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Abstract—Human-Computer Interface (HCI), a technology for
human interaction with computers, has been studied a lot for
a long time. As technologies related to the metaverse have
recently developed, digital twin technology is also used in various
industries, and in the field of computer vision, various deep
learning-based algorithms such as object classification, object
detection, and pose estimation have been developed. In this paper,
Using a deep learning-based top-down pose estimation algorithm,
keypoints are extracted from three images and matched in a 3D
virtual environment to create a digital twin. The coordinated
digital twin delivers information to digital devices in the real
environment through actions that cannot be simulated in the
real environment, such as shooting lasers in a virtual space.
Customized actions such as opening doors and turning off lights
can be performed through IoT sensors and actuators in real
environments. The experiment was performed using Unity, and
the results showed 82.67% accuracy on average.
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I. INTRODUCTION

With the advancement of communication technology and
computing power, recent years have seen a surge in research
and development of smart home [1] and smart space systems
based on the Internet of Things (IoT). Numerous companies
and researchers ayre actively engaged in studying these areas.
When implementing a smart home, the Human-Computer
Interaction (HCI) technology for the interaction between hu-
mans and computing devices is primarily implemented through
specific(physical) devices such as smartphone, keyboard, and
remote controller. However, these technologies suffer from a
lack of convenience(intuitiveness) as people have to physically
control the devices.

Because of the recent development of the technology about
metaverse, there has been a significant increase in research
focused on using AR glasses to recognize human hands and
display interfaces in virtual spaces [2], thereby implementing
HCI. This approach involves directly using the user’s hands
to interact with the computer without the need for controlling
a separate device. However, it is not suitable as a method
for HCI because it requires the user to wear AR glasses on
their head specifically for the purpose of HCI. Above all, it
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has not yet been popularized among the general public due to
issues such as high prices, display angles, resolution, battery
life, and weight. This paper proposes a method to address
these issues by utilizing multiple cameras installed in the
physical space, without requiring any wearable devices for the
user. It suggests an approach for interacting with computers
using these cameras. In recent years, there has been significant
development of high-performance object detection [3] and
pose estimation [4] algorithms. By employing these methods,
it is possible to extract the positions of human key-points from
multiple camera images and utilize traditional techniques such
as camera geometry to create a digital twin in a virtual space
that mimics the pose of a person. Digital twins enable many
actions that are difficult to implement in the physical world
because they exist in a virtual space.

II. BACKGROUND

A. Pose Estimation

Pose estimation is one of the computer vision tasks that
refers to the task of extracting key point information, such as
joints, of a person, animal, or object in an image or video.
When implementing pose estimation using deep learning,
there are two main approaches: the top-down method and the
bottom-up method. Both methods consist of two steps.

The top-down method first utilizes an object detection
model to estimate the area in the image or video where the
object is present. It then performs pose estimation within that
region. While this method provides high accuracy, it has the
drawback of being slower when multiple people are present in
the image, as pose estimation needs to be performed for each
cropped area.

On the other hand, the bottom-up method extracts all key
points present in the image or video and then groups them
into individual poses by associating the corresponding joints.
This approach performs pose estimation directly without using
a separate object detection model, which makes it faster.
However, its accuracy is relatively lower compared to the
top-down method. This work uses the top-down approach to
estimate the precise human pose because of higher accuracy.



Fig. 1. Overall processes of HCI system. Green boxes and lines indicate specific processes of proposed system. Yellow box represents the registration process
which is one of the main contributions. The red dashed line means the processes implemented in this paper.

B. Object Tracking

Object tracking refers to the task of continuously tracking
the motion of a specific object in a video or sequence of
images. There are various methods to implement object track-
ing, but recently, with the emergence of exceptional object
detection models, detection-based tracking approaches have
been predominantly studied. These methods combine object
detection and tracking by detecting the target object in each
frame and performing tracking based on the detected bounding
boxes. This paper employs the widely used Simple Online
and Real-time Tracking (SORT) [5] and YOLO as the object
detection models for the top-down approach. By utilizing
these detection-based tracking methods, we achieved accurate
and reliable object tracking throughout the video or image
sequence

C. Camera Geometry

This work utilizes the relationship between image coordi-
nates and world coordinates, as well as camera parameters,
to reconstruct a three-dimensional object based on a camera.
The image coordinate system refers to the coordinates of an
image when an object is captured by the camera. The image
coordinate system is represented on a two-dimensional plane.
On the other hand, the world coordinate system is an absolute
coordinate system that exists in the real world regardless of
the camera. The origin of the image coordinate system is
determined by factors such as the focal length of the camera,
sensor size, and resolution. Figure 1 illustrates the relationship
between the image coordinate system and the world coordinate
system.

III. PROPOSED METHODS

Before the processes depicted in Figure 1, this paper first
establishes a virtual space that is similar to real space. The
corresponding space replicates not only the actual shape of

Fig. 2. The concept of Camrea geometry

stationary objects such as tables, refrigerators, and desktops
but also the parameters of the camera for implementing HCI.
The task of constructing a virtual world that replicates the
physical environment can be achieved through Simultaneously
Localization And Mapping (SLAM) technology, which utilizes
multiple devices. [6] Moreover, it is also possible to construct
a virtual world by directly measuring the size of indoor spaces
and objects and using 3D modeling programs.

A. Key-points Extraction

To perform 3D alignment, it is necessary to have videos
captured from two or more cameras. In order to determine
which points in each video correspond to the same location,
classical key-points or feature extraction methods such as [7]
can be used. However, these methods are primarily designed
for use with videos captured from multiple adjacent cameras,
which makes them unsuitable for the HCI system used in
this paper. In this paper, a pose estimation algorithm is used
to detect the human body’s posture and the positions of its



Fig. 3. Simple motion capture coordinate system. Blue variables
(x1, y1, x2, y2) are on the image coordinate while purple vectors (
PA,PA1,PA2,PC1, PC2,−→ax1, −→ay1, −→ax2, −→ay2,f1,f2) are on the world co-
ordinate. XYZ-axis of the world coordinate system are represented by red,
green, blue axes. Red rays are emitted from the cameras PC1,PC2 in the
direction of points (x1,y1), (x2,y2) in each image.

joints. By detecting a total of 33 joint positions such as
the head, shoulders, and waist through pose estimation, it
becomes possible to determine which points correspond to the
same location in any video captured from any camera, using
the joint information. This joint information represents the
positional information in the 2D image coordinate system. The
transformation to the 3D coordinate system is implemented in
the virtual world.

B. Information Transfer

There are various methods for transmitting joint information
from each image to a virtual world. If pose estimation and the
implementation of the virtual world are performed on a single
computing device, information transfer is straightforward, but
each process requires a significant amount of computation.
When using two computing devices, communication between
the two computers is necessary. As mentioned again in the
experimental section, this paper implemented information ex-
change between the two computers using cloud services.

C. Registration

Once the extracted joint information from each camera’s
captured images is received in the virtual world, the registra-
tion process converts the 2D joint position information into
3D coordinates. The position of each joint is represented as
a single point within the image coordinates. That point is
then projected onto a point in 3D space. By projecting all
the points corresponding to the extracted joints into 3D space
and reassembling them according to the joints, a digital twin is
created in the same position and pose as the real counterpart.

Figure 2 demonstrates the method of projecting the points
extracted from two images onto 3D space. The blue variables

Fig. 4. Point determination with three cameras. Three rays are emitted by
cameras. PA represent the determined point by weighted mean. Subscripts (i,
j, k) indicate the points about closest distance between two rays.

represent pixel-level coordinates of the points within the
images, so they are first converted into meters, the unit of
the world coordinate system, using Equation (1).

xim, yim =
pixel

resolution
∗ SensorSize (1)

The coordinates of Equation (1) are in the same units as
the world coordinate system, but they are still in the image
coordinate system. To draw a red ray, Equ ation (2) is used to
transform the coordinates (xim, yim) to be based on the world
coordinate system

Pim = PC + f + (xim − w

2
)−→ax + (yim − h

2
)−→ay (2)

In Figure 2, the purple vectors are all based on the world
coordinate system, so Equation (2) holds true. Pim represents a
3-dimensional vector obtained by transforming the coordinates
of Equation 1 to be based on the world coordinate system. PC

represents the position of the camera, f represents the focal
length vector, and w and h represent the width and height
of the sensor, respectively. −→ax and −→ay represent a directional
vector corresponding to the XY axes of the image coordinate
system based on the world coordinate system. The focal length
vector contains information about the direction the camera is
facing. By using the coordinates of a point in the image based
on the world coordinate system, a red ray can be projected in
Figure 2.

By projecting rays from two or more cameras, the two points
with the minimum distance between the rays can be calculated.
Assuming the two points are PA1 and PA2, Equations (3) and
(4) can be used to represent the equation of the line, and as
shown in Figure 2, the rays and the line (PA1 − PA2) are
perpendicular. Therefore, a simple quadratic equation can be
formulated with variables such as shown in Equations (5) and
(6). By solving the equations, the two points can be calculated,
and the midpoint of the two points is designated as PA.



Fig. 5. Experiment environment with three cameras. (a), (b), (c) represent captured images from the cameras of real environment while (d), (e), (f) for virtual
environment. (a) and (d) were captured from camera 1, (b) and (e) from camera 2, and (c) and (f) from camera 3.

PA1 = PC1 + t1(Pim1 − PC1) (3)

PA2 = PC2 + t1(Pim2 − PC2) (4)

(PA1 − PA2)(Pim1 − PC1) = 0 (5)

(PA1 − PA2)(Pim2 − PC2) = 0 (6)

If there are only two cameras, the average point obtained
above can be transformed into a 3-dimensional position. How-
ever, when there are three or more cameras, more than three
rays are projected from each camera. In this case, weights
are assigned to calculate the 3-dimensional position. Figure
3 illustrates the method for calculating the 3-dimensional
coordinates when there are three cameras. In this paper,
the distance between two lines is used as a weight for the
determined point, and the final 3-dimensional position is
determined through weighted averaging. For example, when
there are three cameras, the point PA is calculated using
Equation (7).

PA =
|Pi1 − Pi2|Pi + |Pj1 − Pj2|Pj + |Pk2 − Pk3|Pk

|Pi1 − Pi2|+ |Pj1 − Pj3|+ |Pk2 − Pk3|
(7)

By converting all extracted joints from the 2-dimensional
image to the 3-dimensional world coordinate system and
reassembling them based on the joint information, a skeletal
structure can be created by drawing lines in the virtual world.
This skeletal structure represents a digital twin with a pose
similar to that of a real person.

D. Interaction

In this paper, to enable a specific object to respond when a
person points at it, the coordinates and angles of the skeleton
are used to shoot virtual lasers. Depending on which object the

laser hits, various actions can be performed, such as turning
on/off a monitor, turning on/off a light, or opening/closing
a door. Additionally, by estimating the person’s pose, cus-
tomized IoT services can be provided.

IV. EXPERIMENTS

A. Environment

The experiment was conducted in an environment similar to
the one depicted in Figure 5. A virtual environment resembling
a real laboratory was created using Unity, and three cameras
with different perspectives were placed. Figure 6 illustrates
the structure of the laboratory, and the camera parameters are
provided in Table 1.

TABLE I
CAMERA PARAMETERS

Set Focal length (mm) Sensor size x (mm) Sensor size y (mm)
1 9.73981 13.3 13
2 10.25152 13.3 10
3 12.04143 13.3 10

B. Pose Estimation

In this paper, [8] was used for the pose estimation. [8] is
a top-down pose estimation algorithm based on YOLOv7 [9].
Figure 7 shows the extracted 17 keypoints from each camera
using The x and y coordinates, along with the confidence of
the extracted keypoints, are transmitted to the cloud through
Firebase [10].

C. Reconstruction

To represent a digital twin in a 3D virtual environment, x
and y coordinates along with confidence values for each joint
are obtained from Firebase. After performing 3D registration
based on the x and y coordinates, a Kalman filter [11] and a



Fig. 6. Top view of laboratory. The IoT device used in the virtual environment
is set up as a refrigerator door, an entrance door, lights.

Fig. 7. Pose estimation from (a) camera 1, (b) camera 2, (c) camera 3.

low-pass filter were utilized to compensate for errors caused
by the performance of pose estimation. Figure 8 showcases
a digital twin generated at the same viewpoint as Figure 7,
demonstrating the effectiveness of the aforementioned tech-
niques.

Fig. 8. (a) Reconstructed skeleton and (b) character by registering each joints
to virtual environment at the same time as in Fig. 7.

D. Experiment result of interaction

The devices controlled through HCI in the experiment
include a refrigerator, an entrance door, and others. When the
laser emitted by the digital twin hits the refrigerator, it opens,
and when it hits again, it closes. The entrance door is designed
in a similar method, where it opens upon the laser impact and
closes when hit again. Additionally, lasers hitting the ceiling
of each room turn on the lights, and hitting them again turns
them off. The lasers should only be emitted when the user
desires, and should not be emitted at other times. In this paper,
the laser is emitted when the angle of the user’s arm exceeded
170 degrees. Table 2 presents the accuracy for each interaction
measured when using all three cameras and two cameras.
A total of 15 runs are executed, and a successful operation
within 3 seconds is considered a success. When using two

cameras instead of three, the average accuracy of interaction
decreased by 21.33 %. Based on this result, it was confirmed
that significant results can be obtained when performing 3D
reconstruction and implementing HCI using three cameras.

TABLE II
ACCURACY OF INTERACTIONS (%)

Door1 Door2 Light1 Light2 Refrigerator
Two camera 46.67 60 66.67 46.67 86.67

Three camera 80 66.67 86.67 80 100

V. CONCLUSION

This paper suggests how to implement HCI using human
keypoints information from multiple cameras. Using Unity 3D
program, a realistic environment was created, and experiments
were conducted on five interactive scenarios that can be
applied in daily life. The experimental results were compared
between using two cameras and using three cameras. When
using three cameras, an average accuracy of 82.67 % was
achieved, demonstrating the validity of the proposed method.
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