
Genetic Algorithm based Obstacle Avoidance for 4-Wheeled Robot

Junmyeong Kim1†, Kwanho Kim1 and Kanghyun Jo1

1Department of Electrical, Electronic and Computer Engineering, University of Ulsan, South Korea
(Tel: +82 052-259-1664; E-mail: junmyeong7029@gmail.com, aarony12@naver.com, acejo@ulsan.ac.kr)

Abstract: This paper proposes an algorithm that uses for decision-making and control in Autonomous Mobile Robots
(AMR) and performs in a virtual environment for simulation. In the decision-making stage, the algorithm uses the Velocity
Obstacle (VO) and Artificial Potential Field (APF) methods to select the optimal velocity for avoiding collision and
reaching the goal point in real-time. It additionally computes fitness that helps eliminates rapid changes in velocity. In
control, the PID controller moves the robot along the velocity determined in the decision-making stage. The PID gain
is updated by the gradient descent method to find the optimal gains. Proper brake torque is applied for the robot moves
smoothly according to velocity previously determined. This parameter, α affects chance of avoidance obstacles, however
it increase the travel time in experiment. The travel time averagely increase 9.54% at every α 0.1. When comparing the
smallest and largest periods, the larger period resulted in a 29.9% decrease in control error. The results also showed that
using the proposed PID controller resulted in a 13.6% decrease in control error compared to using a fixed PID controller.

Keywords: Robotic and Automation Systems; Intelligent Control; Adaptive and Optimal Control

1. INTRODUCTION

The use of indoor mobile robots, such as Autonomous
Mobile Robots (AMR), is increasing.[1] AMRs have an
important feature of being able to update the optimal path
for moving obstacles like humans. The process for au-
tonomous driving of AMR mainly consists of perception,
decision-making, and control stages. In the perception
stage, it detects the surrounding objects and their veloci-
ties, as well as its own position. Many studies have been
performed in relation to this stage. Usually object de-
tection method such as YOLO[2], Faster-RCNN[3] was
used to detect obstacle’s position. Moreover, to perform
self-localization using particle filter.[4] In the decision-
making stage, it outputs the velocity and path that the
vehicle should drive based on the perceived information.
When outputting the velocity and path, it should explore a
path that avoids obstacles while getting closer to the des-
tination using the location and velocity information of the
obstacles. In the control stage, it performs motor torque
and steering control to follow the velocity and path de-
termined in decision-making stage.This paper focuses on
the decision-making and control stages of a four wheeled
robot that can be used as an AMR, assuming that the per-
ception stage is well performed.

2. PROPOSED METHODS

This paper implements the decision-making and con-
trol stages of autonomous driving robots using genetic
algorithms and PID controller. In the decision stage, the
positions and velocities of obstacles are received from
perception stage, and the reference velocity that the robot
should move is output. To move the robot according to
the reference velocity, the appropriate torque must be ap-
plied and the wheels must be steered, which is done in
the control stage.

† Junmyeong Kim is the presenter of this paper.

2.1. Decision-Making

In the decision-making stage, the robot determines the
direction and speed. It should move based on the position
and velocity of obstacles through a genetic algorithm.

2.1.1. Fitness

In the paper that uses the genetic algorithm as a
real-time obstacle avoidance method [5], safety and
destination-seeking terms were used when calculating fit-
ness to enhance safety. In this paper, the destination-
seeking term is used as it is, and safety term is imple-
mented using APF information. In addition, a term that
prevents the movement of the robot from changing sig-
nificantly by using the information of the previous frame
is additionally used.

First the term based on APF is calculated using Eqs.
(1) to (2).

Fig. 1: Velocity Obstacle : Shaded area represents VO
where robot should avoid to have velocities. If the robot
moves at velocity in VO area, from the perspective of the
obstacle, the robot has a relative velocity directed towards
the obstacle.

R =

N∑
j=1

PA − POj

||PA − POj ||3
(1)

S(vi) =
R · vi

∥R∥∥vi∥
(2)

The notation of variables is in Fig. 1, and vi is one of
the solutions selected in the genetic algorithm. Assuming
that there are N obstacles, the repulsive force due to the
obstacles is calculated as in Eq. (1), and the term S for
safety is defined using Eq. (2) as the cosine similarity
between R and vi.

G is a term that makes the direction vector toward the
destination have a high degree of fitness, and is the same
as proposed in [5].

G(vi) =
||vi|| cos∆θ

vmax
(3)

Where ∆θ represents the angle between the velocity
vector vi and the vector pointing towards the destination
from the robot.

In the decision-making stage, the velocity vector of the
robot is output, which is limited to some extent by the di-
rection and current speed of the robot. In other words, if
the difference between the direction of the velocity in the
previous and the current frames is higher than threshold,
it has a limitation to controlling the robot at current ve-
locity. Therefore, the fitness function includes a term C,
which aims to decrease the angle between the previous
and current velocity.

C(vi,t) =
vt−1 · vi,t

∥vt−1∥∥vi,t∥
(4)

Eq. (4), the subscript t means the current frame and t−
1 means the previous frame. That is, Eq. (4) causes that a
velocity vector similar to the previous velocity vector has
a high fitness.

If a selected solution is within the VO area shown in
Fig. 1, it can potentially cause a collision with obstacle
in the future. In this case, the fitness, f is set to negative
infinity. On the other hand, if the solution is outside the
VO area, f is calculated by combining S, G, and C. The
weights α, β, and γ are user-defined and represent the
relative importance of each term, with their sum equal to
1.

f =

{
−∞ if vi ∈ V O

αS + βG+ γC otherwise
(5)

2.1.2. Crossover
Among those three recombination methods, the in-

termediate recombination method, generally showed the
best performance in [5], is used to perform the crossover.

vnewx = v1x + kx(v2x − v1x) (6)

vnewy = v1y + kx(v2y − v1y) (7)

2.1.3. Mutation
The mutations proposed in this paper are given by Eqs.

(8) to (9). A random noise within a specific range was
added to the solution as a mutation in [5]. In this paper, to
explore a wider range of velocities, a solution is randomly
selected within the range of vmax.

vy,max =
√

v2max − vx (8)

v̇y = random(−vy,max, vy,max) (9)

The variables vx and vy represent the solution before
the mutation, while v̇x and v̇y represent the solution after
the mutation. The x and y subscripts in Eqs. (8) to (9)
can be interchanged. When v̇y is randomly selected dur-
ing mutation, the solution should not have a speed greater
than vmax, so the range of randomly selected vy is calcu-
lated as shown in Eq. (8).

2.2. Control
2.2.1. Torque Control

To drive a four wheeled robot at the velocity de-
termined in decision-making, the torque of the motor
and the steering angle must be controlled appropriately.
When controlling the torque, the controller is designed
to only consider the magnitude of the velocity, assuming
that the steering is perfectly aligned with the direction
of the speed. The velocity determined in the decision-
making is what the controller needs to track, but if the
determined speed changes drastically every frame, it be-
comes difficult to track the speed accurately. Therefore,
in this paper, the determined speed over a certain number
of frames are averaged to avoid sudden changes in the
reference velocity, and the gains of PID are updated in
real-time using gradient descent.

Fig. 2: Input of PID Controller

In Fig. 2, The error refers to the input of the PID con-
troller, not the loss used in Eq. (11). The PID controller
outputs torque to reduce the error. On the other hand,
the PID gain, K updates as Eq. (11). The optimal gain
will be the one that minimizes the error in the next frame.
Therefore, the loss function, L used in the gradient de-
scent is calculated by Eq. (10).

L =
vref,t−1 − vA,t

error
(10)

Kt
n = Kt−1

n − ηn
∂L

∂Kn
, n ∈ P, I,D (11)

2.2.2. Steering Control
Assuming that the robot’s inertia is small, in order for

a four wheel robot to drive at the reference velocity, the

steering angle and the direction of the reference velocity
vref must be the same. However, if the steering rotational
speed wmax is not sufficient when steering the wheels in
the direction of the reference, the robot will not move in
the direction of the reference velocity. Fig. 3 shows a
situation where the robot is moving at a speed of vA and
decides to move at a speed of vref due to obstacles.

Fig. 3: Steering scenario of four wheeled robot

If the magnitudes of vA and vref are the same, the
robot will steer with a maximum angular velocity of
wmax to follow the optimal path. However, if the robot’s
speed does not decrease, the actual path will follow a red
arc with a radius of r = v/w, as shown in Fig. 3, which
can lead to collisions with obstacles. Therefore, in this
paper, the brake is applied when the angle difference be-
tween vA and vref is greater than a specific value. In ad-
dition, a term was added to suppress significant changes
in the direction of the velocity vector between the previ-
ous and current frames using Eq. (4) mentioned earlier.

3. EXPERIMENTS

Fig. 4: Virtual environment for simulation

Table 1: Parameters of robot

vmax(m/s) wmax(rad/s) Mass(kg) Size(m2)
3.5 π/2 38kg 0.8x0.8

The experiments were performed in the Unity virtual
environment as shown in Fig. 4. The red spheres repre-
sent obstacles, green box and the blue vehicle mean des-
tination and the robot to be controlled. The robot’s maxi-
mum speed, maximum angular velocity, weight, and size
are set as shown in Table 1.

Table 2: Sets of α, β, and γ

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
α 0.3 0.5 0.7 0.225 0.425 0.625
β 0.7 0.5 0.3 0.625 0.425 0.225
γ 0 0 0 0.15 0.15 0.15

Table 3: Control error, travel time, and the number of
collisions according to period and set

Period Set Control Error Travel Time(s) Number of collisions(times)

5

Set 1 0.162112 14.9577 2
Set 2 0.190858 16.06577 2.6
Set 3 0.147255 17.25478 1.4
Set 4 0.140882 16.23653 1.8
Set 5 0.17074 17.97266 1.2
Set 6 0.179045 22.78789 1.2

10

Set 1 0.157811 10.98864 0.4
Set 2 0.129879 13.92514 0.6
Set 3 0.148420 15.76225 2.2
Set 4 0.17398 15.3909 1.6
Set 5 0.111902 16.31062 0.8
Set 6 0.210888 20.81502 2.6

15

Set 1 0.143786 9.6153 0.2
Set 2 0.132887 10.83767 0.6
Set 3 0.148263 15.18906 1.8
Set 4 0.192443 14.17479 0.6
Set 5 0.134359 15.85427 1
Set 6 0.127579 18.11844 0.8

30

Set 1 0.141737 8.943877 0.4
Set 2 0.169434 10.29256 1.4
Set 3 0.110606 13.36603 2.2
Set 4 0.134479 13.94875 1
Set 5 0.110192 15.07059 2
Set 6 0.117533 19.04097 2

50

Set 1 0.116489 8.960921 0.4
Set 2 0.128591 10.31191 0.2
Set 3 0.110706 14.24613 3.2
Set 4 0.117635 12.34133 0.8
Set 5 0.13614 15.19542 2.6
Set 6 0.08479 17.69625 1.2

Obstacles were divided into two types. 9 large obsta-
cles and 6 small obstacles were placed on the plane. The
radius of the large obstacle is set to 0.25m, and the ra-
dius of the small obstacle is set to 0.2m. Each obstacle
has a speed of 2m/s or 1m/s. The size of the plane is
(10× 20)m2.

In the experiment, only obstacles with a distance of
4m or less from the robot in motion were considered to
calculate VO and determine the optimal velocity. Since
the FPS in the Unity experimental environment was fixed
at 30, the angular velocity is 90◦/s when the steering an-
gle changes by 3◦ during one frame. An algorithm was
implemented to brake in proportion to the speed when the
steering angle that should change per frame is more than
2◦.

Table 3 shows the results of experiments conducted by
varying several parameters of the algorithm proposed in
this paper. The values of parameters α, β, and γ, which
are used to calculate fitness, were specified into six sets
as shown in Table 2. The period in Table 3 means the
number of previous samples collected when averaging
the speed. When obtaining the average, a weighted av-
erage method was used that assigns a higher weight to
the speed of the latest frame, and the weight is set as in

Fig. 5: Comparison between PID controller and Proposed PID controller

Eq. (12).

vref,t =

M∑
i=1

wivref,t−i+1 (12)

Control error, travel time to the destination, and number
of collisions with obstacles were used as the metrics for
comparison. Loss calculated using Eq. (10) was used as
control error. During a specific sampling period, a total of
five experiments were performed for one set, and the av-
erages of the experiments were shown in the table. Table
3 shows that the control error decreases as the sampling
period increases.

In the Fig. 5, the x-axis represents the number of
frames in Unity. The first graph shows the reference
speed and the actual speed of the robot when the experi-
ment was conducted using the experimentally determined
PID gain without using the gradient descent method. The
blue graph represents the speeds output in the decision-
making stage of autonomous driving, and the orange
graph is the actual speed of the robot obtained by track-
ing and controlling the output speed. The experimentally
determined proportional gain, integral gain and derivative
gain were set as shown in Table 4.

Table 4: Initial PID gain

κP κI κD

20 0.8 8

On the other hand, the second figure is the control re-
sult obtained through the gradient descent method using
the values in Table 4 as the initial PID gain. Table 5 shows
the control errors when using a fixed PID gain and updat-
ing PID gain using gradient descent.
Table 5: Control error from Fixed PID gain and varying
PID gain.

Fixed Varying
Control Error 0.35569 0.29003

4. CONCLUSION
This paper shows the four-wheeled robot behavior

controlled by GA for avoiding obstacles in a dynamic en-

vironment. In the decision-making stage, VO and APF,
which are obstacle avoidance algorithms, were used as
the fitness of the genetic algorithm to avoid obstacles.
Also, the velocity determined in the decision-making
stage affects how easy and stable the control becomes. As
a result, it was shown in Table 3 that the error for control
was reduced. In addition, Fig. 5 and Table 5 show that
the error in the control stage is reduced when the gain is
modified in real time through the gradient descent method
rather than using the fixed gain of the PID controller. The
decision-making and control algorithm proposed in this
paper can be applied to self-driving robots for stores or
self-driving cars, which are recently increasing. In the
future, the perception stage will be included in this work
and applied to a robot in the real world.

ACKNOWLEDGMENT
This result was supported by ”Regional Innova-

tion Strategy (RIS)” through the National Research
Foundation of Korea(NRF) funded by the Ministry of
Education(MOE)(2021RIS-003)

REFERENCES
[1] K. Zhou, “Whether the agv/amr can be used in e-

commerce,” 2022.
[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object de-
tection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp.
779–788.

[3] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2015,
pp. 1440–1448.

[4] T. Röfer, T. Laue, and D. Thomas, “Particle-filter-
based self-localization using landmarks and directed
lines,” in RoboCup 2005: Robot Soccer World Cup
IX 9. Springer, 2006, pp. 608–615.

[5] Z. Gyenes, L. Bölöni, and E. G. Szádeczky-Kardoss,
“Can genetic algorithms be used for real-time ob-
stacle avoidance for lidar-equipped mobile robots?”
Sensors, vol. 23, no. 6, p. 3039, 2023.

