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Abstract—Vision Transformers have reached breakthrough
improvements in addressing computer visual fields, for instance,
object classification, bounding box localization, semantic/instance
pixel-wise predictions, single/multiple tracking, and generative
AI models such as GPT-4, SAM, and UniAD. The key success
of the Transformers is derived from the flexibility in fulfilling
long-range dependencies from raw data and the generaliza-
tion capability of input-dependent weight adaption. With these
properties, Transformer models operated with the self-attention
heart and without inductive biases become the new paradigm
in processing multiple-modality data. However, the main bottle-
neck of the Transformer is that global multi-head self-attention
layers have high computational costs with the input lengths,
e.g., quadratic complexity. When exploiting Transformer-based
models on pixel-wise predictions, the cost is not affordable. To
deal with this issue, recent methods try to calculate attention
weights in local non-overlapped areas and require extra designs
that exchange information across windows, for example, window
shifting, window expanding, and window sliding. Although these
strategies improve accuracy, their implementation is unfriendly
and produces additional inference time. Following a line of this
research, this paper introduces a new block that consists of
non-overlapped local self-attention and overlapped local self-
attention. Non-overlapped local self-attention learns interactions
inside each window and overlapped local self-attention captures
relationships among non-overlapped windows to boost receptive
fields and modeling abilities. To be more efficient, both layers are
performed in parallel in which each half of the heads is assigned
to each layer. Therefore the diversity of the model is enhanced
since conventional methods treat all heads equally. Experimental
results are conducted and evaluated on the medium dataset,
ImageNet-1K. As a result, the proposed approach achieves 77.2%
Top-1 accuracy at 5.1M parameters and 0.5 GFLOPs, surpassing
lightweight models by clear rooms.

Index Terms—Vision Transformer, Local Self-attention, Image
classification

I. INTRODUCTION

Transformer [1] was originally designed for natural lan-
guage processing and established an important milestone in
AI research. With strong modeling capacities, Transformer is
scaled to the big models such as BERT [2] and other language
models, and achieved remarkable results. In the vision field,
DETR [3] explores the benefits of the Transformer encoder
and decoder in performing object detection and gets promising
performances in both mAP and efficiency. Combining the
Transfomer decoder with prior knowledge, e.g., object queries,
mask queries, latent queries and track queries, opens flexible

directions in solving multi-task learning or foundation models
and discards hand-crafted designs of the head such as anchor
boxes, NMS, and data association in video data.

Inspired by this trend, Vision Transformer [4] considers
a 16×16 square grid as a token and mixes spatial infor-
mation across patch tokens using the vanilla Transformer
encoder. ViT is a non-hierarchical backbone where single-
scale features are kept across layers and each layer captures
global receptive fields. This paradigm is quite different from
existing methods, Convolutional Neural Networks (CNNs)
networks. While CNN-based models learn global features at
later stages, ViT-based models capture high-level information
from the input features at earlier stages and do not require
multi-scale features. Convolution layers have strong inductive
biases like locality and translation-invariant. Without inductive
biases, self-attention layers can learn patch relations and do
not degrade performance much. The main advantages of self-
attention layers in the ViT model are that it has flexibility in
mixing patches globally and the potential to achieve gener-
alization modeling originating from input-dependent weights
adaptation. Although ViT has great properties, there are two
main problems with the Transformer: quadratic complexity
and data-hungry issues.

For the data-hungry issue, ViT-based models need larger
data training, ImageNet-21K [5] and JFT-300M [6], to con-
verge the models. To overcome this issue, DeiT [7] applies
distillation and strong data augmentations for training pure
ViT on only ImageNet-1K and achieves similar results with
ViT pre-trained on big datasets. Another disentanglement is
to integrate inductive biases of convolution into Transformer:
inserting convolution into self-attention operation internally
[8]–[11], and combining convolution and self-attention layers
externally [12]–[15].

In recent years, the main line of the research has attempted
to reduce the model complexity of the Transformer and its
adaptation to downstream tasks. PVT [16], DAT [17] down-
samples the sizes of key and value features when computing
attention maps and introduces multi-scale patch embeddings
to build the hierarchical backbone. These designs are well
adapted to object localization and semantic/instance segmen-
tation that require high input lengths. However, self-attention
in these methods still has quadratic complexity and a query
attends to agnostic sets of key and value tokens. Swin Trans-
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former [18] constraints self-attention into local windows and
information across windows is exchanged through window
shifting. Swin Transformer is simple and efficient but the
implementation of the window shifting requires extra inference
times and stacking more blocks is used to achieve information
exchanges and better receptive fields. With these issues, many
methods are introduced for efficiently communicating infor-
mation among windows and enlarging receptive fields, such
as window expanding [19], and window sliding in internal
[20] and external [21], [22] ways.

Motivated by this direction, this paper proposes a comple-
mentary local self-attention to efficiently communicate infor-
mation across non-overlapped window self-attention. Similar
to the baseline Swin Transformer, firstly, the input feature is
separated into isolated windows, and global multi-head self-
attention is performed in each window. Secondly, in parallel
with non-overlapped local self-attention processing, the input
feature is shuffled and information between windows is mixed
together. Then, the shuffled feature is also partitioned into
windows and attention maps are computed by self-attention
operation. This step can provide communication among win-
dows in an efficient way through only reshape() operation.
In this work, we implement two layers, non-overlapped win-
dow attention and shuffled window attention, in parallel. The
number of heads is split into two sub-heads and each half
is designated for each attention, respectively. This strategy
can increase the diversity of the Transformer since each head
extracts specific information from the input. Compared to
existing methods, they treat all heads equally, and hence,
weaken the diversity of the models because all the heads have
similar patterns.

To clarify the capabilities of the proposed Transformer,
extensive experiments are conducted and evaluated on the
benchmark ImageNet-1K for image classification. Based on
our attention designs, the model with 5.1M and 0.5 GFLOPs
is proposed. As a result of the model on the validation set,
the proposed methods achieve 77.2% Top-1 accuracy that
outperforms recent methods by clear margins in both accuracy
and throughput, such as MobileViTv2-0.5 by 7%, EdgeViT-
XXS by 2.8%, and EMO-2M by 2.1%.

II. LITERATURE REVIEW

A. Vision Transformer

ViT [4] separates the input feature into a set of patches
using convolution with kernel 16×16 and stride of 16. A patch
16×16 is viewed as one token and employing a Transformer
encoder for globally mixing information across tokens can
result in long-range dependencies from the input. DeiT [7]
trains the ViT model on smaller datasets [23] by using
distillation and strong data augmentation. To make the ViT
model affordable for downstream tasks, PVT [16] constructs
the hierarchical backbone based on a multi-scale Transformer
and patches with various sizes. DAT [17] replaces spatial
reduction attention in PVT with deformable attention where
key and value features are sampled by adaptive reference
points and bilinear interpolation.

Another improvement of ViT-based models is to combine
the best from vanilla convolution and self-attention layers.
CMT [8] takes full advances of convolution and Trans-
former by using depthwise convolutions before processing
self-attention layers and in Feed-Forward Networks (FFN).
ResTv1 [9] investigates the diversity of original multi-head
self-attention and utilizes a project layer to mix information
along the head dimension. ResTv2 [10] recovers information
lost in spatial reduction attention by the up-sampling module.
Seaformer [11] reduces the complexity of global ViT to be
linear by introducing axial self-attention layers. NextViT [12]
combines 3× 3 group convolution and global multi-head self-
attention layers to build real-time models on edge devices.
Similar to CMT, EdgeViT [14] also develops hybrid models
that can be applied to mobile devices. MobileViT [13] inserts
multi-head self-attention between stages of the MobileNetv2
[24]. iFormer [15] proposes an inception mixer that balances
the locality of convolution, max-pooling, and global receptive
field of multi-head self-attention.

B. Local Self-Attention

The point of local self-attention is to limit self-attention
computations in local windows. HaloNet [20] computes atten-
tion areas in which a query attends to local overlapped key and
value features. Swin Transformer [18] introduces a successive
block: a window Transformer computed within each non-
overlapped window and shifted window Transformer where
windows are shifted. However, the implementation of shifted
windows is unfriendly and results in additional costs. CSWin
Transformer [19] enlarges the receptive field of the local
vision Transformer by expanding windows to cross-shaped
windows and achieves great improvements compared to Swin
Transformer. Another line of this research is to replace shifted
window Transformer with overlapped depthwise convolution.
The depthwise convolution can allow the model to exchange
information across non-overlapped windows. MixFormer [21]
improves non-overlapped self-attention with two parts: using
depthwise convolution as a communication bridge and bidi-
rectional information exchange between depthwise convolu-
tion with shared weights across spatial dimension and local
self-attention with shared weights across channel dimension.
Similarly, EMO [22] unifies spatial token mixer with MLP
by implementing non-overlapped self-attention and depthwise
convolution in a sequential way at expanded features with high
dimensions.

III. METHODOLOGY

The hierarchical feature extractor of the SLS network is
sketched in Figure 1. Given the input tensor with dimension
3 × H × W , the stem block shrinks the input image by a
factor of 4 and increases the number of channels from 3 to C1.
Similar to conventional methods [16], [18], the token mixer -
SLS mixer is performed on the feature with spatial dimension
reduction by 4, 8, 16, and 32 with respect to stages. The aim
of each SLS block is to learn local and global dependencies
from the input via non-overlapped local self-attention and
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Fig. 1. Flow chart of the proposed SLS. It includes one stem block and four stages. In stem block, two consecutive 3×3 convolutions with a stride of 2
are used to down-sample the images by a factor of 4. In each stage, patch embedding implemented by 3×3 convolution with stride 2 is employed and then,
a stack of SLS blocks is developed to learn full information from the input tokens via spatial token mixer - Shuffled Local Self-attention layer and channel
token mixer - channel MLP. H,W,C denote 3D dimension of the input tensor, height, width, and channel dimension, respectively. {N1, N2, N3, N4}indicate
number of stacked SLS blocks across 4 stages.

shuffled local self-attention layers. The overlapped local self-
attention layer models spatial interaction inside each window.
Meanwhile, a shuffle operation is used to shuffle information
of the input feature before window partitions and self-attention
computation. The shuffle operation is viewed as a bridge to
exchange information across windows.

Layer Norm

SLS Attention

Layer Norm

MLP

Fig. 2. The detailed architecture of the SLS block.

The SLS block consists of layer normalization, SLS atten-
tion, layer normalization, and MLP mixer, followed by com-
mon methods [4], [7], [15]–[19]. The illustration is sketched
in Figure 2.

A. SLS Attention

Given the input tensor with dimension H × W × C, two
sub-features are generated via channel splitting, denoted by
two tensors with shape: H×W ×C

′
and H×W ×C

′′
where

C
′
+C

′′
= C. Two sub-features are fed into window attention

and shuffle window attention. The detailed illustration of the
SLS attention is sketched in Figure 3.

1) Window Attention: Local self-attention allows the model
to learn spatial interactions of the image tokens inside local
regions. With the feature with dimension H × W × C

′
, we

divide this feature into non-overlapped regions with the shape

Input

H
ead split

W
indow

 partition
Spatial Shuffle

W
indow
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Local
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Attention

Local
Self-

Attention

W
indow

 reverse
W

indow
 reverse

C

Window Attention

Shuffle Window Attention

Fig. 3. The detailed architecture of the SLS attention. w is the window size
and all implementation is set to 7. Q,K,V are query, key, and value tokens
projected by linear transformations. C is the concatenation operation.

H
w × W

w × w2 × C
′
. Then, the self-attention operation is

computed within each window w2 × C
′
, as follows:

SA(x’) = softmax(
QKT

√
C ′

)V, (1)

where x
′

is one window with the shape w2 × C
′
. With this

formula, the local-self-attention has the locality and translation
equivalent identical to convolution. However, there is no con-
nection across windows and its drawback results in inefficient
receptive fields and modeling ability.

2) Shuffle Window Attention: In the literature, four solu-
tions introduced to complement non-overlapped local self-
attentions are window expanding [19], window sliding [20],
window shifting [18], and window shuffling. Figure 4 de-
scribes the attention areas of different self-attention versions.
In global self-attention, each query attends to the full set of
the image token and thus, its computation produces long-range
dependencies. Axial self-attention [11] decomposes attention
regions into vertical and horizontal areas, and each self-
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(a) Global Self-attention
(c) Swin Transformer

Non-overlapped Window Shifted Window

Block b Block b + 1
Block b Block b + 1

(b) Axial Self-attention

(d) Cross-shaped Self-attention (e) SLS Attention (Ours)

Image Tokens

C

Image Tokens

C

#head 1
#head 2

Block b Block b

Fig. 4. Comparative architectures: (a) Global self-attention [4], (b) Axial self-attention [11], (c) Swin Transformer [18], (d) Cross-shaped Window attention
[19], and (e) Our attention - SLS attention. In our design, the number of heads is divided into two subsets, and each local self-attention is computed on each
set of heads: #head1 and #head2. Red points indicate a query position.

TABLE I
COMPARATIVE RESULTS WITH EFFICIENT APPROACHES ON IMAGENET-1K VALIDATION SET

Method Model Type Image size Top-1 Acc. (%) #params GFLOPs Throughput (images/s)
MobileViTv1-XXS [13] Hybrid 256 69.0 1.3 0.4 7052
MobileViTv2-0.5 [25] Hybrid 256 70.2 1.4 0.5 6748

PVTv2-B0 [26] Hybrid 224 70.5 3.7 0.6 6036
Swin-0.7G [18] Attn 224 74.4 4.4 0.7 2913

MobileViTv1-XS [13] Hybrid 256 74.8 2.3 1.0 3759
MobileViTv2-0.75 [25] Hybrid 256 75.6 2.9 1.0 4504

EdgeViT-XXS [14] Hybrid 256 74.4 4.1 0.6 3954
tiny-MOAT-0 [27] Hybrid 224 75.5 3.4 0.8 -

Swin-1G [18] Attn 224 77.3 7.3 1.0 2702
SLS (Ours) Attn 224 77.2 5.1 0.5 4618

attention is computed on each long row or column. Swin
Transformer [18] limits attention areas inside each local win-
dow and requires further shifted windows to establish the new
set of windows. CSWin Transformer [19] expands the shape of
windows from square to cross-shaped windows to significantly
enlarge modeling ability. Differently, in this paper, performing
with non-overlapped self-attention is a shuffled self-attention
operation.

Given the input tensor with the shape H × W × C
′′

, we
partition this feature into adaptive windows with the shape
H
w × W

w and apply self-attentions to grid windows with the
shape w × w. This corresponds to utilizing self-attention
operation on dilated features and producing global spatial
interactions of the features. Therefore, information across
windows is exchanged significantly instead of requirements
of stacked consecutive blocks of non-overlapped and shifted
local self-attention. Our design is simple because only using
reshape() and permutation() can achieve shuffled windows

without any complex operations but enjoying global receptive
fields.

B. Model Setting

Based on the design of the SLS block, the manual config-
uration of the model is constructed. The number of channels
across 4 stages is set to {32, 64, 96, 192}, and the number
of stacked SLS blocks across 4 stages is configured to {2, 2,
10, 6}. The expansion ratio in the MLP mixer is set to 4 and
remained in all blocks. This kind of model generates 5.1M
parameters and 0.5 GFLOPs.

IV. EXPERIMENTS

To clarify the modeling of the SLS Transformer, imple-
mentations are carried out on the large-scaled ImageNet-1K
dataset. This dataset includes 1.2M/50K training/validation
images. Similar to the common procedure, the comparison
with other methods is measured on the validation fold.
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The SLS model is trained on two A100 GPUs for 300
epochs. The optimizer AdamW is employed with a learning
rate = 0.001 and weight decay = 0.005. The model uses the
image with size 224×224 and a total batch size of 4096.
Following conventional data augmentations [7], [18], some
strategies such as Mixup [28], Cutmix [29], RandAugment
[30], and stochastic depth [31] are adopted to train and
evaluate the SLS Transformer. We use the Pytorch framework
and the code baseline Timm [32].

Table I addresses the comparative results between our SLS
and other efficient networks. Model type indicates three kinds
of models that are pure convolutions (conv), pure self-attention
(attn), and the combination of common convolution and global
self-attention to propose hybrid deep learning models. The
proposed method achieves 77.2% Top-1 accuracy with 5.1M
parameters and 0.5 GFLOPs that surpasses MobileViTv1-XXS
[13] by 8.2%, MobileViTv2-0.5 [25] by 7%, PVTv2-B0 [26]
by 6.7%, Swin-0.7G by 2.8%, MobileViTv1-XS by 2.4%,
MobileViTv2-0.75 by 1.6%, EdgeViT-XXS [14] by 2.8%, tiny-
MOAT-0 [27] by 1.7%, and similar accuracy with Swin-1G.
The throughput (images/second (s)) is tested on GPU V100
Tesla. As a result, the proposed SLS partially runs faster
than other efficient methods while getting better accuracy. For
example, with similar performance, the SLS network runs two
times faster than Swin-1G [18].

V. CONCLUSION

This paper introduces a simple and efficient local self-
attention operation that can result in local and global re-
ceptive fields in one layer. The role of non-overlapped win-
dow attention is to learn local interactions between tokens
inside windows. To capture long-range dependencies from
the input feature, shuffled local self-attention is proposed
to perform attention on dilated features and produce global
spatial interactions in the image tokens. The shuffled local
self-attention can be viewed as a communication block that
can exchange information across non-overlapped regions. The
shuffled local multi-head self-attention is only implemented by
reshape() and does not produce additional latency compared
to unfriendly latency in window shifting, and window sliding.
Both non-overlapped and shuffled local self-attention works in
parallel and thus, leverage parallel computing of GPU devices.
As a result, the proposed SLS Transformer achieves better
performances when compared with existing efficient methods
in both accuracy and throughput. For instance, we achieve
similar Top-1 accuracy with Swin-1G while running two times
faster than Swin-1G.

In the future, the pre-trained SLS network will be fin-tuned
for object recognition tasks such as bounding box localization,
and semantic/instance pixel-wise prediction. Scaling the model
to bigger and smaller budgets also leaves in future works.
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