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Abstract. Numerous architectures are under development to compre-
hend object information and background in images by analyzing features
extracted through Convolutional Neural Networks (CNNs). Autonomous
driving requires understanding diverse information and collecting data
from heterogeneous environments to generalize classification models.
However, the patterns of feature maps extracted through convolution
layers in drone image data, which encompass assorted types of vehicles
and road shapes, tend to be simple, leading to overfitting during model
training. To prevent overfitting, this study applies Mosaic Augmentation
to increase data diversity and brings generalization to the data. This
data augmentation method randomly combines four selected images to
create a new mosaic image. Soft-label Assignment is used to determine
the labels of the mosaic images. The dataset is collected using a drone
flying along roads, and approximately 4,000 images are used for train-
ing. In the experiment, the classification performance of vehicle status is
listed based on the weight of the loss function of the soft label and hard
label. Having achieved an accuracy of 83.41%, the effectiveness of the
proposed method is compared with dilated residual networks in terms of
improving model performance.

Keywords: Drone image - Transportation system - Vehicle state -
Classification

1 Introduction

Generating desired information through algorithms using various CNN models
is crucial for collecting and analyzing image-based traffic information. Utilizing
drones for data analysis provides a different perspective on the images compared
to the black box or installed cameras in conventional vehicles. Therefore, a drone
capturing a wider area at once is essential for comprehending comprehensive
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vehicle movement and flow. Understanding vehicle movement is necessary and
can be categorized into three basic states: normal state, where the vehicle moves
along the lane; lane-changing state, where the vehicle changes its lane; and stop
state, where the vehicle comes to a halt.

This research aims to design a CNN model that classifies three vehicle move-
ment states through drone images and applies mosaic data augmentation [1]
and soft label assignment [2]. The dataset is collected data using a drone,
which captured images with a bird’s-eye view of the road. This work utilizes
mosaic augmentation to increase data diversity and prevent overfitting dur-
ing model training. This data augmentation technique randomly combines four
selected images to generate a new mosaic image. Soft-label Assignment is used
to determine the labels of the mosaic images. These techniques demonstrate
the potential of drones for traffic information analysis and the effectiveness of
the proposed methodology in improving classification model performance for
autonomous driving systems.

2 Related Work

2.1 Autonomous Vehicle Dataset for Object Detection

Images and annotation data collected in the past environment on various roads
have been continuously accumulated. With the advancement of object classifica-
tion and detection technology, autonomous driving technology is being developed
rapidly. The Cityscapes [3] and KITTI [4] datasets were created as datasets for
autonomous vehicle research [5-10]. The dataset generated image collection and
annotation data for traffic conditions on the road through cameras installed in
the vehicle. The KITTI dataset also includes 3D bounding box location and
camera calibration information through a 3D laser scanner.

2.2 Drone-Based Dataset for Object Detection

Stanford drone dataset [11] is the first public aerial image dataset using drones.
This dataset contains ten kinds of tracking information (Track ID, (xmin, ymin),
(xmax, ymax), frame, lost, occluded, generated, label) about objects on the road
in the video image. Images taken at eight locations on the Stanford campus were
collected. The targets are six classes (Bicyclist, Pedestrian, Skateboarder, Cart,
Car, and Bus). However, the annotation quality of the bounding box of the object
is roughly expressed, which has a problem with the performance of the object
detection algorithm. The VisDrone [12] dataset is a large-scale drone image
produced by AISKYEYE team at Lab of Machine Learning and Data Mining,
Tianjin University, China. The dataset aims to develop applications that can be
used for computer vision through drones. Through cameras installed in drones,
288 video images were collected from 14 urban areas in China. It produced 2.6
million bounding boxes, including ten classes (pedestrian, person, bus, car, van,
truck, bicycle, awning tricycles, motorcycles, and tricycles). Data validation is
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tested through VisDrone challenge [13-15] and various kinds of research [16-18]
are utilized. The Institut fiir Kraftfahrwesen Aachen research team had built a
drone-based road user trajectory dataset for various situations. The test for vehi-
cles related to autonomous driving is conducted based on the scenario. Therefore,
we present reliable and high-quality data criteria. The highD [19] is a large-scale
vehicle trajectory dataset for German high roads. It includes six locations, 16.5 h,
and 110,000 trajectory information. In inD [20], automated vehicles require data-
based analysis methods to understand complex environments. By collecting road
images using drones, it was proposed to collect road trajectories and natural road
conditions through vehicle movement. Finally, the dataset provides a dataset
including road conditions and vehicles, bicycles, and pedestrians over four kinds
of German intersections. The roundD [21] includes the movement trajectories of
cars, vans, trucks, buses, pedestrians, bicycles, and motorcycles in three traffic
circles in Germany. In addition, positions, headings, speeds, accelerations, and
classes of objects were extracted from the video and provided as data.

3 Proposed Algorithm

Figure 1 illustrates the overall process for classifying vehicle status. The pro-
cess consists of four components: 1) Vehicle detection with YOLOv5, 2) Mosaic
data augmentation, 3) Soft-label Assignment, and 4) a network for vehicle state
classification. These four components work together to determine the movement
status of vehicles. This chapter provides an explanation of the proposed methods
in detail.

Soft Label |!
ssignment ||
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Vehicle Detector Vehicle State Classification Model
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Fig. 1. An overview process of vehicle state classification that contains object detection,
data augmentation (mosaic augmentation), soft label assignment, and VSNet (vehicle
state network).

3.1 Vehicle Detection

This study first presents an approach for detecting vehicles using YOLOv5 [22],
an advanced object detection algorithm that has achieved state-of-the-art per-
formance on a variety of visual recognition tasks. YOLOvV5 is an abbreviation
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for “You Only Look Once version 57, and is an extension of the original YOLO
algorithm with improvements in speed and accuracy. It is based on a deep neural
network architecture that efficiently extracts features from images and predicts
object bounding boxes and class probabilities in a single forward pass.

The YOLOV5 algorithm comprises two main components: a feature extrac-
tion backbone and a detection head. The backbone network is built on efficient
architecture, which has been shown to be highly efficient and effective in a wide
range of vision tasks. The detection head employs anchor boxes and grid cells
to predict object locations and classes at multiple scales. To adapt YOLOv5
for vehicle detection task, the train fine-tunes the model on a custom dataset
of drone flight images using transfer learning. Vehicle types are limited to car,
truck, and bus. Specifically, this work initializes the network with pre-trained
weights on the COCO dataset [23] with advanced data augmentation and opti-
mization techniques.

3.2 Mosaic Data Augmentation

(a) Mosaic ratio=0.3 (b) Mosaic ratio=0.5 (c) Mosaic ratio=0.6

Fig. 2. With the several mosaic ratios, mosaic augmentation generates mixed 4 images
to a new image.

Mosaic data augmentation is proposed in YOLOv4 [1] as a technique for
augmenting data. This method involves selecting four images from the dataset
and arranging them in a manner that is determined by the mosaic ratio, denoted
by M, so that they are represented as a single image in Fig.2. M,. is chosen
randomly from the range [0.3, 0.7]. I(i) is image among dataset at index 3.
Index, i is randomly selected. Every I(4) is resized to 512 x 512. w; and h;
denote the width and height of I(¢). I(n) contains 4 images that n is an order,
n =20,...,3. Based on M,., the width and height sizes of each of the four images
are determined as follows:

new wg = M, x 512, new hy = M, x 512 ifnis0
1(n) new wi = 512 — new wg, new h; = 512 — new hg ifnis1 (1)
n)=
new wo = M, x 512, new hy = 512 — new hyg if nis 2

new w3z = 512 — new wo, new hy = M, x 512 if nis3
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This approach enables the model to learn from multiple images simultane-
ously, improving generalization by incorporating diverse contextual information
into a single image. Mosaic is applied by selecting random numbers in quantity
equal to the batch size for each iteration.

3.3 Soft Label Assignment

After applying mosaic augmentation in this study, a method of soft label assign-
ment for label allocation is proposed. In the mosaic image, four original images
correspond to four labels. A soft label is created by referring to label smooth-
ing [2]. The soft label, S(x) is shown in Eq. (2). In training sample z, h;(k|x)
represents the hard label distribution of the four images at classes, k € 0,1,2
and index of distribution i. The hyperparameter « is assigned a weight value
between 0 and 1. The value of K, which denotes the number of images, is 4.
Equation (2) are defined as the following:

Z\H

Z {1 — a)hi(k|z) + a/K} (2)

The ground truth label distribution multiples the weight « and interpolates
the hard label through the «/K. The label of the mosaic image generates a
soft label by calculating the average value from (1 — a)h;(k|z) + o/ K. Equa-
tion (2) represents the ground truth soft label, which adjusts the ground truth
label distribution by applying label smoothing to mosaic images for classification
models. In conclusion, these methods adapt the use of mosaic augmentation and
soft label assignment resulting in improved classification model performance.

3.4 Vehicle State Classification

This classification model is adapted [24] as the previous work. The proposed
model comprises the Wide Area Feature Extraction (WAFE) module and
Deformable Residual (DR) module. These modules play critical roles in extract-
ing and focusing on feature information. The following section provides a detailed
layer-by-layer explanation of these modules.

Wide Area Feature Extraction Module (WAFE module). To classify
the state of the target vehicle, the input image considers the position and state
of the surrounding vehicles. Figure5 shows that the vehicles in the image are
mostly separated. To exclude unnecessary information like background, the first
convolutional layer passes a 5 x 5 kernel size with 64 filters, a stride of 4, and a
dilated ratio of 3. Next 1 x 1 convolutional layer extends the number of channels,
64 to 128. To stabilize the learning process on the feature map, batch normal-
ization (BN) [25] is performed after all convolutional layers, and the proposed
network employs Gaussian Error Linear Units (GELU) [26] as the activation
function. The feature map is further processed by dividing the 32 channels into
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Fig. 3. The left module in the illustration is the WAFE module. It uses a dilated
convolutional layer to appropriately extract features while reducing computation when
objects in the image are far apart. The right module is the DR module, which is
designed to extract meaningful features for vehicle status judgment by applying a
variety of receptive fields using a deformable convolutional layer.

four groups, and each group is passed through four kinds of dilated ratio, [1, 3,
5, 7] of 3 x 3 convolutional layer. The four groups of outputs are concatenated,
and a 1 x 1 kernel is applied. Additionally, a residual block is used to incorporate
previous information before the maxpooling operation into the feature map.

Deformable Residual Module (DR Module). Deformable residual is mod-
ified from deformable convolutional layer [27] to extract flexible spatial informa-
tion through output feature from WAFE module. As illustrated in Fig. 4(a), the
traditional 3 x 3 convolutional layer has a fixed receptive field in the image area,
represented by the red and blue dots. However, in the image data used for vehi-
cle detection, the vehicles are often separated from each other. Therefore, using
a fixed receptive field would extract feature information that includes unneces-
sary background information. To address this issue and perform more effective
convolutional operations, deformable convolution is employed. Figure 4(b) shows
how deformable convolution generates an offset as the convolutional layer and
performs convolution operations through the offset information.

y(Po) = Y w(pn)-x(Po+Pn + APn) (3)
PrER

Equation (3) represents the offset that determines the kernel position in
deformable convolution. y represents the output feature map. The kernel grid,
R, is defined as the receptive field, where R = (-1, -1),(-1,0),...,(0,1),(1,1).
The convolution occurs at the pixel position of the input image x, which is po,
and at the individual positions in R, which are p,,, along with the offset, Ap,,.
In particular, the offset Ap,, value is generated based on the convolution layer
value and is trained in each iteration. Thus, pg+p,+Ap, ultimately determines
the position of the input value, and the convolution operation is performed by
multiplying it with the convolution kernel weight, w(p,,), at that position.

The Convolutional Block Attention Module (CBAM) [28] allows for com-
plementary attention of both channel-wise and spatial-wise information and is
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(b) Deformable convolution

Fig.4. (a) 3 x 3 conventional convolution, (b) 3 x 3 deformable convolution, In
deformable convolution, deep red and dark blue dots are focused on the vehicle in
the input image. (Color figure online)

applied through the output of three deformable convolutional layer operations.
The fully connected layer receives the feature map that has been calculated by
two deformable convolutional layers.

Loss Function. During training, hard and soft labels are utilized to adjust
the loss function. For hard labels, the original loss function uses in this study
is Focal Loss [29], which helps to balance the training process and prevent bias
towards one class when dealing with data imbalance issues. For soft labels, the
loss function is the mean squared error (MSE). Since the value of the soft labels
is a float number, it has been computed average value. The proposed total loss
function, £ is as follows:

L= oLy + (1 - a)Ly (4)

L£6% is the loss calculated for the hard label, and £ represents the loss
result for the soft label. The parameter, o; assigns weights to the hard and soft
losses. Since soft labels are selected less frequently than hard labels, the weight

of hard labels is higher. «; is 0.9.

4 Experiment

Drone Image Dataset: The dataset for drone images is captured from a top-
down perspective in Fig.5, and vehicle detection is performed using YOLOv5
large model on the collected images. After detection, the image is cropped based
on the five vehicles surrounding the target vehicle. The dataset consists of three
classes: lane_change, safe, and stop, and the total number of training and test
data is shown in Table 1.



116 Y. Lee et al.

Configuration Details. In this study, the Adam optimizer [30] is employed
and the learning rate is set to 0.001. Epoch is 200. Four NVIDIA RTX 3090
GPU, each with 24GB of memory, are used, with a batch size of 16.

Table 1. Information of train and test dataset for vehicle state classification.

Class train | test | Total
lane_change | 860 |214|1,074
safe 1,241 310 1,551
stop 1,222 305 | 1,525
Total 3,323 | 829 4,152

Fig. 5. lllustration for drone image dataset. The view in the picture is bird’s-eye view.

Object Detection. In this study, YOLOv5 [22] is adopted as the object detec-
tion algorithm, and car and truck are the two classes considered for train and
test. Table 3 presents the object detection performance for the train and test
datasets. The training on 9,776 images a performance of 95.75 mAP(APs0)
and 83.8 mAP(APsg.95), while testing on 2,200 images a performance of 91.8
mAP(APsp) and 80.3 mAP(APs0.95). Utilizing this detector, other traffic videos
are analyzed to identify and extract vehicle information, including their position
and class (Table 2).

VSNet Performance. The performance of the network for classifying the final
vehicle state in Table 3 is compared to the Dilated Residual Network (DRN) [31].
DRN is a classification model derived from ResNet [32] and is a network that
replaces the convolutional layers with dilated convolutional layers. Proposed
model utilizes dilated and deformable convolutional layers to extract features
from a wide area, and therefore, its network is compared with DRN, which is
composed of dilated convolutional layers. DRN has four types, A, B, C, and D,
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Table 2. The mAP performance of YOLOvV5 on drone train and test dataset.

Class Images | Instance | mAP@50 | mAP@50:95
all_train 9,776 | 309,470 95.75 83.8
car_vehicle 9,776 | 277,263 97.2 86.0
truck_vehicle | 9,776 | 32,207 94.3 81.6
all_test 2,200 85,398 91.8 80.3
car_vehicle 2,200 78,765 96.1 85.3
truck_vehicle | 2,200 6,633 87.5 75.4

with additional dilated blocks and skip-connections. In this paper, types C and
D are used, and type D is a simplified version of type C.

Compared to DRN_D_22, the first proposed model shows a 16.9% difference
in accuracy results, but it reduces the number of parameters by 92.2%. In addi-
tion, the proposed model presents the results of applying mosaic and color data
augmentation. When both augmentations are applied, it shows the best perfor-
mance among the results presented, with an accuracy of 83.41%. Furthermore,
compared to the DRN_C_42 model, it achieves a 1.63% higher accuracy and saves
96% of the parameters.

Table 4 presents the accuracy performance of the proposed model according
to the soft label values. The highest accuracy performance of 83.41% is achieved
when « is set to 0.7. As « gradually decreases, the performance decreases as well.
This is because the soft label values differ from the original hard label values,
leading to differences in learning performance.

Table 3. Comparison result with dilated residual networks (DRN) and vehicle state
network (VSNet) for data augmentation.

Method Data augmentation | #para Acc(%)
Mosaic Color
DRN_C_26 - - 21,126,584 | 89.62
DRN_C_42 - - 31,234,744 | 81.78
DRN_D_22 - - 16,393,752 | 87.69
DRN_D_38 - - 26,501,912 | 86.49
DRN_D_54 - - 35,809,176 | 89.26
Proposed - - 1,273,504 | 72.85
Proposed - O 1,273,504 | 79.73
Proposed (@) - 1,273,504 | 81.25
Proposed (0] (0] 1,273,504 | 83.41
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Table 4. According to Soft label, a, accuracy of vehicle state classification.

Method Soft label = | Acc (%)
Proposed 0.3 79.62
Proposed 0.4 81.73
Proposed 0.5 83.12
Proposed 0.6 82.57
Proposed 0.7 83.41

5 Conclusion

This study applies mosaic augmentation and soft-label assignment techniques to
classify vehicle states using drone images. Mosaic augmentation combines exist-
ing images to create a new image, increasing the amount of data and improving
generalization for a limited dataset. Additionally, soft-label assignment is used
to generate labels for the mosaic images in vehicle state classification. These two
techniques contribute to smooth training and enhance the accuracy performance
of the proposed classification model.
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