
Vehicle Detector Based on YOLOv5 Architecture
for Traffic Management and Control Systems

Duy-Linh Nguyen, Xuan-Thuy Vo, Adri Priadana, and Kang-Hyun Jo
Department of Electrical, Electronic and Computer Engineering,

University of Ulsan,
Ulsan, Korea

ndlinh301@mail.ulsan.ac.kr, xthuy@islab.ulsan.ac.kr, priadana@mail.ulsan.ac.kr, and acejo@ulsan.ac.kr

Abstract—Vehicle detection is an important module in traf-
fic management and control systems. These systems require
compactness, mobility, and high accuracy when deployed in a
real-time context. Based on the YOLOv5 network architecture,
this paper proposes several improvements to increase the per-
formance and speed of the network when applied to vehicle
detection. The research aims to redesign the backbone and neck
modules with lightweight convolutional network architectures
such as EfficientNet, PP-LCNet, and MobileNet. In addition, the
Squeeze-and-Excitation attention architecture is also used inside
the above-mentioned architectures to help the network focus on
salient information during feature extraction. The network is
trained and evaluated on a modified and normalized dataset of
the UA-DETRAC dataset. As a result, the proposed network
achieves 58.1% of mAP@0.5 and 40.1% of mAP@0.5:0.95 with
just over ten million network parameters. This result outperforms
other methods and is comparable to the lightweight architectures
of the YOLOv5 family.

Index Terms—Convolutional Neural Network (CNN),
Lightweight architecture, Vehicle detection, YOLOv5.

I. INTRODUCTION

The rapid development of vehicles in both quantity and
type requires supporting tools for traffic management and
control, especially in intelligent traffic systems. The goal
of vehicle detectors is to provide assistant information for
vehicle traffic counting, speed measurement, traffic accident
detection, and traffic coordination [1]. For a long time, sensor-
based methods have been widely applied to collect sequent
information for traffic analysis and processing. These methods
use specialized detectors which are high implementation and
maintenance costs, such as laser detectors, radar detectors,
induction loop detectors, etc. In addition, the performance is
heavily influenced by environmental factors [2]. Nowadays,
closed circuit television (CCTV) and surveillance camera
systems have been deployed in almost all traffic systems. Its
flexibility and convenience have spurred vision-based methods
to be developed to meet real-world requirements and solve
problems existing in traditional methods. In that trend, this
paper proposes techniques to improve the YOLOv5 network
architecture for vehicle detection. The techniques exploit the
lightweight convolutional neural network (CNN ) architectures
and optimization the network parameters for low-computing
devices in real-time scenarios.
The core contributions of this paper are as follows:

• Proposed a vehicle detector based on the YOLOv5
network with lightweight architectures to optimize the
network parameters and computational complexity.

• Built an image dataset for vehicle detection tasks from
a set of large videos of the UA-DETRAC dataset. This
dataset was trained and evaluated with all variants of
the YOLOv5 network family and then compare to the
proposed network.

The remaining parts of the paper are organized as follows:
Section II introduces several technologies relative to vehicle
detection. Section III explains the detail of improvements in
the proposed method. Section IV reports and analyzes the
experimental results. Finally, Section V concludes the issue
and presents the direction of future works.

II. RELATED WORKS

The related methods of vehicle detection will be introduced
in this section. These techniques can be considered with
traditional-based and CNN-based methods.

A. Traditional-based methods

These methods are mainly based on manually defined fea-
ture patterns from standard feature extractors. Several common
feature extractors were the Haar-like feature [3], the histogram
of oriented gradients (HOG) feature [4], and the local binary
pattern (LBP) [5]. Besides, to improve detection accuracy,
other studies have fused feature extraction and classification
methods together. The work in [6], used a combination of
HOG and LBP methods to generate feature vectors. Then it
applied the support vector machine (SVM) method to learn
and classify the media. Similarly, the authors in [7] exploited
the Haar-like and HOG methods for feature extraction and
SVM for vehicle classification. In other studies, to reduce the
computational complexity of the SVM method, the AdaBoost
classifier and its variants were used for classifying vehicles
on the features extracted by the Haar-like method [8]. The
detection accuracy of traditional methods depends largely on
prior knowledge. But in real-life settings, vehicles appear in a
variety of shapes, colors, and distortions. Therefore, vehicle
detection is limited and difficult to implement in real-time
applications.
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Fig. 1. The overall proposed network architecture.

B. CNN-based methods

Unlike traditional methods, CNN-based methods directly
extract features and learn them through the training phase.
Vehicle detection applications are widely deployed with both
single-stage and two-stage detectors. The work in [9] used fea-
ture fusion techniques in CNN to connect high-level features
and low-level features and detect different sizes of highway
vehicles on multi-scales. The study in [10] applied YOLOv2
network architecture for detecting vehicles and the Kanade-
Lucas-Tomasi tracking technique for counting the number
of vehicles. Later, the YOLOv5 network and several dataset
augmentation techniques were utilized by [11] for real-time
vehicle detection. In general, CNN-based methods have solved
the pre-feature extraction problem and greatly improved the
ability to detect vehicles in different contexts.

III. PROPOSED METHODOLOGY

Fig. 1 shows the overall proposed network architecture. This
network is an improvement from YOLOv5 architecture [12]
comprised of three modules: backbone, neck, and detection
head.

A. Backbone

During the study on the YOLOv5 architecture, this work
found that the Focus and Cross Stage Partial Network Bot-
tleneck (CSP) blocks present many advantages in feature
extraction but cause computational complexity and a lot of
network parameters. Therefore, the first step is replacing the
Focus module with another more straightforward one that still
ensures effective feature extraction, called CBS. This module
is designed with a 1 × 1 convolution layer (1 × 1 Con2D)



followed by a batch normalization (BN) and a SiLU activation
function. Fig. 2 shows the structure of the CSB module.

=CBS Conv BN SiLU

Fig. 2. The structure of the CBS block.

The next step is removing all CSP modules and choosing the
combination of two lightweight modules proposed from the
idea of PP-LCNet [13] and EfficientNet [14]. The structure
of lightweight PP-LCNet is shown in Fig. 3. This module
is organized by a 3 × 3 depthwise convolution layer (3 × 3
DWCon), an attention block (SE block), and a 1 × 1 con-
volution layer. Interspersed between these layers is a batch
normalization (BN) and a Hardswich activation function (HS).
The SE attention block is inspired by the original SE attention
mechanism [15] and consists of a global average pooling
layer, a fully connected (FC1) layer followed by a rectified
linear unit (ReLU) activation function, and a second FC (FC2)
followed by a sigmoid activation function. This design takes
advantage of lightweight architectures to save a large number
of network parameters in the backbone. On the other hand,
the SE attention mechanism increases the network’s ability to
focus on outstanding features. Therefore, this design ensures
the quality of feature extraction at each feature map level.
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Fig. 3. The structure of PP-LC (a) module and SE (b) block.

The structure of the lightweight EfficientNet module is
shown in Fig. 4. This module is designed quite simply with
only convolution and depthwise layers, interspersed with a BN
and a ReLU6 activation function (for stride 2 case (Fig. 4
(b)). Same design for the stride 1 case (Fig. 4 (a)) but adds a
skip connection that is started from the input and aggregated
with the feature map of the main branch through the addition
operation. Its feature extraction process focuses on the channel
dimension. The integration of lightweight PP-LCNet and Ef-
ficientNet architectures covers spatial and channel dimension
feature extraction across the entire backbone.

The final block in the backbone module is the Spatial
Pyramid Pooling Fast (SPPF). This block is a variant of Spatial
Pyramid Pooling (SPP) widely used in early generations of the
YOLOv5 architecture. Different from the original SPP block,
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Fig. 4. The structure of lightweight EfficientNet block.

the SPPF block is designed with three max pooling layers with
the same kernel size (k = 5) arranged side by side. The output
of each max pooling layer is aggregated with the output of the
first SBS by a concatenation operation followed by another
CBS layer. This block has a role as a bridge between the
backbone and neck modules. The structure of the SPPF block
is shown in Fig. 5.
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Fig. 5. The structure of SPPF block.

B. Neck

The neck module of the proposed network architecture still
reuses the Path Aggregation Network (PAN) [16] mechanism.
This mechanism combines the current feature maps with
previous feature maps through upsampling and concatenation
operations. Inside, this work replaces all CSP blocks with
the lightweight MobileNet structure as shown in Fig. 6. The
MobileNet block is built similarly to the structure of the
mentioned lightweight EfficientNet block with two cases for
stride 1 and stride 2. Differently, MobileNet blocks add an
SE attention mechanism after the 3 × 3 DWCon2D and
change the ReLU6 activation functions with the Hardswish
activation functions. The output of the neck module is three
aggregated feature maps corresponding to the three scale levels
of the object to be detected: large (20 × 20 × 768), medium
(40× 40× 384), and small (80× 80× 192).

C. Detection head

From the three levels of feature maps generated by the
neck module, this work utilizes the structure of the detector
heads in the YOLOv5 network. These three output feature
maps go through three convolution operations to produce three
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Fig. 6. The structure of lightweight MobileNet block.

detectors with dimensions 80 × 80 × 27, 40 × 40 × 27, and
20 × 20 × 27 for small, medium, and large object sizes,
respectively. Each detector head uses three anchors of different
sizes. The details of the detection heads are shown in Table
I. The last parameter of the feature map dimension is the
prediction coefficient calculated as follows:

C = (5 + Cn)×A = (5 + 4)× 3 = 27, (1)

where C is the detection coefficient, Cn is the number of
classes, and A is the number of anchors.

TABLE I
THE DETAIL OF EACH DETECTION HEAD.

Heads Input Anchor sizes Ouput Object
1 80× 80× 129 (10, 13), (16, 30), (33, 23) 80× 80× 27 Small
2 40× 40× 384 (30, 61), (62, 45), (59, 119) 40× 40× 27 Medium
3 20× 20× 768 (116, 90), (156, 198), (373, 326) 20× 20× 27 Large

TABLE II
THE DETECTION RESULTS OF THE PROPOSED NETWORK WITH EACH

CLASS ON THE UA-DETRAC VALIDATION SET.

Class Labels Labels P R mAP@0.5:0.95
all 68,064 63.8 55.8 58.1 40.1

others 1,691 32.6 60.2 26.1 15.9
car 55,462 74.1 66.9 71.0 53.4
van 3,795 52.1 49.6 54.8 39.8
bus 7,116 73.5 75.6 71.4 51.3

D. Loss function

The loss function in this paper is defined as follows:

L = λboxLbox + λobjLobj + λclsLcls, (2)

where Lbox is the bounding box regression loss which uses
CIoU loss [17] to compute. Lobj and Lcls are the object
confidence score loss and the classification loss, respectively.
They use Binary Cross Entropy loss [18] to calculate. λbox,
λobj , and λcls are applied to control the balancing of overall
loss.

IV. EXPERIMENTS

A. Dataset

UA-DETRACT [19] is a large dataset for multi-object
detection and multi-object tracking. The dataset consists of
10 hours of video obtained from Cannon EOS 550D cameras
in 24 locations in Beijing and Tianjin cities (China) under
different weather conditions. Videos are recorded with a frame
rate of 25 frames per second and a resolution of 960 × 540
pixels. In total, more than 140,000 frames with 8,250 vehicles
and 1.21 million bounding boxes were annotated by hand. This
dataset is divided into four classes including car, bus, van, and
others. Recognizing the contextual duplication in sequential
video frames, this experiment extracted and used only 8,222
images for training and 5,621 images for evaluation. This is
to reduce the burden and save time for model training and
evaluation while still ensuring vehicle detection accuracy.

B. Experimental setup

The proposed network architecture is implemented using
the Python programming language on top of the Pytorch
framework. This model was trained on a Testla V100 32GB
GPU and evaluated on a GeForce GTX 1080Ti 11GB GPU.
The input image size is 640 × 640 pixels. The learning rate
is set from 103 and increases to 105. Similarly, momentum
is also assigned from 0.8 then gradually increases to 0.937.
The optimization method is Adam optimization. The training
process takes 300 epochs with a batch size of 64. The
balancing parameters are set as λbox = 0.05, λobj=1, and
λcls = 0.5. Several data augmentation methods are applied
such as flip, translate, mosaic, and scale. The inference time
(ms) is performed and reported with the same training input
image size, batch size of 32, confidence threshold and IoU
threshold are set to 0.5.

C. Experimental results

To evaluate the performance of the proposed network,
this experiment compares 5 variants of retrained YOLOv5
network architecture (n, s, m, l, x) from scratch and the
other networks in [2] on the UA-DETRAC dataset. The
detailed result of the proposed network on each class and
the comparison results are shown in Table II and Table
III, respectively. As a result, the proposed network achieves
58.1% of mAP@0.5 (mean average precision with an IoU
threshold of 0.5) and 40.1% of mAP0.5:0.95 (mean Average
Precision with an IoU threshold of 0.5 to 0.95). For mAP@0.5,
the performance of the proposed network is superior to the
networks in [2] (6.6%↑ to 7.8% ↑) and two retrained YOLOv5
networks (YOLOv5n (6.0% ↑), YOLOv5s (3.6% ↑), YOLOv5l
(0.8% ↑)) and is comparable to the other retrained YOLOv5
networks (YOLOv5m (2.5% ↓), YOLOv5x (1.7% ↓)). With
mAP@0.5:0.95, the performance of the proposed network
outperforms the lightweight YOLOv5 networks (n, s) and
is lower than the large-scale YOLOv5 networks from 3.0%
(YOLOv5l) to 4.8% (YOLOv5m, YOLOv5x). In terms of
speed (inference time), the proposed network is also faster
than large-scale YOLOv5 networks (YOLOv5l (3.9 ms ↑)),



TABLE III
COMPARISON RESULT OF PROPOSED NETWORK WITH OTHER NETWORKS ON THE UA-DETRAC VALIDATION SET.

Models Parameter Weight (MB) GFLOPs mAP@0.5 mAP@0.5:0.95 Inf. time (ms)
YOLOv5x 86,193,601 173.1 204.0 59.8 44.9 17.7
YOLOv5l 46,124,433 92.8 107.8 57.3 43.1 10.0
YOLOv5m 20,865,057 42.2 48.0 60.6 44.9 5.7
YOLOv5s 7,020,913 14.4 15.8 54.5 39.0 2.5
YOLOv5n 1,764,577 3.8 4.2 52.1 37.1 1.3

YOLOv5s-GIoU [2] N/A 13.7 N/A 50.3 N/A N/A
YOLOv5s-CIoU [2] N/A 13.7 N/A 50.5 N/A N/A

YOLOv5-NAM-GIoU [2] N/A 13.9 N/A 51.2 N/A N/A
YOLOv5-NAM-CIoU [2] N/A 13.9 N/A 51.5 N/A N/A

Our 10,215,169 20.8 18.4 58.1 40.1 6.1

Cloudy Night

Rainy Sunny

Fig. 7. The qualitative result on UA-DETRAC validation set.

(YOLOv5x (11.6 ms ↑)) and approximates YOLOv5m (0.4
ms ↓) but the network parameter and computational com-
plexity (GFLOPs) are less than half. Fig. 7 presents several
qualitative results on the UA-DETRAC dataset with different
scenes (cloudy, night, sunny, and rainy). With just over 10
million network parameters, the proposed network can be
considered for comparison with the YOLOv5s architecture
which was widely used in mobile and embedded devices.
The visualization results in Fig. 8 show that the proposed
vehicle detection network is better than the YOLOv5s network
architecture in many different contexts. From the above results,
it is easy to see the balance in detection speed, computational

complexity, and network parameters of the proposed network.
This allows this model can be deployed in real-time applica-
tions for vehicle detection. Through the experimental process,
the proposed network has revealed several weaknesses due to
the impact of environmental factors and actual context. The
factors that reduce the network’s detectability include weather
conditions, vehicle density, vehicle overlap, vehicle moving
speed, vehicle direction, and distance from the vehicle to the
camera. In addition, the quality and camera angle are also
crucial factors affecting the quality of the proposed method.
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Fig. 8. The comparison result between YOLOv5s and proposed method on UA-DETRAC validation set.

D. Ablation studies

This work conducts several ablation studies to evaluate the
effect of each block in the proposed network. The blocks
are replaced one by one and then trained and evaluated on
the UA-DETRAC dataset. The results obtained are shown in
Table IV. This result demonstrates that the combination of
the lightweight PP-LCNet and EfficientNet networks in the
backbone module increases mAP by more than 2% while
slightly increasing the network parameters and computational
complexity. Similarly, the integration of lightweight PP-LCNet
and EfficientNet in the backbone module, MobileNet in the
neck module, and SPP block increases mAP by nearly 2%, and
other factors are almost unchanged. Finally, replacing the SPP
block with the SPPF block achieves the best results. Therefore,
this work selects the last architecture to train, evaluate, and
report on vehicle detection capabilities.

TABLE IV
ABLATION STUDIES WITH DIFFERENT TYPES OF PROPOSED NETWORK ON

THE UA-DETRAC VALIDATION SET.

Blocks Proposed networks
Conv ✓ ✓ ✓ ✓

PP-LCNet ✓ ✓ ✓
EfficientNet ✓ ✓ ✓ ✓
MobileNet ✓ ✓ ✓

SPPF ✓
SPP ✓ ✓ ✓

Parameter 9,736,527 10,191,617 10,215,169 10,215,169
Weight (MB) 19.9 22.8 20.8 20.8

GFLOPs 19.1 23.9 18.4 18.4
mAP@0.5 52.8 54.7 56.2 58.1

mAP@0.5:0.95 38.0 40.3 39.3 40.1

V. CONCLUSION AND FUTURE WORK

This paper proposes a method to improve the YOLOv5
object detection network for vehicle detection. Research fo-
cuses mainly on redesigning backbone and neck modules
using a combination of lightweight architectures such as PP-
LCNet, EfficientNet, and MonileNet. In addition, this work
also provides an image dataset for vehicle detection extracted
from the large UA-DETRAC dataset. With the optimization of
network parameters, computational complexity, and inference
speed, the proposed network has the potential to be applied
to mobile and embedded devices. In the future, the vehicle
detection network will be further developed with attention
and context feature enhancement mechanisms for small-sized
vehicles far from the camera.
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