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Abstract—An autoencoder is a neural network that generates
data highly similar to the input data for output. Although an
autoencoder theoretically produces output almost identical to
the input upon completion of learning, it actually generates
blurred outputs for complex face images due to the omission of
detailed information during the compression process and the use
of MSE loss during learning. This paper addresses these issues
by mapping detailed information from the frequency domain
onto the latent space, adding to the existing latent vector, and
learning using a mixed loss of MS-SSIM (Multi Scale Structural
Similarity Index Measure) loss and l1 loss instead of MSE loss.
As a result, the 100× l1, 100× l2 loss, SSIM, MS-SSIM between
input and output are 12, 3.1, 0.53, and 0.575 respectively, leading
to the production of images of higher quality than the standard
autoencoder.

Index Terms—Autoencoder, Fourier Transform, SSIM

I. INTRODUCTION

An autoencoder [1] is a unique type of neural network with
imitating the input data. The encoder of the autoencoder com-
presses high-dimensional input data into a lower-dimensional
vector, preserving only the essential information. The decoder
then re-maps the compressed, lower-dimensional vector back
into its original high-dimensional space. The objective of the
encoder is to condense information such that the decoder can
always restore it to its original form, while the aim of decoder
is to reconstruct data that is as close to the original as possible,
using the low-dimensional information. If all nodes in an

Figure 1: An illustration depicts the structure of standard
autoencoder. Xin denotes the input data, Xout signifies the
output data, and z represents the latent vector into which Xin

is compressed by the encoder.

autoencoder use linear activation functions, the machine could
generate similiar result with Principal Component Analysis
(PCA) [2]. Beyond this, non-linear manifold learning is fea-
sible through non-linear activation and multilayer perceptron
(MLP), and using convolution layers can also enable the
construction of Convolutional Autoencoders for image. If the

training was completed ideally, an autoencoder would output
results identical to the input. However, as depicted in Fig. 2,
considerably blurred images can be generated compared to the
original input image. There are several reasons for such a phe-

Figure 2: Illustration of the output when anime face images are
processed by a Deep Convolutional Autoencoder. The output
images largely resemble the input, but a distortion in the
detailed areas is noticeable.

nomenon. This paper primarily examines two of those reasons.
Firstly, the compression process leads to information loss.
Similar to PCA, an autoencoder compresses complex high-
dimensional data such as images into a lower-dimensional
vector, retaining primarily the essential elements of the data.
During this process, intricate details of images (such as
boundaries, pupils) become significantly lost compared to the
more general information about the input data (like the shape
of the face, the overall pixel arrangement). Therefore, as shown
in Fig. 2, the decoder effectively reconstructs the general
information about the input data but fails to retain the detailed
description. Secondly, it is the use of Mean Square Error Loss
(MSE Loss). MSE Loss, a loss function used for predictions on
continuous classes such as height and weight, is based on the
negative log-likelihood of the Gaussian distribution. Due to the
MSE Loss assigning equal weight to all pixels, machines are
unable to make predictions that highlight specific information
such as edges. This paper proposes methods for resolving these
two problems.

The main contributions of this paper are two-fold:
• This paper proposes a method that uses information from
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Figure 3: This figure depicts the process where an autoen-
coder fails to map the data properly while compressing high-
dimensional images into lower dimensions and reverting them
back to high dimensions. Xin and Xout represent the input
and output image, z refers to the compressed latent vector, E
corresponds to the encoder, and D represents the decoder.

the frequency domain to add detailed information in the
Latent space.

• This paper proposes a method to enhance the quality
of output images from autoencoders by utilizing SSIM-
based mix loss [3].

II. BACKGROUND

A. Frequency Domain Analysis on Image Signal

The fourier transform is a mathematical method. It can
transform a time/spatial domain signal to frequency domain.
The frequency domain signal is a complex signal. So, it
consists magnitude and phase spectrum. The comprehensive
shape of object is consisted in magnitude spectrum. The detail
pattern of image is consisted in phase spectrum. When the
image is transformed to the frequency domain, the origin is
located in the left top corner. This phenomenon can make
analyzing the image difficult. Therefore, the origin point of
transformed image is generally shifted to center for the image
processing such as Fig. 4. The Fig. 5 is fourier transform

Figure 4: The origin point is shifted left-top to center of image.
(a) is before origin shifting and (b) is after shifting.

results of face image. The following Fig. 5 (b), (c) show the
magnitude and phase of the image (a). In image, the low-
frequency component of complex signal usually consists of

areas with uniform pixel intensity, such as background or large
flat regions. The high-frequency component contains rapidly
changing pixel values, such as edges or corners. According to

Figure 5: The fourier transform results of a face image from
CELEB A dataset [4]. (a) is 2-dimensional spatial domain
signal. (b) and (c) are magnitude and phase spectrum of
complex signal. (d) and (e) are high frequency component and
low frequency component. Where (d) and (e) are obtained by
2-dimensional high pass filter and loss pass filter.

Fig. 5, the overall shape information of the image resides in
the low-frequency components, while detailed information is
contained in the high-frequency components.

B. SSIM: Structural Similarity Index Measure

SSIM (Structural Similarity Index Measure) compares the
similarity between two images using three factors human
utilizes when recognizing images: luminance, contrast, and
structure. SSIM values range between 0 and 1, with a value
closer to 1 indicating a greater similarity between the two
images. Luminance represents the brightness of an image and
can be calculated as the average pixel value, as shown in
Eq. (1).

µx =
1

N

N∑
i=1

xi (1)

xi denotes pixel value and N represents the number of pixels.
Contrast indicates the degree of change in the brightness of an
image. It can be calculated as the standard deviation of pixel
values, as depicted in Eq. (2).

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − µx)
2 (2)

Structure illustrates the structural differences in pixel values.
Pixel values are re-defined by normalized pixel distribution
with Eq. (3). Where X represents an image.

X − µx

σx
(3)
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Differences in Luminance, Contrast, and Structure between
two images can be calculated using Eq. (4) through (6).

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(5)

s(x, y) =
σxy + C3

σxσy + C3
(6)

σxy represents the covariance between two images x and y,
and C1, C2, C3 are constants, valued at 6.5025, 58.5225, and
C2

2 , respectively. Values closer to 1 in Eq. (4) to (6) signify
that the luminance, contrast, and structure components of the
two images are similar. SSIM, requiring the simultaneous
consideration of luminance, contrast, and structure, can be
represented as shown in Eq. (7). With alpha, beta, and gamma
all set to 1, the equation can be represented to appear as shown
in Eq. (8) to (10).

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (7)

SSIM(x, y) = l(x, y)c(x, y)s(x, y) (8)

=
2µxµy + C1

µ2
x + µ2

y + C1

2σxσy + C2

σ2
x + σ2

y + C2

σxy +
C2

2

σxσy +
C2

2

(9)

=
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

III. PROPOSED METHOD

A. Model Architecture

This study proposes a modified architecture of deep con-
volutional autoencoder, as illustrated in Fig. 6, designed to
address the limitations of traditional autoencoders in com-
pressing information insufficiently. Upon receiving image X
as input, the process bifurcates into two distinct paths: one
path feeds the image directly into the encoder, while the other
path transforms the image into the frequency domain through
Fourier transformation. The signal in the frequency domain
subsequently splits into two branches: one branch calculates
the Phase Spectrum, while the other branch extracts the high-
frequency components of the image via a high pass filter.
The phase information and high-frequency information of the
image represent details pertaining to intricate patterns and
forms within the image. Adding these information elements to
the existing compressed latent vector enriches the information
of the latent vector. However, due to the high-dimensionality
of both phase and high-frequency components, a mapping
onto the lower-dimensional latent space becomes necessary.
Hence, the two concatenated information segments are mapped
into a single rich information set through the Information
Mapping Network. The compressed information is added to
the latent vector. The possibility of mathematical operations
between latent vectors has been proven in this paper [5]. The
synthesized latent vector is remapped into an image through
the decoder.

B. SSIM based Training Approach

This paper employs the SSIM-based loss function proposed
in [3] to mitigate the blurring phenomenon in output images of
the autoencoder compared to the originals. The [3] proposed
additional losses such as MS-SSIM (Multi Scale SSIM) loss
and MS-SSIM + l1 loss, in addition to SSIM loss. According
to the [3], while the l2 loss penalizes large errors and is tolerant
to small ones, the l1 loss, which does not over-penalize large
errors, is can be considered more advantageous. Furthermore,
[3] demonstrated experimentally that switching between l2 loss
and l1 loss during training reduces the overall loss. On the
basis of these preceding research outcomes, this paper trained
the model via the following switched mixed loss.

L =

{
αLMS−SSIM + (1− α)Ll1 , Epoch ≤ β

αLMS−SSIM + (1− α)Ll2 , Epoch > β
(11)

α is a hyperparameter that balances between the two losses,
and β signifies the epoch at which to switch. l1 and l2 losses
are expressed as per Eq. (12) and (13), respectively, while the
MS-SSIM Loss is depicted in Eq. (14).

Ll1 =
1

N

N∑
i=1

|xi − x̂i| (12)

Ll2 =
1

N

N∑
i=1

(xi − x̂i)
2 (13)

LMS−SSIM = 1− lαM ·
M∏
j=1

cs
βj

j (14)

Where, xi and x̂i represent the i-th pixel of the input and
output images respectively, and N signifies the total number
of pixels. M refers to the highest scale among multiple stages
of changing scales. This study performed experiments with
various loss combinations, details of which are elaborated in
the experiments section.

IV. EXPERIMENT

A. Datasets

Selfie2Anime dataset is created for image-to-image trans-
lation between selfie images and anime face images. For this
paper, only the anime face images were extracted and utilized
from the selfie2anime dataset [6]. A total of 3,500 images
were used for the experiments, with 3,000 for training, 400
for validation, and 100 for testing.

B. Experiment Setup

1) Equipment: The experiments were conducted using the
following equipment.

• CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
1EA

• GPU: NVIDIA A100 PCle 40GB 4EA
• RAM: SAMSUNG DDR4 64GB @ 2.933Ghz 8EA
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Figure 6: This figure depicts proposed architecture of model.

2) Optimizer: This study utilized the Lion Optimizer [7],
which outperforms AdamW [8]. In all experiments, β1 and β2

were set at 0.9 and 0.999, respectively, with no weight decay
employed. ϵ was set at 1e-8.

3) Learning Rate Scheduler: The ReduceLROnPlateau,
built into Pytorch [9], was employed as the learning rate
scheduler. Should the validation loss exceed the current lowest
validation loss for a specified patience epoch continuously,
the learning rate decreases by a predetermined factor. For this
experiment, the patience and factor were set at 3 and 0.9,
respectively.

4) Standard Autoencoder: The structure of the standard
deep convolutional autoencoder used in the experiment aligns
with Fig. 7 below.

Figure 7: An illustration depicts the architecture of standard
deep convolutional autoencoder.

C. Experiment Result

1) Comparison: Both the Original and Proposed models
were trained uniformly with 300 epochs, an initial learning rate
of 1×10−4, a batch size of 128, and input image resolution of
256×256. Here, the hyperparameters for the proposed model,
such as α, were set at 0.64, β at 100, and the cut-off frequency
of the high pass filter at 20. Per Table 1, the l1 and l2 losses for

Table 1: Comparison result between standard autoencoder and
proposed model

Model 100× l1 100× l2 SSIM MS-SSIM
Original 11.3 2.6 0.518 0.521
Proposed 12 3.1 0.53 0.575

the proposed model exceed those of the original; however, the
SSIM and MS-SSIM indices present an increase of 2.32% and

10.36%, respectively. Fig. 8 below depicts the outputs from
the standard model and proposed model when applied to the
input image. An increase in clarity is noticeable by naked eye
in the output from the proposed model, which also has higher
SSIM and MS-SSIM indices. The larger l1 and l2 losses of
the proposed model result from the fact that the SSIM and
MS-SSIM are metrics derived from grayscale images; hence,
training based on these metrics can increase shape accuracy,
but not the accuracy of color information.

2) Effect of hyperparameter: This experiment investigates
the impacts of hyperparameters α, β, and cut-off frequency
on the model. Tables 2, 3, and 4 respectively document the
metrics resulting from changes to α, β, and cutoff frequency.
Where, the cutoff frequency signifies a distance of 20 pixels
from the origin. Upon first examining the influence of alpha,
it becomes evident that if α becomes too small, increasing the
weight of the l1, l2 loss, the loss for these factors reduces, but
SSIM, MS-SSIM decrease. Conversely, if alpha becomes too
large, l1, l2 losses escalate. Hence, for maintaining balance
between l1, l2 and MS-SSIM loss, an α value around 0.5
appears suitable. Upon examination of the influence of β, as
proven in [3], models trained using l1 resulted in smaller l2
loss than those trained using l2. Therefore, it becomes evident
that β does not significantly affect performance enhancement.
Lastly, looking at the cut-off frequency (fc), it becomes
apparent that performance diminishes if it is either smaller
or larger than 20 pixels distance.

Table 2: Evaluation result about proposed model with different
alpha

α 100× l1 100× l2 SSIM MS-SSIM
0.35 11.5 2.8 0.529 0.56
0.5 11.6 2.9 0.531 0.574

0.64 12 3.1 0.53 0.575
0.82 12.8 3.3 0.527 0.579

V. CONCLUSION

This paper introduced methods to overcome the blurred
output of conventional autoencoders by compressing frequency
domain information into the latent space and adding it to the
existing latent vector, where detailed information is lost, and
by enhancing the quality of the output image through a mixed
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Figure 8: An illustration of models outputs.

Table 3: Evaluation result about proposed model with different
beta

β 100× l1 100× l2 SSIM MS-SSIM
inf (No Switch) 11.9 3 0.53 0.574

150 12 3.1 0.529 0.574
100 12 3.1 0.53 0.575

Table 4: Evaluation result about proposed model with different
fc. Where fc denotes cut-off frequency of high pass filter.

α = 0.64

fC 100× l1 100× l2 SSIM MS-SSIM
10 14.8 4 0.509 0.538
20 12 3.1 0.53 0.575
30 12 3.2 0.529 0.575

α = 0.82

fC 100× l1 100× l2 SSIM MS-SSIM
10 12.8 3.4 0.526 0.577
20 12.8 3.3 0.527 0.579
30 12.9 3.4 0.522 0.549

loss of MS-SSIM loss and l1 loss. Through experiments, the
proposed methodology proved to generate images of superior
quality compared to traditional autoencoders, and explored the
impact of α, β, and fc on the model. Future research will
investigate loss functions utilizing metrics other than SSIM,
which is incapable of measuring color information.
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