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Abstract—ODbject detection is an important study in computer
vision to discriminate the position and class of an object in an
image. Object detection in drone images is a technology that
automatically detects and classifies objects using deep learning
algorithms in flight images taken by drones. Object detection
using drone images can rescue human life in disaster situations,
grasp the situation at the disaster site, and identify the growth
status of crops or pests in agriculture. In addition, it can
be used in various fields such as infrastructure management,
roads and railways, and city planning. A quick calculation is
required. Although rapid computation is possible due to recent
hardware development, there are many difficulties in using GPUs
in industrial settings. In order to utilize drones in industrial sites,
an object detection algorithm capable of real-time operation in
a low-cost device is required. In this paper, we propose YOLOV5S
with the combination of Coordinate Attention and CBAM for
Object Detection on Drone for an algorithm capable of real-
time operation in a low-cost device. The proposed architecture
makes the model lighter by reducing the number of parameters
and improves the object detection rate of the model through
Coordinate Attention and CBAM. The model is trained using the
VisDrone dataset, and the object detection rate, mAP, increased
by about 10% to 22.2mAP, and the number of parameters
decreased by about 70% to 2,147,589.

Index Terms—Object Detection, Drone Vision, Attention Mod-
ule, Deep Learning

I. INTRODUCTION

Along with technological advances, drones have become
essential for monitoring and surveillance operations, especially
in industries. Drones equipped with high-resolution cameras
and other sensors can provide an extensive view of an area,
making them ideal for monitoring and surveillance that cover
large or remote areas. Moreover, the support of artificial intel-
ligence technology makes drones usable for vision works such
as object detection and identification. Many practitioners and
researchers strive to extend this technology as a primary tool in
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various fields, such as factories [1], mining [2], transportation
[3], conservation [4], etc.

Deep learning is a technique that has been very successful
in object detection tasks, particularly in computer vision.
Object detection involves identifying objects within an image
or video, and deep learning techniques such as convolutional
neural networks (CNNs) are highly effective for this task.
In recent years, several deep learning models have been
developed that have achieved state-of-the-art performance in
object detection. These models typically use a combination
of convolutional layers for feature extraction, followed by
fully connected layers for classification and bounding box
regression. Faster R-CNN [5] become one of the most popular
deep-learning models for object detection. It uses a two-stage
approach, where regions of interest (ROIs) are first identified
using a region proposal network, and then these regions are
classified using a second CNN architecture.

YOLO (You Only Look Once) [6], especially the fifth
version (YOLOVS) [7], is another popular model that applies
a single-stage object detector that processes the entire image
in one pass, using a CNN to predict class probabilities and
bounding box coordinates directly. As a result, YOLO can
perform at a higher detection speed even though it provides
a little bit of lower accuracy. Therefore, YOLO is ideal for
vision drone that requires fast detection methods.

Several efforts have focused on enhancing a YOLOVS archi-
tecture to boost performance or improve efficiency, especially
on the Vision Drone (VisDrone) dataset [8]. Zhang et al. [9]
utilizing a channel pruning approach to improve YOLOVS.
Wang et al. [10] also tried to enhance YOLOVS by applying
Strip Bottleneck (SPB) block. Both gain satisfactory accuracy
and efficiency. The emergence of the attention mechanism
also boosted YOLOVS’s performance. Squeeze-and-excitation
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Fig. 1: The proposed architecture. Coordinate attention and CBAM are applied to improve the performance of the original

YOLOVS network.

(SE) module, one of the most attention modules, is used to
encourage the detection precision of YOLOVS in [11]. In
another work, Kim et al. [12] proposed an efficient channel
attention pyramid module, unifying with YOLOVS5, to detect
small objects in the VisDrone dataset. Zhu et al. [13] also
improved YOLOVS by utilizing a transformer mechanism
and convolutional block attention model (CBAM) for object
detection on images captured by drones.

In this work, we propose an enhancement of YOLOVS,
which utilizes the combination of some attention modules for
object detection on drones. The main contributions of this
work are outlined as follows:

1) A real-time object detection method that can operate in
a low-cost device by applying an efficient method.

2) Attention Module Combination is introduced by ap-
plying Coordinate Attention and Convolutional Block
Attention Module (CBAM) to the original YOLOVS
network.

II. THE PROPOSED ARCHITECTURE

As can be seen in Fig. 1, the proposed architecture has
two Attention Modules. The first Coordinate Attention is
used before the EMRP layer corresponding to the Backbone
of YOLOVS, and the second Convolutional Block Attention
Module is applied to the PANet corresponding to the Neck.
CBAM is applied before each detector, which is part from the
Neck to the Head.

A. The Backbone

YOLOvVS’s framework has three main components: It is
composed of Backbone, Neck, and Head. YOLOvS’s Back-
bone is a network structure responsible for basic functions for
object detection. YOLOVS5 uses the CSPDarknet53 backbone
architecture. CSPDarknet53 introduced a channel division
method based on the Darknet53 architecture to increase net-
work efficiency. Through this, it is possible to configure a
deeper network with a smaller amount of computation and
improve object detection performance. The backbone extracts
the features of an image and transfers them to the Head
through the Neck. Neck uses the Path Aggregation Network
(PANet) architecture. PANet collects feature maps extracted
from Backbone to create a feature pyramid and improves
object detection accuracy. Lastly, Head uses two Heads for
object detection. The Head consists of a B x (5 + C) output
layer that predicts the object’s bounding box and class. B is
the number of bounding boxes, and C is the class score.

B. Efficient Residual Bottleneck

ERB (Efficient Residual Bottleneck) [14] is an enhanced
layer of the C3 used in YOLOvS5. The C3 layer in YOLOvS
exhibits a bottleneck phenomenon with three convolutional
layers. To operate object detection algorithms in real-time
on low-cost devices such as drones, it is necessary to re-
duce the number of parameters in the deep learning object
detection network. To reduce the number of parameters, the
C3 layer’s convolutions are adjusted from three to two and
the sequence of feature map concatenation and additional
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Fig. 2: Efficient Residual Bottleneck. (a) is a module that has
improved the C3 layer more efficiently. (b) is the bottleneck
structure included in ERB.

operations is modified. The proposed network provides an im-
proved backbone that extracts object features and distinguishes
essential elements from the background. It applies a series of
convolutional layers sequentially using efficient modules. The
lightweight blocks employ residual techniques to maintain the
quality of feature maps and deliver high performance in the
final predictions. To prevent gradient performance degradation
and alleviate the saturation of the training process, SiLU
activation and batch normalization are used sequentially in
each convolutional operation.

C. Efficient Multi-Receptive Pooling

EMRP (Efficient Multi-Receptive Pooling) introduces an
improved and efficient multi-scale pooling to capture the
spatial information difference between cascade pooling and
simple convolution. By applying convolutional and two se-
quential pooling operations, it provides diverse receptive fields.
It allows for an increased feature selection option in multi-
perspective combinations. A simple convolution is used to
obtain a single spatial region. Two pooling layers with a
window size of 5 X 5 are sequentially applied to capture the
maximum values of features. By combining features from dif-
ferent receptive fields, the diversity of information increases,
allowing the network to learn more about different types of
features. Then, convolutional operations are applied to mix
the diverse information. The residual technique is used in this
module to ensure that the feature pooling results from different
receptive fields achieve the expected quality and reduce the
error rate in the filtering process.

D. Coordinate Attention

Coordinate Attention [15] is one of the self-attention mech-
anisms used in the field of computer vision, and is a method
of performing efficient attention by utilizing the coordinate
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Fig. 3: Efficient Multi-Receptive Pooling. Less complexity by
double receptive pooling & addition pathways.

information of an object. Coordinate Attention separates the
input data into two tensors. The first tensor is the feature map
of the input data, and the second tensor is the coordinate in-
formation of the input data. Afterward, each of the two tensors
is converted to one-dimensional, and the attention weight is
calculated using the coordinate information tensor. This weight
pays attention to the required position based on the coordinate
information of the input data. Since attention is applied only
to the required location using coordinate information, the
amount of calculation is very small and the size of the model
can be reduced. Coordinate Attention is a method for better
looking at the location information of an object. It can expect
performance improvement in images with many small objects
or dense objects. It can increase The EMRP layer is used to
handle different sizes and aspect ratios of objects. Therefore,
if Coordinate Attention is applied before the EMRP layer,
more accurate object detection and classification becomes
possible because the location information and size information
of the object can be considered together. By adding Coordinate
Attention, you can increase performance without significantly
affecting speed.

E. Convolutional Block Attention Module

CBAM [16] consists of two Attention Modules. The first
step is to encode which channel to focus on with the Channel
Attention Module. A value is obtained by performing global
max pooling and global average pooling, and nonlinearity is
applied by performing MLP on the two vectors encoded by
each pooling. After being added, it is finally encoded as a
randomized value through sigmoid. The final encoding value
Mc is a value expressed as a probability of which feature map
it is, considering among different C' feature maps. Multiply
Mec by the input feature map F to generate F’'. The second
step is to encode which part of the C' x H number of pixels
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Fig. 4: Coordinate Attention Architecture. Since the attention is focused only on the required location using the coordinate
information, the amount of calculation is very small and the size of the network can be reduced.

to focus on with the Spatial Attention Module. After average
pooling and max pooling are performed on the channel axis, a
feature map of H x W X 2 is created by concatenation. Then,
M s of HxW x1 is generated by performing 7x 7 convolution
for spatial attention. M s is multiplied by F” generated by the
Channel Attention Module to generate F”. By sequentially
applying Channel Attention and Spatial Attention Modules
through CBAM, it is possible to consider both inter-channel
and spatial relationships, enabling more accurate and efficient
feature map extraction.

FE. Loss function

The loss function of YOLOVS is used to improve the
model’s prediction during training by calculating the differ-
ence between the model’s predicted bounding box and the
actual ground truth bounding box during the object detection
task. YOLOVS uses three main loss functions. It consists of
Localization loss, Confidence loss, and Class loss. Localization
loss calculates the position difference between the bounding
box of the object predicted by the model and the ground truth
bounding box. YOLOVS5 predicts the center coordinates, width,
and height values of the bounding box, and Localization loss
is used to improve location accuracy by using Mean Square
Error (MSE). Confidence loss calculates the Intersection over
Union (IoU) difference between predicted bounding boxes.
Calculate the binary cross-entropy loss function between the
confidence of the predicted bounding box and the confidence
of the ground truth to help accurately detect objects. Finally,
class loss helps to predict the correct class an object belongs to,
and is calculated as a multi-class Cross-Entropy loss function.
The three loss functions are combined to finally calculate
the loss of the model’s prediction result. Train the model to
minimize this value.
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III. TRAINING AND TESTING CONFIGURATION

In this session, we describe the experiments of the YOLOv5
network with Coordinate Attention and CBAM on the Vis-
drone dataset. As an experimental environment, the model is
implemented using PyTorch in a Linux environment. When
training the deep learning model, training is conducted using
Intel Xeon Gold CPU and Nvidia Tesla A100 40GB GPU.

IV. EXPERIMENTAL RESULTS
A. Evaluation on Datasets

The VisDrone dataset is a large-scale object detection and
tracking dataset based on high-resolution video images cap-
tured by multiple cameras mounted on drones. This dataset
contains video images taken in various environments, mainly
in cities, coastal areas, agricultural lands, and mountainous
areas. There are a total of 10 classes (pedestrian, people,
bicycle, car, van, truck, tricycle, awning-tricycle, bus, motor),
and it consists of 288 (261,908 images) video clips and 10,209
static photos. The dataset contains video images in a variety of
conditions, including day and night, sunny and cloudy, sharp
and sunken, and supports up to 1080p. The VisDrone 2019
dataset can be used to solve various computer vision problems
such as object detection, tracking, and velocity estimation.
Since it contains videos taken on a large scale, high resolution,
and under various conditions, it can be usefully used for the
development and performance evaluation of object detection
and tracking algorithms.

The proposed method tested the object detection perfor-
mance on the VisDrone dataset. The VisDrone dataset contains
many objects of tiny size. In order to detect small-sized
objects, a high-resolution image is required or a method
capable of extracting features of the object well is required.
An object detection model is evaluated through a dataset by
extracting and learning the features of various objects included
in the dataset. To evaluate the model, we use Average Precision
(AP) to measure the accuracy of the predicted bounding box,
derive AP for each class, and finally calculate the mean
Average Precision (mAP) value for all classes. As a result,
the proposed method shows 22.2map with about 10% higher
mAP compared to the original YOLOvVSs, and the number
of parameters is 2,147,589, which is about 70% less. Fig.
6 presents the detection result of our model. It successfully
identified small objects, even occluded challenges
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TABLE I: Detection Result Comparisons on VisDrone Dataset

Model AP AP50 Backbone
retinaplus [17] 20.57 | 40.57 ResNeXt-101
ERCNNS [18] 2045 | 41.2 ResNeXt-101
SAMFR-Cascade RCNN [19] | 20.18 | 40.03 SERexNeXt-50
Cascade R-CNN++ [19] 1833 | 335 SERexNeXt-50
EnDet 17.81 | 37.27 ResNet101-fpn
DCRCNN [20] 17.79 | 42.03 ResNeXt-101
Cascade R-CNN+ [19] 17.67 | 34.89 ResNeXt-101
ODAC 17.42 | 40.55 VGG
DA-RetianNet [21] 17.05 | 35.93 ResNet101
MOD-RETINANET [17] 16.96 | 33.77 ResNet50
DBCL [22] 16.78 | 31.08 Hourglass-104
ConstraintNet [23] 16.09 | 30.72 Hourglass-104
CornetNet* [24] 17.41 | 34.12 Hourglass-104
Light-RCNN* [25] 16.53 | 32.78 ResNet101
FPN* [26] 16.51 | 32.2 ResNet50
Cascade R-CNN* [27] 16.09 | 3191 ResNeXt-101
DetNet59* [28] 15.26 | 29.23 ResNet50
RefineDet* [29] 14.9 28.76 ResNet101
RetinaNet* [17] 11.81 | 21.37 ResNet101
YOLOV5s 20.1 35.7 Improved CSPDarknet53
Proposed Method 22.2 38.6 Improved CSPDarknet53

TABLE II: Proposed Method Result

Model # parameter | GFLOPs | AP
YOLOVS 7,046,599 15.9 20.1
YOLOVSs 4det w Coord & CBAM 6,816,684 31.5 20.5
YOLOV5s 4det w ERB & Coord & CBAM 6,641,644 31.0 20.1
YOLOV5s 4det w ERB & ERMP & Coord & CBAM 6,510,572 30.9 20.6
YOLOvSs 3det w Coord & CBAM 6,745,629 14.5 20.0
YOLOVSs 3det w ERB & Coord & CBAM 6,570,589 14.1 19.9
YOLOVSs 3det w ERB & EMRP & Coord & CBAM 6,439,517 14.0 19.3
YOLOVSs 3det w ERB & EMRP & Coord & CBAM wo C5 2,147,589 16.7 22.2

B. Runtime Efficiency

In this paper, Efficient Residual Bottleneck (ERB) and
Efficient Multi-Receptive Pooling (EMRP) are applied to
YOLOVS5 to make the network more efficient. ERB and EMRP
are created by improving the C3 and SPPF layers, which
correspond to the Backbone of YOLOvVS, and the number
of parameters of the network could be effectively reduced
by removing the C5 block. In addition, when Coordinate
Attention and CBAM are applied, the parameters of the
network increase, but the increase in parameters is prevented
by reducing the number of iterations of ERB performed in
Backbone to a minimum. As a result, the number of parameters
is reduced through ERB and EMRP, and performance is im-
proved through Coordinate Attention and CBAM. Compared
to the original YOLOVS5s, the number of parameters is reduced
by about 70%, and the performance is increased by about 10%
to 22.2mAP.

V. CONCLUSION

In this paper, we propose a YOLOVS network using Combi-
nation of Coordinate Attention and CBAM that enables real-
time object detection and shows higher performance. The
proposed network improved the C3 layer to ERB and the SPPF
layer to EMRP to reduce the number of parameters. Then, the
CS5 block in Backbone is removed, and a feature map is created
to detect tiny, small, and medium-sized objects. To improve
the performance of object detection, Coordinate Attention is
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Fig. 6: Object Detection Result on VisDrone 2019 dataset.

added before the EMRP layer, and CBAM is applied before
the final detector. The network is trained on the VisDrone
dataset. The mAP value is 22.2mAP, about 10% higher than
the original YOLOVS5, and the number of parameters is about
70% less, 2,147,589.

In future works, we plan to further improve the EMRP
to increase the object detection rate. In order to lighten the
network through EMRP, the number of Max Pooling layers
is reduced to two, but instead of the Max Pooling layer, a
convolution layer is added to extract the features of the object
more effectively. As the number of layers in the network
increases, the number of parameters required for calculation
will increase, but since it has about 70% less number of
parameters than the original YOLOVS, it is expected that the
object detection rate can be increased by adding layers.
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