a 1x1 kernel
is used to generate a feature map that extracts features from
flexible regions. Like a residual block, the output adds the
feature map from the initial convolutional layer.

2) Deformable residual module: The Deformable residual
module is designed on the concept of a deformable convolu-
tional layer introduced by Dai et al. [18]. Unlike the traditional
convolutional layer has a fixed receptive field. The deformable
convolutional layer allows for modifications in the position
corresponding to the feature map and kernel value. In a regular
grid, R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} describes the
position of kernel location. Let x be the input feature map, p0

be the pixel location, and △pn be the offset. These are added
to obtain p0 + pn +△pn for the traditional convolution.

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn +△pn) (1)

The offset, △pn is trained with learnable parameters and
adopted as a method to effectively extract features, as the
position value of p gradually moves around the features of
the object during training.

The Convolutional Block Attention Module (CBAM) [19] is

Fig. 2: Channel-wise Similarity Attention Module

applied to the previously calculated feature map, allowing for
channel-wise and spatial-wise attention to be applied. CBAM
helps to improve model performance by enhancing important
channel and spatial information while suppressing unnecessary
noise. It can be attached in units of channels and spatial
locations.

3) Channel-wise similarity attention: Traditional convolu-
tional layers in current systems use shared weights for input
channels. They combine the filter value with input values to
compute pixel values in the receptive field of the convolution
kernel. This extraction process identifies edges and textures
of objects in the feature map, and the classifier outputs
probability values based on the number of proposed classes.
However, the outline of an object is an important feature
that provides continuous information about feature points and
is essential for determining the shape of the object. The
conventional convolution operation has limitations due to a
small kernel area, making it difficult to capture long-range
relationships between pixels. To overcome this limitation,
Channel-wise similarity attention (CSA) module is proposed,
which generates a similarity map between extracted features in
the feature map. This mechanism continuously conveys pixel
similarity, thereby capturing long-range relationships. CSA
contains instance normalization [20], GELU [17], Softmax
and similarity computation. Let x ∈ RR×C×W×H be an input



feature map. xkij denotes its kij-th element, where k is the
index of channels and (i, j) is the index of pixel coordinate in
k-th channel. ykij is the normalized feature value at (i, j). µk

and σ2
k are the mean and variance value in k-th channel. ϵ is

small number, 10−5 for preventing zero value of denominator.
In Eq. 2, instance normalization follows as:

ykij =
xkij − µk√

σ2
k + ϵ

, µk =
1

HW

W−1∑
i=0

H−1∑
j=0

xkij

, σ2
k =

1

HW

W−1∑
i=0

H−1∑
j=0

(xkij − µk)
2 (2)

Normalized feature map transfers to calculate the similarity
map in Eq. 3. Ak,∈ RB×C×WH is feature map in batch size,
B, channel, C, size of image, WH at k-th channel. AT

k ,∈
RB×WH×C is the transpose of the feature map, Ak. Sk is the
similarity map:

Sk =
Ak ·AT

k

∥Ak∥2
(3)

The similarity map has been converted into a probability
value by utilizing the softmax function. This probability value,
F(x) is then multiplied by x in Eq. 4, the input feature map,
as illustrated in Fig. 2.

Out(x) = F(x)× x (4)

The output of attention, Out(x) highlights the probability
value of the pixel-to-pixel similarity in the feature map, as
well as the probability generated by the softmax, for the
existing feature map.

B. YOLOv5 for Vehicle Detection

The detection of vehicles is critical for evaluating their
safety and condition. Recent advancements in computer vision
and deep learning have enabled the automation of this task
using artificial intelligence. The study utilizes the widely-used
YOLOv5 [8] algorithm for vehicle detection. The YOLOv5
detector is used by the vehicle status classifier in real-time
vehicle detection for proposed works. The detector was trained
using a combination of self-processed drone flight images
and the VisDrone [21] dataset, a comprehensive benchmark
for object detection in intricate environments. This method
allowed for the development of a robust detector that can
precisely identify vehicles in various scenarios. Additionally,
the detector can be fine-tuned to identify specific vehicle types,
such as cars, trucks, buses, or motorcycles. In Fig. 3, it shows
the result of YOLOv5 with drone image.

III. EXPERIMENT

Drone AI Dataset: The dataset in this study uses self-
capturing images of vehicles and generates a dataset by
cropped road area from the original image through vehicle
detection. The dataset is created by selecting five vehicles
around the target vehicle based on their proximity. The area
containing the selected vehicles is extracted from the original

Fig. 3: Vehicle detection from YOLOv5 detector

Fig. 4: (a) original image from drone view, (b) cropped area
by object detector

image. The total number of images in the dataset is shown in
Table 1. The dataset contains 4,152 images and three vehicle
status classes: lane change, safety, and stop.

TABLE 1: The number of datasets for vehicle state classifica-
tion

Class train test Total
lane change 860 214 1,074

safe 1,241 310 1,551
stop 1,222 305 1,525
Total 3,323 829 4,152

Implementation Details: The vehicle classification model
was developed using PyTorch [22]. The input image was
resized to 512× 512 and the batch size was set to 32. The
learning process was performed on an RTX 3090 GPU with
32GB of memory.

Object Detection: For this study, YOLOv5[8] is used
for vehicle detection, and its results are used in the dataset
generation. The training process uses 9,776 images, and 2,200
test images are used for evaluation. The vehicle detection
performance is evaluated using mAP@50 and mAP@50:95
metrics, achieving 91.8% and 80.3%, respectively, as shown
in Table 2.



TABLE 2: The mAP performance of YOLOv5 on drone train
and test dataset

Class Images Instance mAP@50 mAP@50:95
all train 9,776 309,470 95.75 83.8

car vehicle 9,776 277,263 97.2 86.0
truck vehicle 9,776 32,207 94.3 81.6

all test 2,200 85,398 91.8 80.3
car vehicle 2,200 78,765 96.1 85.3

truck vehicle 2,200 6,633 87.5 75.4

Vehicle State Classification: The proposed vehicle state
classification model, based on the CSA module, illustrates
the impact of applying the CSA module at various layers. In
contrast, a dilated residual network (DRN) [23] serves as the
baseline model. The DRN substitutes the convolutional layer
in the ResNet [2] model with a dilated convolutional layer.
Moreover, the DRN-A model eliminates the max-pooling
layers from the ResNet structure, the DRN-B model adds
four dilated layers at the end, and the DRN-C model removes
the residual connection at the end. Unlike the DRN model,
which utilizes a fixed receptive field location, the proposed
classification model employs a flexible receptive field and
integrates the CSA module. Table 3 presents experimental
findings for comparison. DRN D 22 indicates the model type

TABLE 3: Comparison of accuracy with the proposed method
and DRN model. M is 106.

Method Layer with CSA module #para fps Acc(%)1 2 3 4 5 6
DRN D 22 - - - - - - 16.39M 217 87.69
DRN D 38 - - - - - - 26.50M 147 86.49
DRN D 54 - - - - - - 35.80M 107 89.26
DRN C 26 - - - - - - 21.13M 185 89.62
DRN C 42 - - - - - - 32.23M 136 81.78

Proposed

✓ - - - - - 1.27M 302 86.13
✓ ✓ - - - - 1.27M 296 72.13
✓ ✓ ✓ - - - 1.27M 283 55.73
✓ ✓ ✓ ✓ - - 1.27M 283 54.52
✓ ✓ ✓ ✓ ✓ - 1.27M 286 54.76
✓ ✓ ✓ ✓ ✓ ✓ 1.27M 286 53.31
- ✓ - - - - 1.27M 294 75.39
- - ✓ - - - 1.27M 296 76.38
- - - ✓ - - 1.27M 294 73.82
- - - - ✓ - 1.27M 295 65.74
- - - - - ✓ 1.27M 295 65.62

(D or C) and the number of layers. It has 16.38M parameters
and an accuracy of 87.69%. DRN D 38 and DRN D 54
have 26.5M and 35.8M parameters, respectively, with an
accuracy of 86.49% and 87.69%. For type C, DRN C 26
and DRN C 42 have 21.13M and 32.23M parameters, re-
spectively, with an accuracy of 89.62% and 81.78%. The
proposed model has a total of 1.27 million parameters, which
is 12 to 25 times smaller than DRN. In terms of accuracy,
it is 3.49% lower than DRN C 26 but has the advantage
of reducing computation by approximately 95%. The results
of applying the designed layer-specific CSA module are also
presented. Among the proposed methods, applying CSA only
to the last layer of WAFE achieves the highest accuracy of
86.13%. Applying CSA modules at multiple layers results

in gradually decreasing accuracy. In the proposed network,
the inference speed is observed to be approximately 280 to
300 frames per second in Table 3. This speed is not only
associated with the total number of parameters but is also
enhanced through the utilization of a dilated convolutional
filter for feature extraction and the division of feature maps
into groups. This efficient design allows for improved pro-
cessing speed, demonstrating the effectiveness of the proposed
network architecture. Furthermore, applying CSA modules for
each layer shows higher performance than multi-layer. The
performance of applying the CSA module decreases as the
high-level feature map increases. This is because the CSA
module has already focused on the information of objects in
the high-level feature, and it lowers the performance instead.
For low-level feature maps, high performance is achieved by
adding a similarity of information between the normalization
of feature maps and low-level pixels. The highest performance
of 86.13% was achieved in the 1-st layer.

IV. CONCLUSION

In this study, a vehicle condition classification model based
on channel-wise similarity attention is proposed. The model
utilizes drone data that is designed for a specific mission.
The proposed CSA module calculates the similarity of feature
maps and activates low-level features through the attention
mechanism. The conventional convolutional layer with a fixed
receptive field densely extracts features, including unnecessary
areas of the collected dataset. To address this issue, the
deformable convolutional layer effectively extracts features
around the object as learning continues through a flexible
receptive field. The DRN model is used for comparison, which
replaces ResNet layers with dilated convolutional layers to use
a wide receptive field area. In the experiment, the proposed
model achieves an accuracy of 86.13% by applying CSA to
various layers. Although the proposed model is 3.49% lower
than DRN C 26, it saves 95% on the number of parameters.
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Marc, Yonghye Kwon, Oleg, wanghaoyang, Yann Defretin, Aditya
Lohia, ml ah, Ben Milanko, Ben Fineran, D. P. Khromov, Ding Yiwei,
Doug, Durgesh, and Francisco Ingham. ultralytics/yolov5: v5.0 - yolov5-
p6 1280 models, aws, supervise.ly and youtube integrations. 2021.

[9] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric
transformations. In Neural Information Processing Systems, 2018.

[10] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection. ArXiv,
abs/2004.10934, 2020.
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