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Abstract—Object detection is the most basic and significant
research in computer vision in images, and it is a study to
discriminate the position and class of an object. This operation
has been continuously researched for the past few years. Object
detection performance based on accuracy is gradually improving
due to the recent development of hardware such as GPU comput-
ing power and cameras. Object detection operations grafted in
drones can be implemented in many domains. To perform object
detection algorithms in real-time in drones, the applied network
must be lightweight. For an algorithm capable of real-time
operation on low-cost devices, this paper proposes Efficient Multi-
Receptive Pooling YOLOv5 with Coordinate(CAM). Efficient
Residual Bottleneck and Efficient Multi-Receptive Pooling make
the model lighter by reducing the number of parameters, and
the CAM improves the object detection rate of the model. The
model is trained using the VisDrone dataset, and the mAP
value increased by about 19% to 20.6 mAP, and the number
of parameters decreased by about 6% to 1,663,599.

Index Terms—Object Detection, Drone Vision, Convolutional
Neural Network (CNN), Efficient Module, Attention Modules

I. INTRODUCTION

By dint of their capacity to carry out increasingly compli-
cated tasks like monitoring and surveillance operations, drone
usage and interest have surged in recent years. Drones can
complete various complex tasks autonomously due to tech-
nological support, such as artificial intelligence and computer
vision. Many vision drone tasks, including object detection
and identification, can be performed and provide outstanding
performance. It attracts the attention of many researchers
and practitioners to continue to develop this technology as
a solution in various fields such as the mining industry [1],
factory [2], transportation [3], etc.

The tremendous success of deep learning has led to the
development of numerous outstanding object detection tech-
niques in recent years. You Only Look Once (YOLO) [4],
especially the fifth version (YOLOv5) [5], which applies a
single-stage detection mechanism, is one of the most popular
architectures for object detection. Compared to other tech-
niques that implement two-stage detection, such as Faster
R-CNN [6], YOLO produces a slightly inferior accuracy
but can operate at a higher detection speed as a result of
performing the localization and classification operation in the
one stage. Therefore, this technique is perfect for a vision
drone technology that needs fast detection mode.

Lately, several works have concentrated on improving a
YOLOv5 architecture on the VisDrone dataset to increase
its performance or make it more efficient. Pruned-YOLO
[7] improved YOLOv5 architecture by applying an iterative
channel pruning mechanism. It achieves a sufficient balance
between accuracy and efficiency. Zhan et al. [8] redesigned
the YOLOv5 anchor size, reduced the feature dimension, and
utilized squeeze-and-excitation (SE) as an attention module.
This mechanism can effectively increase the detection speed
and improve the detection precision.

Another work [9] escalated YOLOv5 architecture by em-
ploying Strip Bottleneck (SPB) block to create an efficient
detector called SPB-YOLO. It gains a satisfactory trade-off
between accuracy and speed. Kim et al. [10] proposed an
enhancement of YOLOv5 with an efficient channel attention
pyramid module called ECAP-YOLO. This module is used to
bargain the small object issues in the VisDrone dataset.

In this work, we propose Efficient Multi-Receptive Pooling
YOLOv5 with CAM. The main contributions of this work are



Conv 6 x 6 

Conv 3 x 3 

Efficient
Residual

Bottleneck

Conv 3 x 3 

Efficient
Residual

Bottleneck

Conv 3 x 3 

Efficient
Residual

Bottleneck

Conv 3 x 3 

Efficient
Residual

Bottleneck

Efficient
Multi-Receptive

Pooling

Conv 1 x 1

Upsample

Concatenate

C3

Conv 1 x 1

Upsample

Concatenate

C3

Coordinate
Attention

Conv 3 x 3 

Concatenate

C3 Coordinate
Attention

Coordinate
Attention

C3

Concatenate

Conv 3 x 3 

Detection

Detection

Detection

Fig. 1. The proposed architecture. A backbone module is used to extract object features with the proposed efficient methods. Besides, the PANet(Neck) and
detection(Head) modules help the detector identify the location of the object in multi-scale variants.

summarized as follows:
1) A real-time object detection method is proposed for

quickly locating an object that can operate on a low-
cost device.

2) A structure of combination block is introduced by ap-
plying the Coordinate Attention Module to the original
YOLOv5 network.

II. PROPOSED ARCHITECTURE

The proposed architecture has three main modules as shown
in the proposed Architecture Fig. 1. The first Efficient Resid-
ual Bottleneck (ERB) [11] and the second Efficient Multi-
Receptive Pooling (EMRP) [11] are used in the backbone
of YOLOv5, which corresponds to the baseline. The third
Coordinate Attention Module (CAM) [12] is applied to the
Path Aggregation Network (PANet) corresponding to the Neck
part. CAM is applied before each detector, which is part from
the Neck to the Head.

A. The Backbone

YOLOv5’s framework has three main components: It con-
sists of Backbone, Head, and Neck. The Backbone extracts
the features of the image and transfers them to the Neck
through the Head. Neck creates a feature pyramid by col-
lecting feature maps extracted from Backbone. Finally, it
is composed of an output layer that detects objects in the
Head. CSPDarknet53 is used as the Backbone, CSPDarknet

is a lightweight network structure based on the Darknet53
structure. In the first convolution layer, the feature map is
divided into two paths to deliver information in a balanced
way, and various types of operations are performed in each
path. The structure of CSPDarknet is largely divided into two
paths. One is the same path as the existing Darknet53 structure,
and the other is a path through a deeper network. These two
paths are concatenated in the last layer and merged into a
single feature map. This structure contributes to achieving both
weight reduction and performance improvement of the model.
Therefore, in YOLOv5 using CSPDarknet, the CSPDarknet
structure serves as the Backbone. PANet is used for the Neck,
and B × (5 + C) output layer is used for the Head. B is the
number of bounding boxes, and C is the class score. Among
them, the C3 layer of CSPDarknet53 used in the Backbone is
improved to lighten the deep learning object detection model.
CAM was applied before detection by adding a CAM layer to
each end of the PANet connected from the Neck to the Head.

B. The Efficient Residual Bottleneck

Efficient Residual Bottleneck (ERB) as shown in Fig. 2
is an improved layer of the C3 layer used in YOLOv5.
The C3 layer is the CSP bottleneck with 3 convolutions and
consists of a bottleneck and 3 convolutional layers. In order
to object detection algorithms in real-time on drones using
low-cost devices, the number of parameters in deep learning
object detection networks needs to be reduced. To reduce the



number of parameters, we adjusted the convolution of the C3
layer from 3 to 2 and changed the order of concatenation
and addition of feature maps. The proposed network provides
an improved backbone for extracting object features and
distinguishing essential elements from the background. Apply
a series of convolutional layers sequentially using efficient
modules. The light block applies residual techniques to main-
tain the quality of feature maps, resulting in high performance
in final predictions. To avoid gradient degradation and avoid
saturation of the training process, each convolution operation
sequentially uses SiLU activations and batch normalization.
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C. Efficient Multi-Receptive Pooling

We introduce efficient multi-receptive pooling as shown in
Fig. 3, improved in SPPF to capture the difference of spatial
information using simple convolution and cascade pooling.
Convolutional and Two Sequential Pooling are applied to
provide various receptive areas. It can increase feature selec-
tion options in multi-perspective combinations and use simple
convolution to obtain a single spatial domain. Two pools with
a window size of 5 × 5 are used sequentially to capture the
maximum of the features. Combining features from different

receptive domains will increases the diversity of information,
allowing the network to know more about the types of features.
Convolution operations are then applied to blend the various
pieces of information. Residual techniques are used in this
module to ensure that different feature pooling results achieve
the expected quality and reduce the error rate of the filtering
process.
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Fig. 4. Coordinate Attention Module.

D. Coordinate Attention Module

In the YOLOv5 architecture, an attention module is needed
as a magnifier before delivering the feature map to the detec-
tion head. This module will make the network more focused
on the specific area of the features map that contributes more
to the detection result. This architecture utilizes a Coordinate
Attention Module (CAM) [12] shown in Fig. 4, which involves
two average pooling operations to aggregate features of each
channel along the horizontal and vertical coordinates to gener-
ate a pair of 1D feature maps. The average pooling operation
along the horizontal coordinate can be formulated as

zhc (h) =
1

W

∑
0≤i≤W

xc (h, i) , (1)

where xc is the c-th channel of input and zhc is the average
pooling operation result at the height h. Likewise, the average
pooling operation along the vertical coordinate can be formu-
lated as

zwc (w) =
1

H

∑
0≤i≤H

xc (j, w) , (2)

where zwc is the average pooling operation result at the width
w. This pair of operations enables the network to record long-
range dependencies along one spatial direction and keep exact



location information along one another spatial direction. It will
allow the networks better precisely locate the objects of inter-
est. To effectively capture inter-channel relationships, the two
average pooling operation results, zh and zw, concatenation
operation followed by a shared 1× 1 convolutional operation
function F1 are applied to them illustrated as

f = δ(F1(z
h ⊕ zw)), (3)

where δ is a non-linear activation function and ⊕ is a
concatenation operation along the spatial dimension. f ∈
RC/r×(H+W ) is the output feature map where r is the re-
duction ratio used to regulate the block size. Further, this
output f is split into two separate parts fh ∈ RC/r×H and
fw ∈ RC/r×W . A 1 × 1 convolutional operation is applied
to each part to individually transform fh and fw followed by
sigmoid activation function which can be formulated as

gh = σ(Fh(f
h)), (4)

gw = σ(Fw(f
w)), (5)

where σ is a sigmoid activation function. This process will
generate attention weights. Finally, The outputs gh and gw

are then expanded by applying a channel-wise broadcast
multiplication operation illustrated as

yc (i, j) = xc (i, j)× ghc (i)× gwc (j) . (6)

E. Loss Function
The loss function of YOLOv5 is used to improve the

model’s prediction during training by calculating the difference
between the bounding box predicted by the model and the
ground truth bounding box. The loss function of YOLOv5
consists of three types: Localization loss, Confidence loss, and
Class loss. Localization loss calculates the difference between
the position of the bounding box predicted by the model and
the ground truth bounding box. This loss function uses Mean
Square Error (MSE) as a loss function for the coordinates and
size of the center of the predicted bounding box. Confidence
loss calculates the Intersection over Union (IoU) difference
between predicted bounding boxes. It is calculated as a binary
cross-entropy loss function between the confidence of the
predicted bounding box and the confidence of the ground
truth. Class loss computes the difference between the object
class predicted by the model and the ground truth class. This
loss function is calculated as a multi-class cross-entropy loss
function. The three loss functions are combined to finally
calculate the loss of the model’s prediction result. Train the
model to minimize this value.

LMB = λcoord

G2∑
g=1

A∑
a=1

1objga Lcoord+

λobj

G2∑
g=1

A∑
a=1

1objga Lobj+

λcls

G2∑
g=1

A∑
a=1

1objga Lcls

(7)

III. IMPLEMENTATION SETUP

In this session, we describe the experiments of YOLOv5
network with Coordinate Attention Module on VisDrone
dataset. As an experimental environment, the model is imple-
mented using PyTorch in a Linux environment. When training
the deep learning model, training was conducted using Intel
Xeon Gold CPU and Nvidia Tesla A100 40GB GPU.

IV. EXPERIMENTAL RESULTS

A. Evaluation on Datasets

The VisDrone dataset is a large-scale object detection and
tracking dataset based on high-resolution video images cap-
tured by multiple cameras mounted on drones. This dataset
contains video images taken in various environments, mainly
in cities, coastal areas, agricultural lands, and mountainous
areas. There are a total of 10 classes (pedestrian, people,
bicycle, car, van, truck, tricycle, awning-tricycle, bus, motor),
and it consists of 288 (261,908 images) video clips and 10,209
static photos. The dataset contains video images in a variety
of conditions, including day and night, sunny and cloudy,
and supports up to 1080p. The VisDrone 2019 dataset can be
used to solve various computer vision problems such as object
detection, tracking, and velocity estimation. Since it contains
videos taken on a large scale, in high resolution, and under
various conditions, it can be usefully used for the development
and performance evaluation of object detection and tracking
algorithms. The proposed method tested the object detection
performance on the VisDrone dataset. The VisDrone dataset
contains many objects of tiny size. In order to detect small-
sized objects, a high-resolution image is required or a method
capable of extracting features of the object well is required.
An object detection model is evaluated through a dataset by
extracting and learning the features of various objects included
in the dataset. To evaluate the model, we use Average Precision
(AP) to measure the accuracy of the predicted bounding box,
derive AP for each class, and finally calculate the mean
Average Precision (mAP) value for all classes. As a result,
the proposed method shows 20.6mAP with about 19% higher
mAP compared to the original YOLOv5n, and the number of
parameters is 1,663,599, which is about 6% less.

B. Runtime Efficiency

In this paper, Efficient Residual Bottleneck (ERB) and
Efficient Multi-Receptive Pooling (EMRP) are applied to
YOLOv5 to make the network more efficient. ERB and EMRP
are created by improving C3 and SPPF layer, which corre-
spond to the Backbone of YOLOv5, and through this method,
the number of parameters of the network could be effectively
reduced. In addition, when the Coordinate Attention Module
is applied, the parameters of the network increase, but the
increase in parameters is prevented by minimizing the number
of repetitions of ERB performed in Backbone. As a result, it
is possible to reduce the number of parameters and improve
performance through the combination of ERB, EMRP, and
CA. Compared with the original YOLOv5s, the number of
parameters is about 76% less, the GFLOPs are quarter, and



TABLE I
DETECTION RESULT COMPARISONS ON VISDRONE DATASET

Model AP AP50 Backbone
Cascade R-CNN++ [13] 18.33 33.5 SERexNeXt-50
EnDet 17.81 37.27 ResNet101-fpn
DCRCNN [14] 17.79 42.03 ResNeXt-101
Cascade R-CNN+ [13] 17.67 34.89 ResNeXt-101
ODAC 17.42 40.55 VGG
DA-RetianNet [15] 17.05 35.93 ResNet101
MOD-RETINANET [16] 16.96 33.77 ResNet50
DBCL [17] 16.78 31.08 Hourglass-104
ConstraintNet [18] 16.09 30.72 Hourglass-104
CornetNet* [19] 17.41 34.12 Hourglass-104
Light-RCNN* [20] 16.53 32.78 ResNet101
FPN* [21] 16.51 32.2 ResNet50
Cascade R-CNN* [22] 16.09 31.91 ResNeXt-101
DetNet59* [23] 15.26 29.23 ResNet50
RefineDet* [24] 14.9 28.76 ResNet101
RetinaNet* [16] 11.81 21.37 ResNet101
YOLOv5n 17.3 31.4 Improved CSPDarknet53
YOLOv5n w ERB [11] 17.0 31.7 Improved CSPDarknet53
YOLOv5n w EMRP [11] 17.3 31.5 Improved CSPDarknet53
YOLOv5n w CAM 15.4 28.0 Improved CSPDarknet53
YOLOv5n w ERB&CAM 18.3 32.8 Improved CSPDarknet53
YOLOv5n w EMRP&CAM 20.6 34.9 Improved CSPDarknet53

Model # parameters GFLOPs AP
YOLOv5s 7,046,599 15.9 20.1
YOLOv5s w ERB 6,871,559 15.5 19.5
YOLOv5s w EMRP 6,915,527 15.8 19.3
YOLOv5n 1,777,477 4.2 17.3
YOLOv5n w ERB 1,733,447 4.1 17
YOLOv5n w EMRP 1,744,679 4.2 17.3
YOLOv5n w CAM 1,696,367 3.9 15.4
YOLOv5n w ERB&CAM 1,652,367 3.8 18.3
YOLOv5n w EMRP&CAM 1,663,599 3.9 20.6

the performance is similar at 20.6mAP. Compared with the
original YOLOv5n, the number of parameters is reduced by
about 6%, GFLOPs are also faster at 3.9, and the performance
is improved by about 19%.

V. CONCLUSION

This paper proposes a YOLOv5 network that enables real-
time object detection. It shows higher performance by applying
an Efficient Residual Bottleneck and The Coordinate Attention
Module. The C3 layer is improved with an Efficient Resid-
ual Bottleneck to reduce the number of computations. The
coordinate Attention Module is also applied to enhance the
performance of object detection. In this work, the VisDrone
dataset is used as a training set. The mAP value is 20.6mAP,
about 19% higher than the original YOLOv5, and the number
of parameters is 1,663,599, about 6% less.

Additional detectors will be employed to increase the object
detection rate in future work. YOLOv5 uses three detectors,
which detect large, medium, and small size objects. Objects in
the VisDrone dataset have a lot of tiny size objects. Therefore,
we plan to detect objects of tiny size using an additional
detector. As the number of layers in the network increases,
the number of parameters required for calculation increases.
However, it is expected that the proposed method can be
applied to reduce the number of parameters and increase the
object detection rate by using additional detectors.
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