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Abstract—Three-dimensional (3D) human pose estimation
(HPE) targets to produce the 3D spatial coordinates of the
human pose from 2D images. 3D HPE is a basic computer vision
task for many intelligent industrial applications. Commonly, the
coordinates of the predicted 3D human pose joints are calculated
through the 2D keypoint from the ground truth provided by the
datasets or generated by a classical and robust 2D human pose
estimator. With the development of transformer-based methods,
the methods with a sequence of monocular images have achieved
great success in 2D-to-3D lifting human pose estimation. In this
paper, the sampled frames with a dilated ratio are given as the
input of the 3D human pose estimator. Extensive experiments on
the public benchmark Human 3.6M demonstrate the significance
and effectiveness of the proposed method.

Index Terms—3D human pose estimation, intelligent industry,
monocular image, transformer.

I. INTRODUCTION

3D human pose estimation (HPE) targets to generate the co-
ordinates of human joints in the three-dimensional coordinate
system. The 3D HPE could provide significant representations
of human body motion, which has amounts of industrial
applications like action recognition [1], virtual and augmented
reality [2], human-robot interaction [3], Etc. The 3D HPE
could be applied to reconstruct human motions in augmented
reality applications and assist workers with complicated tasks.
In some collaborative manufacturing conditions, 3D HPE is
helpful in ensuring safe interactions and coordination between
humans and machines.

Based on the different modeling approaches, HPE could
be divided into the skeleton-based model and skinned multi-
person linear (SPML)-based model, of which the latter is
also called human body recovery. This paper focuses on the
skeleton-based model and the method is developed based on
2D-to-3D lifting approaches [4], [5]. Thanks to the great

performance of state-of-the-art 2D human pose estimator,
lifting-based research become mainstream in 3D human pose
estimation. Among them, some methods major in fusing 2D
human pose from multiple views to get the final 3D human
pose, the others employ a sequence of frames as the input for
generating the target.

Recently, some methods [4], [5] were proposed to deal with
the lifting-based issues and surely achieved some progress
based on the large-scale dataset [6]. Especially, the poseformer
v2 [5] overcomes the unreliable 2D pose estimation results
problem and decreases the computing cost for the transformer-
based method simultaneously. After the huge success achieved
by ViT [7], the transformer-based methods [4] have made re-
markable performance by modifying the Transformer to make
it become de facto methods for 3D human pose estimation.
These methods enhance the robustness of the network by
providing temporal information from a continuous sequence of
frames. However, this is accompanied by higher computational
time and resource costs.

The poseformer v2 [5] attempts to take many frames as the
input, but only a few continuous joint coordinates are given as
input into the network to extract the spatial correlation. The
discrete cosine transform (DCT) is utilized to compress the
temporal information from the whole input sequence, which
greatly reduces the computational cost. In this paper, we
proposed to take the dilated sampled frames as the input based
on the following observation. Commonly the RGB camera
collects the sequence with 25 or 30 frames. The location of
the human joints in the continuous 3 or 5 frames basically
possesses no differences. In order to provide more spatially
variable information, the dilated sampled frames are taken as
the input for extracting spatial feature embeddings.

The remaining content is organized as follows. Section II
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introduces the related work for the transformer-based methods.
The main methodology is shown in section III. Extensive
experiments are demonstrated in section IV, and the section
V concludes this paper.

II. RELATED WORKS

The three-dimensional human body information is very
complex and complicated for collecting and processing. Based
on the specific consideration of the different types of human
body structure, many researchers employed various models for
their algorithm in 3D HPE. Generally, the most widely applied
method is the skeleton and shape models. The skeleton-
based model has been commonly applied in 2D human pose
estimation for decades and many classic and efficient models
are proposed based on it. Thanks to the dataset creator, the
significant evaluation method is naturally extended to 3D
human pose estimation.

Thanks to the great performance of the state-of-the-art 2D
human pose estimator are the commonly employed methods
for generating the 2D keypoints’ coordinates of the initial
input, sequence, or images. Based on the 2D joints’ location,
2D-to-3D lifting human pose estimation methods leverage
2D poses to produce the 3D human pose joints coordinate
in the three-dimensional coordinate system. Initially, most
researchers focus on applying deep neural networks to regress
3D joint coordinates just from a single frame from a monoc-
ular RGB camera. And [8] focused on decreasing the depth
ambiguity by fusing the heatmaps of 2D joints and 3D image
cues. Nevertheless, based on the depth ambiguity, even within
the same 2D joints skeleton, there are many varied 3D human
poses. Iskakov et al. fused the images from different capture
views and generated the final 3D human pose by algebraic
triangulation. Kocabas et al. utilized epipolar geometry to
predict 2D human pose from multi-views and gained the 3D
human pose finally. Rhodin at al. only trained with multiple
views for 2D human poses and finally predicted the 3D human
pose and camera pose. So taking only a single image as
the input is not enough for providing spatial information,
a sequence of images can provide temporal information to
enhance the robustness and performance [4], [9]. Among
them, [10] applied LSTM cells to extract temporal features
for the initial input sequence. There are many methods that
employ the deep neural network to extract spatial and temporal
relationships simultaneously. But those works only project the
2D joint coordinates into a latent space, which is not learnable
and lacks spatial and temporal correlation.

After the great success of vision transformer, the
transformer-based methods obtained better performance in
almost vision tasks like object recognition, object detection,
object segmentation, Etc. PoseFormer [4] firstly adopted and
modified the vision transformer as the backbone network to
fit the training for 2D-to-3D lifting human pose estimation
and achieved state-of-the-art performance. MixSTE proposed a
mixed spatio-temporal encoder to separately learn the temporal
and spatial information of inter-frames correlation and each

joint correlation. And MHFormer proposed a transformer-
based method to learn spatial representations of multiple
hypotheses for potential 3D human poses, which applied a
one-to-many mapping first and then a many-to-one mapping
with multi-hypothesis. However, most of the research met the
problem that the computational cost is very high with the
sequence input. PoseFormer V2 [5] dealt with this problem by
applying a discrete cosine transform to represent the temporal
information of each joint, which reduces the computational
resource by a large step.

III. METHODOLOGY

The proposed method is based on the PoseFormer V2 [5].
The section III. A introduces the basic preliminaries of the
spatial transformer. Section II. B demonstrates the temporal
transformer and applied discrete cosine transform.

A. Spatial Transformer Encoder

Given the input X ∈ Rf×(J·2), where f denotes the number
of frames, J denotes the number of human joints, and 2 means
the input sequence is 2D joints coordinates in two-dimensional
space. So

{
xi ∈ R1×(J·2)} denotes the input joints coordinates

of each frame. Following the [5], there is X ′ ∈ RF×(J·2)

is sampled from the original sequence as the real input to
decrease the computational cost in the spatial transformer
encoder part, where F denotes the number of sampled frames
which are much smaller than f . The joints coordinates of
each frame are denoted as

{
xi′ ∈ R1×(J·2)|i = 1, 2, ..., F

}
.

So the F frames’ 2D coordinates are taken as the input
patch to the patch embedding E ∈ R(J·2)×C to extract each
coordinate as a high dimensional feature, where C denotes
the dimension of the coordinates representation. The spatial
embedding Espa ∈ R1×J×C . So the process of computing the
patch embedding could be calculated by,

Z0 =
[
x1′E;x2′E; ...xF ′

E
]
+ Espa (1)

where Z0 ∈ RF×C . The structure of the spatial transformer
encoder is the vanilla one following [7],

Z ′
l = MSA(LN(Zl−1)) + Zl−1, l = 1, 2, ..., L1 (2)

Zl = MLP (LN(Z ′
l)) + Z ′

l , l = 1, 2, ..., L1 (3)

where MSA denotes the multi-head self-attention block,
MLP denotes the multi-layer perceptron block, and LN de-
notes the layer normalization, so the final output of the spatial
transformer encoder could the denoted as ZL1 ∈ RF×(J·2)·C).

When sampling the F frame for the input of the spatial
transformer, the baseline will choose the index of [Central−⌊
F
2

⌋
, ..., Central, ..., Central +

⌊
F
2

⌋
], where the Central

denotes the index of the central frame of the full input
sequence. And the dilated sample frames would be obtained
from the real input frame with a dilated frame d.
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TABLE I
EXTENSIVE EXPERIMENTS RESULTS IN PROTOCOL 1 (MPJPE) AND PROTOCOL 2 (P-MPJPE) ON HUMAN 3.6M DATASET [6]. “*” MEANS THE RESULTS

ARE RE-TRAINED BY THIS PAPER.

Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Fang et al. (AAAI’18) [9] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Dabral et al. (ECCV’18) [11] 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 52.1
GraphH (CVPR’21) [12] 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Cai et al. (ICCV’19) [13] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
MGCN (ICCV’21) [14] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
ST-GCN (ICCV’19) [15] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
PoseformerV2* (CVPR’23) [5] 46.2 43.2 52.8 43.9 47.5 57.9 48.7 43.4 47.7 64.4 47.5 47.6 53.2 34.3 35.0 47.5
Proposed 45.2 42.6 51.9 42.9 46.8 58.3 48.1 42.9 48.8 65.6 46.5 46.9 52.5 30.0 32.9 46.8
Protocol #2 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Pavlakos et al. (CVPR’18) [16] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Hossain et al. (ECCV’18) [10] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Cai et al. (ICCV’19) [13] 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 32.3 39.0
Lin et al. (BMVC’19) [17] 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo et al. (CVPR’19) [18] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
PoseformerV2* (CVPR’23) [5] 31.4 33.4 40.2 35.3 35.3 43.6 34.8 32.4 35.3 53.2 37.6 33.9 39.8 25.1 27.6 35.9
Proposed 31.6 33.5 40.3 35.5 35.5 43.9 34.9 32.9 35.5 53.2 37.4 33.7 40.1 23.8 27.2 35.9

B. Temporal Transformer Encoder

Before starting introducing the temporal encoder, the dis-
crete cosine transform should be demonstrated first. Following
PoseFormer v2 [5], the discrete cosine transform is employed
to extract and compress the temporal-spatial correlation of
a sequence of coordinates. From the original full sequence
X ∈ Rf×(J·2), where f denotes the length of the full sequence
and J is the number of joints. So we could obtain 2 × J
sequences of the coordinate values of the two axes (x and
y), which could be denoted as xj ∈ Rf and yj ∈ Rf , and
the coordinate of the v-th frame and the j-th joint of the x-
axis is denoted as xj,v . So the i-th discrete cosine transform
coefficient is formulated as [5],

Cj,i =

√
2

f

f∑
v=1

xj,v
1√

1 + σi1
cos(

π

2f
(2v − 1)(i− 1)), (4)

where σi1=1, when i is equal to 1, or σi1=0. The discrete
cosine transform coefficients represent the feature embedding
in the frequency domain. The original input sequence could
be recovered by inverse discrete cosine transform,

xj,v =

√
2

f

f∑
v=1

Cj,i
1√

1 + σi1
cos(

π

2f
(2v − 1)(i− 1)) (5)

So the original full sequence X ∈ Rf×(J·2) is processed by
the discrete cosine transform (DCT) and taken the n DCT
coefficients t obtain the XD ∈ Rn×(J·2). Then a frequency
embedding EFreq ∈ R(J·2)×((J·2)·C) is utilized to make it a
learnable embedding to represent the temporal information as,

T0 = [ZL1
;X1

DEFreq;X
2
DEFreq, ..., X

n
DEFreq]+ETpos (6)

Then process the T0 with L2 layers of transformer following
[5] to predict the 3D human pose p ∈ R1×(J·3).

The loss for training the whole architecture is the standard
MPJPE (Mean Per Joint Position Error). The detail of MPJPE
is introduced in section IV.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Dataset. The extensive experiments and ablation study
is trained and tested on the widely-applied public dataset
Human3.6M [6].

Evaluation metrics. MPJPE (Mean Per Joint Position Er-
ror): This metric is calculated by,

EMPJPE(j, S) =
1

NS

NS∑
i=1

∥∥∥P (j)
p,S(i)− P

(j)
gt,S(i)

∥∥∥
2
, (7)

where j denotes a frame and S denotes the corresponding
skeleton model, e.g. in this paper, NS is set to 17 as the num-
ber of joints. And P

(j)
p,S(i) is the predicted coordinate, P (j)

gt,S(i)
denotes the ground truth corresponding to the predicted 3D
human pose. P-MPJPE is setting following [5].

B. Implementation Details

Model hyper-parameters. The dimension of the embed-
ding feature for each joint’s coordinate C is equal to 32. The
number of the spatial transformer layer L1 = 4. The number
of the temporal transformer layer L2 = 4 following [5]. The
length of input sequence f is set to 81, and the real input
number of frame F is set to 3. The number of kept discrete
cosine transform coefficients n is equal to 3. The dilated frame
d is set to 0 to 4 which is shown in Table. II.

Experimental settings. All the extensive experiments are
implemented by Pytorch ToolBox. The AdamW optimizer is
applied for training the architecture for 200 epochs with a
weight decay of 0.99. The batch size of the training process
is set to 1024. The initial learning rate is set to 8e-4 with an
exponential learning rate decay schedule and the decay factor
is 0.99. The final predicted 3D human pose results are based
on the 2D pose detection from CPN instead of the ground
truth from the dataset [6].

Authorized licensed use limited to: University of Ulsan. Downloaded on December 15,2023 at 07:06:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Quantative results of the proposed method for on eof “Direction” video in S1 of Human3.6M dataset [6] and a video from the Internet.

C. Comparisons with other researches

For the dataset Human3.6M [6], the testing results of all 15
actions are shown in Table. I. The subtable on the top shows
the results for protocol #1 MPJPE and subtable on the bottom
shows the results for protocol #2 P-MPJPE, where the baseline
poseFormer v2 is retrained with this paper (with f=81 and
F=3). And the proposed method shown in the table is set with
dilated frame d equal to 3. Especially, the poseFormer v2 and
the proposed method occupy only 117.3 MFLOPs computing
resources, which is much lower than other algorithms. As
shown in Table. I, the performance of the proposed method
surpasses the baseline on the average score and most subjects
of action, which achieves an average of 46.8 mm in MPJPE
and an average of 35.9 mm in P-MPJPE. And most of the
evaluation value of the detail action is better.

D. Abaltion Study

In this subsection, the comparison experiments of different
dilated frames are shown in Table. II, where the PoseFormerV2
is the baseline and d=0 means the original sample method. The
proposed method with dilated frame d equal to 3 achieves
the best performance. For the different dilated frames d, the
performance has a different level of improvement, which
proves the effectiveness of the proposed method.

E. Visualization

Some visualization results for training set S1 and test videos
from the Internet are shown in Fig. 1 to show the effectiveness

TABLE II
COMPARISONS OF DIFFERENT DILATED FRAMES d ON HUMAN3.6M,

WHERE THE f DENOTES THE LENGTH OF THE INPUT SEQUENCE AND F
DENOTES THE NUMBER OF REAL INPUT FRAMES. THIS TABLE ONLY

SHOWS THE AVERAGE VALUE OF EVALUATION METRICS.

Method f F d MPJPE↓ P-MPJPE↓
PoseFormerV2 [5] 81 3 0 47.5 35.9
Proposed 81 3 1 46.9 35.8
Proposed 81 3 2 48.1 35.9
Proposed 81 3 3 46.8 35.9
Proposed 81 3 4 46.9 36.1

of the proposed method. The upper six groups of images
show the results of the S1 training set. The bottom groups
of images show the results tested on images from the Internet.
It is obvious that these displayed results demonstrate the
superiority of the 3D HPE model.

V. CONCLUSIONS

A method of dilated sampled frames in lifting-based three-
dimensional human pose estimation is proposed in this paper.
The proposed method exploits the potential solution for choos-
ing discontinuous frames to provide better spatial information.
Extensive experiments show the significance of the proposed
method, which surpasses the baseline to some content on the
public large-scale dataset. In future work, the sample algorithm
for choosing the real input frame to keep the low-computing
cost and performance simultaneously would be exploited.
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