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Abstract— Remote sensing scene classification is growing 

fast in demand and application within the Earth Observation 

domain. Satellite Image data are usually high resolution but low 

in number. DenseNet architectures are quite powerful and 

achieve good accuracy in this task even without large-scale 

pretraining from ImageNet-like datasets. But, DenseNet lacks 

efficiency and is considered a quite heavy model by modern 

standards. We propose DenseNetx, a family of efficient densenet 

architecture which can dramatically reduce computation costs 

while outperforming the baseline model. In short, we use a 

larger input size while aggressively downsampling in the stem 

block using two 3x3 convolutions of stride 2, and use large-

kernel depthwise-separable convolution in the denselayer to 

achieve higher efficiency. Our results on the WHU-RS19 and 

Optimal-31 scene classification datasets show that our model 

can outperform the baseline at 20% reduced parameters and 

53% fewer flops, while achieving up to 4.5% increased accuracy 

with a larger input while retaining efficiency. 

Keywords—remote sensing, scene classification, densenet, 

efficient 

I. INTRODUCTION 

Recent developments in machine learning have led to 
remarkable performance in image-data analysis, particularly 
in computer vision tasks across various domains. Deep 
learning approaches have played a significant role in this 
advancement by using modular and scalable deep neural 
network architectures to process large amounts of data. These 
approaches have also shown immense potential in remote 
sensing, especially in Earth Observation, where they can 
analyze various types of large-scale satellite data. Most of the 
contributions in this area focus on image-scene classification 
tasks, such as land-use and land-cover identification, which 
involve the analysis, characterization, and classification of 
changes in the landscape caused by either human activities or 
natural elements [1]. Traditionally, these tasks have been 
addressed through either pixel-level or object-level 
classification paradigms, but these methods have limitations. 
Pixel-level approaches are not scalable for high-resolution 
images, while object-level methods struggle with images 
containing diverse and indistinguishable objects. Scene-level 
classification, a relatively new paradigm, has shown 
significant improvements in performance by leveraging the 
capabilities of deep learning to learn semantically meaningful 
representations of more sophisticated patterns in an image. 

These developments have the potential  to advance image-data 
analysis in various fields. 

ImageNet Pretraining is a popular technique for improving 
image classification accuracy in smaller datasets with fewer 
annotated samples. Proposed first in [2] and later in detail in 
[3], ImageNet pretraining increases the deep learning model’s 
capability to generalize as the ImageNet dataset has 1000 
different image classes. Large-Scale pretraining has become a 
very useful technique since then[4] and is used widely in 
downstream tasks such as object detection[5], semantic or 
instance segmentation [6], pose estimation [7] as well as 
image classification in other smaller datasets. But ImageNet is 
a large dataset and pretraining any new model on it takes a 
considerable amount of time depending on the available 
hardware, it is quite difficult for many small-scale researchers 
to pretrain their proposed model on ImageNet. On the other 
hand, in [8] authors argue that with sufficient data and training 
iterations even random initialization of model weights can 
lead to comparable performance to ImageNet pretrained 
model. Also, ImageNet pretraining can sometimes lead the 
model to overfit to ImageNet classes. As the remote sensing 
datasets are captured mainly using satellites or drones, we 
only have the aerial view of the objects, which can be vastly 
different from their regular view counterpart images. Since 
ImageNet consists of images captured in regular camera view, 
we consider the best approach to develop our model from 
scratch, for our remote sensing image classification task. 

Authors in [1] present “AITLAS”, a benchmark arena for 

Earth Observation (EO), which compares the state-of-the-art 

deep learning architectures in 22 different remote sensing 

datasets in multi-class and multi-label classification tasks. 

Among their results, DenseNet161 [9] performs best in most 

of the remote sensing datasets, in the trained-from-scratch 

scenario. While the dense connection in the DenseNet 

architecture leads to good performance in the remote sensing 

image classification tasks, it contains around 28M parameters 

and has 7.82GFlops for an input image size of 224x224. 

Which cannot compete with other recent models in efficiency 

and model size. Deep learning models are integrated into 

many edge devices in today's world, and the efficiency of 

these models is one of the major concerns as well as accuracy. 

In the case of remote sensing, embedded mini or 

microcomputers inside a drone can be used to analyze the 

landscape using a model which has high accuracy and high 



efficiency. Thus, we develop “DenseNetx”, a modified 

family of DenseNet architectures that are highly efficient and 

can outperform the original architecture in accuracy as well. 

We use WHU-RS19 and Optimal-31 remote sensing datasets 

for evaluation. 

We design DenseNetx aiming to reduce redundant 

information from the feature maps and increase 

computational efficiency while not sacrificing much of the 

image classification capability of the model. Inspired by [10], 

we employ large kernel (5x5) depth-wise separable 

convolutions to replace the regular 3x3 convolution in the 

dense layers, which reduces the model parameters and Flops 

by 20% and 26% respectively. This helps the model capture 

global information much more effectively, and for remote 

sensing images it is very crucial. Since, the aerial view 

usually contains much more objects and thus information 

than a regular image, understanding the global context 

amplifies the chances for the input to be accurately classified. 

Afterward, we modify the stem block of the baseline 

DenseNet161, to further reduce the Flops by ~53%, while 

still managing to capture the important features from the 

input and maintain the model accuracy. Our contribution can 

be summarized below- 
1. An efficient Stem Block which reduces Flops by >50% 

than baseline while still capturing critical features from the 
input and thus retaining accuracy 

2. A Large-Kernel Depthwise-Separable conv. based 
DenseLayer to capture better global information while 
increasing efficiency in parameters and flops. 

3. Densenetx Architecture for remote sensing image 
classification, which uses 20% fewer parameters and 79% 
fewer Flops than the baseline with only 1.7% accuracy drop, 
and outperforms the baseline at 1.5x input while still having 
53% fewer Flops and 20% fewer parameters. 

The rest of the paper is organized as- Section II contains 
related research about the topics of discussion. Section III 
described the methodologies used. Section IV provides 
implementation details and dataset information. Section V 
elucidates the experimental analysis and ablation studies. 
Finally, Section VI concludes the paper. 

II. RELATED RESEARCH 

A. Earth Observation 

Earth observation through satellite imagery has become an 

essential tool for understanding and monitoring global 

environmental changes, such as deforestation, urbanization, 

and climate change [11]. Satellite image classification plays 

a crucial role in many applications, including land use and 

land cover mapping, agriculture monitoring, disaster 

management, and urban planning [12], [13]. Another area of 

application for satellite image classification is disaster 

management, where satellite imagery can provide a rapid 

assessment of damage and support disaster response efforts 

[14]. Multi-source data fusion, including satellite imagery, 

climate data, and ground observations, can enhance the 

accuracy of satellite image classification [15]. Authors in [1] 

detail a large-scale study on 22 datasets with numerous 

combinations of deep learning models and compare their 

effectiveness. 

B. DenseNet and Variants  

DenseNets have been widely popular for various image-

processing tasks since their inception. There have also been 

many variants proposed by other researchers trying to 

improve the baseline model for specific or general tasks. [16] 

introduced binary connect convolutional layers to the 

DenseNet architecture, which reduced the memory 

requirements and improved the network's accuracy. In [17], 

authors modified the DenseNet architecture by introducing 

parallel connections between different DenseNet blocks, 

which improved the network's accuracy and reduced the 

training time. [18] proposed scale-invariant convolutional 

layers to the DenseNet architecture, which improved the 

network's performance on datasets with varying scales. [19] 

modified the DenseNet architecture by introducing dual 

attention modules, which improved the network's ability to 

capture long-range dependencies and spatial context in scene 

segmentation tasks. An energy and computation-efficient 

architecture called VoVNet comprised of One-Shot 

Aggregation (OSA) was proposed by the authors in [20] from 

baseline DenseNet architectures. 

C. Efficient CNNs for Classification 

Model efficiency has seen major interest from researchers in 

recent years. Depthwise-Separable Convolution was first 

proposed by [21] introducing the architecture Xception, 

which greatly reduces parameters and flops of a regular 

convolution operation, while still retaining good feature-

capturing capabilities. MobileNets [22] are based on this idea 

and introduced a family of efficient CNN architectures that 

are designed to be fast and lightweight for mobile and 

embedded devices. [23] introduced ShuffleNet, a CNN 

architecture that uses channel shuffling and pointwise group 

convolutions to achieve high accuracy with low 

computational cost. EfficientNets proposed by [24] are a 

family of CNN architectures that use a novel compound 

scaling method to achieve state-of-the-art performance with 

significantly fewer parameters and less computational cost. 

SqueezeNet from [25] is a CNN architecture that uses a 

combination of 1x1 and 3x3 convolutions to reduce the 

number of parameters while maintaining high accuracy. [26] 

introduced ProxylessNAS, a neural architecture search 

method that can directly optimize CNN architectures for 

specific hardware and tasks, resulting in highly efficient and 

accurate models. RTM-Det [10] introduced the modification 

of the famous darknet-53 architecture using large-kernel 

depthwise-separable convolutions. 

III. METHODOLOGY 

A. Baseline 

DenseNet161 is a subset of the DenseNet architecture, which 

Huang et al. proposed in [9]. DenseNet161 is made up of 

numerous dense blocks, each with several convolutional 

layers and a set number of output channels. The feature maps 

from all preceding layers are concatenated and supplied as 

input to each subsequent layer inside each dense block. This 

fosters feature reuse while also lowering the possibility of 

vanishing gradients. DenseNet incorporates transition layers, 

which use a combination of average pooling and 

convolutional layers to minimize the number of feature 

mappings. This helps to manage the number of feature maps  



 

Fig. 1.  DenseNetx161  Architecture with comparison of the Baseline DenseNet161

as the network grows deeper, while also giving a mechanism 

to downsample the feature maps and minimize the network's 

computational cost. We choose DenseNet161 as our baseline 

model since it performs best, in most of the RSI datasets in 

[1]. 

B. DensexLayer 

A Depthwise Separable Convolution is made up of two major 

operations: depthwise and pointwise convolution. Depthwise 

convolution employs a single convolutional filter per input 

channel, with no channel mixing. This procedure generates a 

collection of output feature maps with the same number of 

channels as the input but a lower spatial resolution. This 

operation's purpose is to extract low-level information from 

the input. The output of the depthwise convolution is sent 

through a 1x1 convolutional filter in pointwise convolution 

(also known as 1x1 convolution). This technique combines 

the feature map channels and generates a collection of output 

feature maps with possibly higher dimensionality than the 

input. The purpose of this operation is to obtain higher-level 

features that are more discriminative for the specified task by 

performing a linear combination of the low-level features 

recovered via depthwise convolution. Depthwise Separable 

Convolution, which combines depthwise and pointwise 

convolutions, can achieve equivalent or greater performance 

than classic convolutional layers while requiring fewer 

parameters and processes. As a result, it is especially helpful 

for mobile and embedded devices with low processing 

resources. In our densexLayer, we replace the 3x3 

convolution with a 5x5 depthwise convolution followed by a 

1x1 pointwise convolution in each dense layer. Which 

reduces the parameters of the baseline model by ~20% and 

GFlops by ~26%. 

C. Efficient Stem Block 

The choice of using a 7x7 convolution in the Stem block of 

VGG and other architectures is based on the idea that a larger 

receptive field can capture more global information from the 

input images, which may be useful for some tasks such as 

object recognition. However, this comes at the cost of 

increased computational requirements and may not always be 

necessary or optimal for all tasks [20]. Two 3x3 convolutions 

usually produce a similar feature map as one 5x5 convolution. 

But in operations, are much more efficient. Replacing the 

conv. 7x7, stride 2 operations in the baseline stem block, with 

two conv. 3x3, stride 2 operations followed by a maxpool 

3x3, stride 2 will downsample the input 3 times instead of 2. 

While this may seem counterintuitive, in reality, this helps 

remove unwanted redundancy from large input sizes and 

trains the model to achieve higher accuracy. 

D. DenseNetx161 Architecture 

Finally, by replacing the regular denselayer with the proposed 

densexLayer, and using the efficient stem block we construct 

our DenseNetx architecture. Fig. 1 shows our model 

architecture in contrast with the baseline. We use the 161-

layer version to make the comparison fair and showcase the 

effectiveness of our ideas. By aggressively downsampling in 

the stem block we can reduce the flops drastically, while the 

large kernel depthwise-separable convolution brings large 

receptive field in the denselayer, capturing more global 

context than before while reducing parameters and flops 

simultaneously. The results are discussed in the experiments 

section in detail. In our architecture we use growth-rate = 48 

same as baseline. 



TABLE I. Evaluation of WHU-RS19 using DenseNetx161 architecture. Each model is trained for 300 epochs. 

Model Image Size Params. (M) GFlops Accuracy(%) Precision(%) F1_score(%) Training 

Time(s) 

DenseNet161 1x 26.51 7.82 86.56 87.63 86.52 2196 

ResNet152 1x 58.18 11.58 71.14 71.72 70.84 2026 

ResNet50 1x 23.55 4.12 76.61 78.25 76.38 883 

DenseNetx161 
(ours) 

1x 21.21 1.65 85.07 86.19 84.7 2091 

DenseNetx161 

(ours) 

1.5x 21.21 3.65 87.06 87.13 86.82 2230 

DenseNetx161 
(ours) 

2x 21.21 6.76 90.04 90.85 89.94 2747 

TABLE II. Evaluation of Optimal-31 using DenseNetx161 architecture. 

Model Image Size Params. (M) GFlops Accuracy (%) F1_score (%) mIoU (%) Training 
Time(s) 

DenseNet161 1x 26.51 7.82 69.62 69.91 55.1 1338 

ResNet152 1x 58.18 11.58 65.59 65.83 49.93 2730 

ResNet50 1x 23.55 4.12 68.54 68.68 53.05 1202 

DenseNetx161 (ours) 1x 21.21 1.65 70.43 69.9 54.9 1346 

DenseNetx161 (ours) 1.14x 21.21 2.2 71.5 70.85 55.77 1589 

DenseNetx161 (ours) 2x 21.21 6.76 74.19 73.56 59.71 3598 

IV. IMPLEMENTATION AND DATASET DETAILS 

We evaluate our proposed model in two remote sensing scene 

classification datasets- WHU-RS19 and Optimal-31. WHU-

RS19 contains 19 classes of satellite images of 600x600  

dimension, each class containing at least 50 images and in a 

total of 1005 images. Optimal-31 is also a scene classification 

dataset, but it's more difficult as it contains 31 classes and an 

image dimension of 256x256. Each class has at least 60 

images and the total number of images is 1860. Evaluation 

metrics for WHU-RS19 are accuracy, precision, and F1 

score, and for Optimal-31 accuracy, F1 score and mean IoU 

is used. All the ablation experiments are done in the WHU-

RS19 dataset. 

We utilize the AITLAS toolbox for Earth Observation from 

[1] to train and evaluate our models. Training Split is 60% for 

training, 20% for validation, and 20% for testing, for both 

datasets. All models are trained on one NVIDIA Tesla V-100 

GPU with 32 GB of memory. The batch size was set to 64 for 

training. Rectified Adam or RAdam [27] is used as the 

optimizer. We use learning rate .0001 for WHU-RS19 and 

.001 for Optimal-31, learning is reduced by factor of 0.1  

  
TABLE III. Study of effect of Proposed Ideas 

Model Params. 

(M) 

GFlops Accuracy 

(%) 

Training 

Time(s) 

Baseline 

(DenseNet161) 

26.51 7.82 86.56 2196 

Baseline w. 

densexLayer 

21.21 

(-20%) 

5.77 

(-26%) 

84.57 

(-2.2%) 

2486 

(+13%) 

Baseline w. 

e.stem-block 

26.59 

(+0.3%) 

2.17 

(-72%) 

85.56 

(-1.1%) 

1911 

(-13%) 

DenseNetx161 21.21 

(-20%) 

1.65 

(-79%) 

85.07 

(-1.7%) 

2091 

(-4.7%) 

DenseNetx161 

(1.5x) 

21.21 

(-20%) 

3.65 

(-53%) 

87.06 

(+0.6%) 

2230 

(+1.5%) 

when validation loss stops improving. Each model is trained 

for 300 epochs, as we train models from scratch higher 

iterations were necessary. We use input size of 224x224 by  

default as “1x” in Table 1 and 2. Inputs are first resized to 

256x256 and then center-cropped to 224x224, horizontal and 

vertical flips are used as data augmentations. 

V. EXPERIMENTS 

A. Evaluation on WHU-RS19 

We use the baseline DenseNet161, ResNet152, 

ResNet50[28], and the proposed DenseNetx161 in three input 

settings to evaluate the WHU-RS19 dataset. The 

experimental results are shown in Table. 1, DenseNet161 

contains 26.51m parameters and 7.82 GFlops at input size 

224x224. The baseline has much better accuracy than 

ResNet152 and ResNet50, while ResNet152 has much higher 

parameters and Flops, it suffers from overfitting, ResNet50 

the smaller variant performs better. At 1x input, the proposed 

DenseNetx161 has 20% fewer parameters and 79% fewer 

GFlops, but it performs very close to the baseline only 

decreasing the accuracy by 1.7%. The training time is also 

lower than baseline. At 1.5x input size while still having 53% 

fewer GFlops our model can already outperform the baseline. 

And, at 2x input, it improves the accuracy by more than 4%  

 
TABLE IV. Ablation study of densexLayer Configurations. 

conv1 conv2 Params 

(M) 

GFlops Accuracy 

(%) 

Training 

Time(s) 

1x1 dws 
5x5 

21.21 5.77 84.57 2486 

dws 

3x3 

dws 

5x5 

21.94 9.66 84.57 2943 

dws 
5x5 

dws 
7x7 

22.3 11.87 87.56 3325 



TABLE V. Ablation Study on the Efficient Stem Block 

Stem 

Block 

Params. 

(M) 

GFlops Accuracy 

(%) 

Training 

Time(s) 

3x3  

3x3 

21.21 1.65 85.07 2091 

5x5 
5x5 

21.36 2.17 83.58 2058 

7x7  

7x7 

21.59 2.95 80 2026 

3x3  
3x3  

3x3 

21.29 3.68 81.09 2275 

 
TABLE VI. Ablation study on Dilated Convolutions in Stem Block 

Conv 

Kernel 

Dilation 

Rate 

Params. 

(M) 

GFlops Accuracy 

(%) 

Training 

Time(s) 

3x3 1 21.21 1.65 85.07 2091 

3x3 2 21.21 1.65 83.58 2072 

3x3 3 21.21 1.64 78.1 1971 

Fig. 2. GFlops VS Accuracy, comparison of the baseline DenseNet161, 

ResNet152, ResNet50 and proposed DenseNetx161 architectures at 3 input 
scales. 

 

while having 13% fewer GFlops and similar parameters as 

before. At a higher input size, the training time is increased 

from the baseline model. Fig. 2. showcases the clear 

superiority of our model, our DenseNetx models have the best 

accuracy-efficiency trade-off as demonstrated.  

B. Evaluation on Optimal-31 

Table.2 shows the evaluation details on the Optimal-31 

dataset. In a similar fashion as the previous dataset,  

DensNet161 the baseline performs better than ResNet152 and 

ResNet50. Here, our DensNetx161 already outperforms the 

baseline at 1x input by increasing the accuracy by almost 1% 

while having similar F1, mIoU scores, and training time. At 

1.14x input accuracy improves by around 2% and at 2x 

accuracy is improved by 4.5%, F1 and mIoU also improve by 

a similar amount. One disadvantage of the larger input size is 

the training time increase, which is a much bigger jump in 

this case than in the previous dataset. 

C. Ablation Studies: Impacts of Proposed Ideas  

We study in depth the effect our proposed contributions to the 

baseline bring evaluating the WHU-RS19 dataset. Table.3 

shows cases of the effect of the desnexLayer and efficient 

stem-block in parameters, GFlops, Accuracy, and Training 

Time. Changing the baseline configuration from regular 3x3 

conv. to densexLayer configuration decreases parameters by 

20% and flops by 26% from baseline, it also decreases 

accuracy by 2.2% and adds 13% extra training time. Baseline 

with only efficient stem block increases parameters by 0.3% 

as it contains two 3x3 conv. operations, reduces flops by 

72%, decreased accuracy by 1.1%, and reduces training time 

by 13%. With both proposed modifications DenseNetx161 

reduces parameters by 20%, flops by 79%, training time by 

4.7%, and accuracy by 1.7%. At 1.5x input it outperforms the 

baseline as stated above. 

D. Ablation Studies: densexLayer  

Table 4. shows the ablation study with three different 

configurations of densexLayer. First, 1x1 conv. followed by 

5x5 depthwise separable, second, 3x3 depthwise separable 

followed by 5x5 depthwise separable and third, 5x5 

depthwise separable followed by 7.x7 depthwise separable 

convolutions. Increasing the kernel size for dw-separable 

convolutions increases the parameters, flops, and training 

time, but the accuracy gain is insignificant. 

E. Ablation Studies: efficient Stem-Block 

In Table. 5 we show 4 configurations of stem block evaluated 

on the WHU-RS19 dataset. It is notable, that densexLayer is 

applied in all of these models. For the last configuration of 

three 3x3 convolutions, the input size is 2x. But, the clear 

winner is two 3x3 convolutions with stride 2 to replace the 

one 7x7 conv. stride 2 of the DenseNet architecture. It 

comfortably beats the other models in efficiency as well as 

accuracy. 

F. Ablation Studies: dilated convolutions 

We also study the dilated convolutions from [29], which can 

give large receptive fields using smaller kernels. We use 

dilation rates 2 and 3 for the 3x3 conv. in the efficient stem 

block and show the comparative study in Table. 6. As it is 

apparent from the results, dilated convolutions don’t show 

much effectiveness for our proposed model. 

VI. CONCLUSION 

Remote scene classification tasks usually have smaller 

datasets with a high-resolution image, while high-resolution 

input gives accurate results, it is computationally expensive. 

To that end, we propose an efficient variation of DenseNets, 

DenseNetx which can take in a large input size and give 

accurate results while being computationally efficient. Even 

without any kind of pretraining it manages to achieve over 

90% accuracy in the WHU-RS19 dataset. We detail our 

evaluation in multiple ablation studies to show the 

effectiveness of our idea. In the future, we aim to develop a 

fast-pretraining method to further improve the accuracy while 

considering more techniques to reduce computation costs as 

well. 
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