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Abstract. Numerous architectures are under development to compre-
hend object information and background in images by analyzing fea-
tures extracted through Convolutional Neural Networks (CNNs). Au-
tonomous driving requires understanding diverse information and col-
lecting data from heterogeneous environments to generalize classifica-
tion models. However, the patterns of feature maps extracted through
convolution layers in drone image data, which encompass assorted types
of vehicles and road shapes, tend to be simple, leading to overfitting
during model training. To prevent overfitting, this study applies Mosaic
Augmentation to increase data diversity and brings generalization to the
data. This data augmentation method randomly combines four selected
images to create a new mosaic image. Soft-label Assignment is used to
determine the labels of the mosaic images. The dataset is collected us-
ing a drone flying along roads, and approximately 4,000 images are used
for training. In the experiment, the classification performance of vehicle
status is listed based on the weight of the loss function of the soft label
and hard label. Having achieved an accuracy of 83.41%, the effectiveness
of the proposed method is compared with dilated residual networks in
terms of improving model performance.

Keywords: Drone image · Transportation system · Vehicle state · Clas-
sification.

1 Introduction

Generating desired information through algorithms using various CNN mod-
els is crucial for collecting and analyzing image-based traffic information. Uti-
lizing drones for data analysis provides a different perspective on the images
compared to the black box or installed cameras in conventional vehicles. There-
fore, a drone capturing a wider area at once is essential for comprehending
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comprehensive vehicle movement and flow. Understanding vehicle movement is
necessary and can be categorized into three basic states: normal state, where the
vehicle moves along the lane; lane-changing state, where the vehicle changes its
lane; and stop state, where the vehicle comes to a halt.

This research aims to design a CNN model that classifies three vehicle move-
ment states through drone images and applies mosaic data augmentation [1]
and soft label assignment [2]. The dataset is collected data using a drone, which
captured images with a bird’s-eye view of the road. This work utilizes mosaic
augmentation to increase data diversity and prevent overfitting during model
training. This data augmentation technique randomly combines four selected
images to generate a new mosaic image. Soft-label Assignment is used to de-
termine the labels of the mosaic images. These techniques demonstrate the po-
tential of drones for traffic information analysis and the effectiveness of the
proposed methodology in improving classification model performance for au-
tonomous driving systems.

2 Related Work

2.1 Autonomous Vehicle dataset for object detection

Images and annotation data collected in the past environment on various
roads have been continuously accumulated. With the advancement of object
classification and detection technology, autonomous driving technology is being
developed rapidly. The Cityscapes [3] and KITTI [4] datasets were created as
datasets for autonomous vehicle research [5–10]. The dataset generated image
collection and annotation data for traffic conditions on the road through cam-
eras installed in the vehicle. The KITTI dataset also includes 3D bounding box
location and camera calibration information through a 3D laser scanner.

2.2 Drone-based dataset for object detection

Stanford drone dataset [11] is the first public aerial image dataset using
drones. This dataset contains ten kinds of tracking information (Track ID, (xmin,
ymin), (xmax, ymax), frame, lost, occluded, generated, label) about objects on
the road in the video image. Images taken at eight locations on the Stanford
campus were collected. The targets are six classes (Bicyclist, Pedestrian, Skate-
boarder, Cart, Car, and Bus). However, the annotation quality of the bounding
box of the object is roughly expressed, which has a problem with the perfor-
mance of the object detection algorithm. The VisDrone[12] dataset is a large-
scale drone image produced by AISKYEYE team at Lab of Machine Learning
and Data Mining, Tianjin University, China. The dataset aims to develop appli-
cations that can be used for computer vision through drones. Through cameras
installed in drones, 288 video images were collected from 14 urban areas in China.
It produced 2.6 million bounding boxes, including ten classes (pedestrian, per-
son, bus, car, van, truck, bicycle, awning tricycles, motorcycles, and tricycles).
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Data validation is tested through VisDrone challenge [13–15] and various kinds
of research [16–18] are utilized. The Institut für Kraftfahrwesen Aachen research
team had built a drone-based road user trajectory dataset for various situations.
The test for vehicles related to autonomous driving is conducted based on the
scenario. Therefore, we present reliable and high-quality data criteria. The highD
[19] is a large-scale vehicle trajectory dataset for German high roads. It includes
six locations, 16.5 hours, and 110,000 trajectory information. In inD [20], au-
tomated vehicles require data-based analysis methods to understand complex
environments. By collecting road images using drones, it was proposed to col-
lect road trajectories and natural road conditions through vehicle movement.
Finally, the dataset provides a dataset including road conditions and vehicles,
bicycles, and pedestrians over four kinds of German intersections. The roundD
[21] includes the movement trajectories of cars, vans, trucks, buses, pedestrians,
bicycles, and motorcycles in three traffic circles in Germany. In addition, posi-
tions, headings, speeds, accelerations, and classes of objects were extracted from
the video and provided as data.

3 Proposed Algorithm

Fig. 1. An overview process of vehicle state classification that contains object detection,
data augmentation (mosaic augmentation), soft label assignment, and VSNet (vehicle
state network)

Fig. 1 illustrates the overall process for classifying vehicle status. The pro-
cess consists of four components: 1) Vehicle detection with YOLOv5, 2) Mosaic
data augmentation, 3) Soft-label Assignment, and 4) a network for vehicle state
classification. These four components work together to determine the movement
status of vehicles. This chapter provides an explanation of the proposed methods
in detail.

3.1 Vehicle detection

This study first presents an approach for detecting vehicles using YOLOv5
[22], an advanced object detection algorithm that has achieved state-of-the-art
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performance on a variety of visual recognition tasks. YOLOv5 is an abbreviation
for ”You Only Look Once version 5”, and is an extension of the original YOLO
algorithm with improvements in speed and accuracy. It is based on a deep neural
network architecture that efficiently extracts features from images and predicts
object bounding boxes and class probabilities in a single forward pass.

The YOLOv5 algorithm comprises two main components: a feature extrac-
tion backbone and a detection head. The backbone network is built on efficient
architecture, which has been shown to be highly efficient and effective in a wide
range of vision tasks. The detection head employs anchor boxes and grid cells to
predict object locations and classes at multiple scales. To adapt YOLOv5 for ve-
hicle detection task, the train fine-tunes the model on a custom dataset of drone
flight images using transfer learning. Vehicle types are limited to car, truck,
and bus. Specifically, this work initializes the network with pre-trained weights
on the COCO dataset [23] with advanced data augmentation and optimization
techniques.

3.2 Mosaic data augmentation

Fig. 2. With the several mosaic ratios, mosaic augmentation generates mixed 4 images
to a new image.

Mosaic data augmentation is proposed in YOLOv4 [1] as a technique for
augmenting data. This method involves selecting four images from the dataset
and arranging them in a manner that is determined by the mosaic ratio, de-
noted by Mr so that they are represented as a single image in Fig. 2. Mr is
chosen randomly from the range [0.3, 0.7]. I(i) is image among dataset at index
i. Index, i is randomly selected. Every I(i) is resized to 512 × 512. wi and hi

denote the width and height of I(i). I(n) contains 4 images that n is an order,
n = 0, . . . , 3. Based on Mr, the width and height sizes of each of the four images
are determined as follows:
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I(n) =


new w0 = Mr × 512, new h0 = Mr × 512 if n is 0

new w1 = 512− new w0, new h1 = 512− new h3 if n is 1

new w2 = Mr × 512, new h2 = 512− new h0 if n is 2

new w3 = 512− new w2, new h3 = Mr × 512 if n is 3

(1)

This approach enables the model to learn from multiple images simultaneously,
improving generalization by incorporating diverse contextual information into a
single image. Mosaic is applied by selecting random numbers in quantity equal
to the batch size for each iteration.

3.3 Soft label assignment

After applying mosaic augmentation in this study, a method of soft label
assignment for label allocation is proposed. In the mosaic image, four original
images correspond to four labels. A soft label is created by referring to label
smoothing [2]. The soft label, S(x) is shown in Eq. (2). In training sample x,
hi(k|x) represents the hard label distribution of the four images at classes, k ∈
0, 1, 2 and index of distribution i. The hyperparameter α is assigned a weight
value between 0 and 1. The value of K, which denotes the number of images, is
4. Eq. (2) are defined as the following:

S(x) = 1

N

N∑
i=1

{(1− α)hi(k|x) + α/K} (2)

The ground truth label distribution multiples the weight α and interpolates the
hard label through the α/K. The label of the mosaic image generates a soft label
by calculating the average value from (1−α)hi(k|x)+α/K. Eq. (2) represents the
ground truth soft label, which adjusts the ground truth label distribution by ap-
plying label smoothing to mosaic images for classification models. In conclusion,
these methods adapt the use of mosaic augmentation and soft label assignment
resulting in improved classification model performance.

3.4 Vehicle state classification

This classification model is adapted [24] as the previous work. The proposed
model comprises the Wide Area Feature Extraction (WAFE) module and De-
formable Residual (DR) module. These modules play critical roles in extracting
and focusing on feature information. The following section provides a detailed
layer-by-layer explanation of these modules.

Wide area feature extraction module (WAFE module) To classify the
state of the target vehicle, the input image considers the position and state of
the surrounding vehicles. Fig. 5 shows that the vehicles in the image are mostly
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Fig. 3. The left module in the illustration is the WAFE module. It uses a dilated
convolutional layer to appropriately extract features while reducing computation when
objects in the image are far apart. The right module is the DR module, which is
designed to extract meaningful features for vehicle status judgment by applying a
variety of receptive fields using a deformable convolutional layer.

separated. To exclude unnecessary information like background, the first convo-
lutional layer passes a 5×5 kernel size with 64 filters, a stride of 4, and a dilated
ratio of 3. Next 1× 1 convolutional layer extends the number of channels, 64 to
128. To stabilize the learning process on the feature map, batch normalization
(BN) [25] is performed after all convolutional layers, and the proposed network
employs Gaussian Error Linear Units (GELU) [26] as the activation function.
The feature map is further processed by dividing the 32 channels into four groups,
and each group is passed through four kinds of dilated ratio, [1,3,5,7] of 3 × 3
convolutional layer. The four groups of outputs are concatenated, and a 1 × 1
kernel is applied. Additionally, a residual block is used to incorporate previous
information before the maxpooling operation into the feature map.

Deformable residual module (DR module) Deformable residual is modified
from deformable convolutional layer [27] to extract flexible spatial information
through output feature from WAFE module. As illustrated in Fig. 4(a), the
traditional 3 × 3 convolutional layer has a fixed receptive field in the image
area, represented by the red and blue dots. However, in the image data used for
vehicle detection, the vehicles are often separated from each other. Therefore,
using a fixed receptive field would extract feature information that includes
unnecessary background information. To address this issue and perform more
effective convolutional operations, deformable convolution is employed. Fig. 4(b)
shows how deformable convolution generates an offset as the convolutional layer
and performs convolution operations through the offset information.

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn +△pn) (3)

Eq. (3) represents the offset that determines the kernel position in deformable
convolution. y represents the output feature map. The kernel grid, R, is defined
as the receptive field, where R = (−1,−1), (−1, 0), . . . , (0, 1), (1, 1). The convo-
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Fig. 4. (a) 3 × 3 conventional convolution, (b) 3 × 3 deformable convolution, In de-
formable convolution, deep red and dark blue dots are focused on the vehicle in the
input image.

lution occurs at the pixel position of the input image x, which is p0, and at
the individual positions in R, which are pn, along with the offset, △pn. In par-
ticular, the offset △pn value is generated based on the convolution layer value
and is trained in each iteration. Thus, p0 + pn + △pn ultimately determines
the position of the input value, and the convolution operation is performed by
multiplying it with the convolution kernel weight, w(pn), at that position.

The Convolutional Block Attention Module (CBAM) [28] allows for com-
plementary attention of both channel-wise and spatial-wise information and is
applied through the output of three deformable convolutional layer operations.
The fully connected layer receives the feature map that has been calculated by
two deformable convolutional layers.

Loss function During training, hard and soft labels are utilized to adjust the
loss function. For hard labels, the original loss function uses in this study is
Focal Loss [29], which helps to balance the training process and prevent bias
towards one class when dealing with data imbalance issues. For soft labels, the
loss function is the mean squared error (MSE). Since the value of the soft labels
is a float number, it has been computed average value. The proposed total loss
function, L is as follows:

L = αlLcls
hl + (1− αl)Lcls

sl (4)

Lcls
hl is the loss calculated for the hard label, and Lcls

sl represents the loss result
for the soft label. The parameter, αl assigns weights to the hard and soft losses.
Since soft labels are selected less frequently than hard labels, the weight of hard
labels is higher. αl is 0.9
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4 Experiment

Drone Image Dataset: The dataset for drone images is captured from a
top-down perspective in Fig. 5, and vehicle detection is performed using YOLOv5
large model on the collected images. After detection, the image is cropped based
on the five vehicles surrounding the target vehicle. The dataset consists of three
classes: lane change, safe, and stop, and the total number of training and test
data is shown in Table 1.

Configuration Details In this study, the Adam optimizer [30] is employed and
the learning rate is set to 0.001. Epoch is 200. Four NVIDIA RTX 3090 GPU,
each with 24GB of memory, are used, with a batch size of 16.

Table 1. Information of train and test dataset for vehicle state classification

Class train test Total

lane change 860 214 1,074

safe 1,241 310 1,551

stop 1,222 305 1,525

Total 3,323 829 4,152

Fig. 5. Illustration for drone image dataset. The view in the picture is bird’s-eye view.

Object Detection In this study, YOLOv5 [22] is adopted as the object de-
tection algorithm, and car and truck are the two classes considered for train
and test. Table 3 presents the object detection performance for the train and
test datasets. The training on 9,776 images a performance of 95.75 mAP(AP50)
and 83.8 mAP(AP50:95), while testing on 2,200 images a performance of 91.8
mAP(AP50) and 80.3 mAP(AP50:95). Utilizing this detector, other traffic videos
are analyzed to identify and extract vehicle information, including their position
and class.
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Table 2. The mAP performance of YOLOv5 on drone train and test dataset

Class Images Instance mAP@50 mAP@50:95

all train 9,776 309,470 95.75 83.8

car vehicle 9,776 277,263 97.2 86.0

truck vehicle 9,776 32,207 94.3 81.6

all test 2,200 85,398 91.8 80.3

car vehicle 2,200 78,765 96.1 85.3

truck vehicle 2,200 6,633 87.5 75.4

VSNet Performance The performance of the network for classifying the final
vehicle state in Table 3 is compared to the Dilated Residual Network (DRN) [31].
DRN is a classification model derived from ResNet [32] and is a network that re-
places the convolutional layers with dilated convolutional layers. Proposed model
utilizes dilated and deformable convolutional layers to extract features from a
wide area, and therefore, its network is compared with DRN, which is composed
of dilated convolutional layers. DRN has four types, A, B, C, and D, with ad-
ditional dilated blocks and skip-connections. In this paper, types C and D are
used, and type D is a simplified version of type C.

Table 3. Comparison result with dilated residual networks (DRN) and vehicle state
network (VSNet) for data augmentation.

Method
Data augmentation

#para Acc(%)
Mosaic Color

DRN C 26 - - 21,126,584 89.62

DRN C 42 - - 31,234,744 81.78

DRN D 22 - - 16,393,752 87.69

DRN D 38 - - 26,501,912 86.49

DRN D 54 - - 35,809,176 89.26

Proposed - - 1,273,504 72.85

Proposed - O 1,273,504 79.73

Proposed O - 1,273,504 81.25

Proposed O O 1,273,504 83.41

Compared to DRN D 22, the first proposed model shows a 16.9% difference in
accuracy results, but it reduces the number of parameters by 92.2%. In addi-
tion, the proposed model presents the results of applying mosaic and color data
augmentation. When both augmentations are applied, it shows the best perfor-
mance among the results presented, with an accuracy of 83.41%. Furthermore,
compared to the DRN C 42 model, it achieves a 1.63% higher accuracy and saves
96% of the parameters.

Table 4 presents the accuracy performance of the proposed model according
to the soft label values. The highest accuracy performance of 83.41% is achieved
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when α is set to 0.7. As α gradually decreases, the performance decreases as well.
This is because the soft label values differ from the original hard label values,
leading to differences in learning performance.

Table 4. According to Soft label, α, accuracy of vehicle state classification.

Method Soft label=α Acc(%)

Proposed 0.3 79.62

Proposed 0.4 81.73

Proposed 0.5 83.12

Proposed 0.6 82.57

Proposed 0.7 83.41

5 Conclusion

This study applies mosaic augmentation and soft-label assignment techniques
to classify vehicle states using drone images. Mosaic augmentation combines ex-
isting images to create a new image, increasing the amount of data and improving
generalization for a limited dataset. Additionally, soft-label assignment is used
to generate labels for the mosaic images in vehicle state classification. These two
techniques contribute to smooth training and enhance the accuracy performance
of the proposed classification model.
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