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Abstract—Smart digital advertising platforms have been widely
employed in public areas in big cities. An age group recognizer
is indispensable to support these platforms in providing relevant
advertisements for each audience. These platforms also demand
a recognizer that can run properly at the minimum on a CPU
device to degrade the budget during system procurement. This
study proposes an age group recognizer based on human faces
to predict the age group of the audience’s face using an efficient
architecture containing a light backbone. This work offers a
residual mini multi-level module integrating two grouped con-
volution layers with diverse frequency levels to extract exclusive
facial features maintained by residual operation. In order to
improve the feature map’s quality, a deep lite attention module
is proposed, consisting of the deep channel and lite spatial
attention part. The architecture generates few parameters with
cheap operation and achieves competitive performance on the
benchmark datasets. In addition, the architecture integrated with
face detection, as a recognizer, can perform fast on a CPU
configuration in real-time with 144 frames per second.

Index Terms—smart digital advertising, real-time recognizer,
face age group recognizer

I. INTRODUCTION

As a unique demographic feature, facial attributes like age
are essential components and widely used in digital marketing,
intelligent commerce [1], and digital advertising platforms
[2]. This information can be used to optimize the advertising
process by segmenting the audience. A digital advertising
platform can apply age recognition to perform audience pro-
filing to provide relevant ads. Therefore, the advertisements
can be more targeted to reach potential customers. Usually,
performing age recognition of a person upon facial image,
instead of predicting an exact age [3], tends to estimate an age
range or group [4]-[7]. People in a particular age group tend
to have similar needs or interests. Moreover, recognizing ages
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based on groups can minimize incorrect prediction because the
target class will be less than trying to predict the exact age.

Nowadays, due to the exceptional performance of the Con-
volutional Neural Network (CNN), most works applied this
method to perform human face-based age recognition. Chen et
al. [8] modified AlexNet as a baseline and presented Attribute-
Region Association Network (ARAN) to recognize age from
a face. The architecture generates more than 400 million
parameters. Another researcher, Li et al. [9] offered BridgeNet
based on CNN architecture that consists of local regressors
that learn aware continuity weights, generating 120 million
parameters. Shin et al. [10] adopted VGG16 architecture as an
encoder and designed a moving window regression algorithm
to perform facial age estimation.

Recently, many works have focused on designing a
lightweight CNN architecture to consider efficient compu-
tation. An integrated CNN architecture [11] is proposed,
combined with deep distinguishable random forest techniques
to estimate age based on a face. The architecture generates 14
million parameters. Wang et al. [3] offered a novel architecture
that included a fusion network and an attention module to
determine the subjects’ ages and dynamically find and orga-
nize age-specific patches. The architecture also generates about
14 million parameters. Another work [12] offered an efficient
CNN architecture that consists of two perspective convolution
branches and a novel attention module. The architecture only
generates 459,347 parameters.

In the practical implementation of digital advertising plat-
forms, a human face-based age recognizer is also demanded
to operate at the minimum on CPU devices to decrease imple-
mentation costs [13], [14]. These platforms require an efficient
CNN architecture to perform age recognition on a CPU device,
especially can run fast in real-time while maintaining accuracy.
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Fig. 1. The proposed face-based age group recognition architecture of the recognizer.

Based on the issue, this work proposes a face-based age group
recognizer with a scant parameter. This recognizer is suitable
for implementation in real-time on a CPU device.

A human face-based age group recognizer (AggerCPU)
proposed a lightweight CNN architecture with a very inex-
pensive operation. A pair of novel modules dubbed the Resid-
ual Mini Multi-level (RM2L) convolutional module improved
from [15], and the Deep Lite Attention (DELA) module,
are developed to enhance the CNN architecture employed by
the recognizer. RM2L gradually refines the distinctive fea-
tures guarded by residual mechanisms. This module generates
fewer parameters than the standard convolution. The DELA
is employed to escalate and confirm the essential features
established on the channel and spatial maps. Therefore, the
recognizer can perform more onward and faster to recognize
age based on a face. This work presents the main contributions
summarized as follows:

1) A face-age group recognizer presents a lightweight
CNN architecture with low computation to recognize
age based on a face applied to support smart digital
advertising. It achieves very competitive mean absolute
error (MAE) and accuracy on two datasets, UTKFace
[16] and FG-NET [17], compared with other CNN
architectures.

2) A novel efficient backbone with a Residual Mini Multi-
level module (RM2L) is proposed that rapidly extracts
the exclusive facial features, producing low parame-
ters and very inexpensive computation. It incorporates
two grouped convolution blocks with various frequency
levels to improve the diversity of the feature map,
maintained by residual operation.

3) A deep lite attention module (DELA) is offered as an
enhancement tactic to catch the essential features based
on channel and spatial maps. It efficiently encourages
the feature map grade from the high-level features,
improving the recognizer performance.

II. PROPOSED ARCHITECTURE

The proposed face-based age group recognition architecture
of the proposed recognizer consists of an efficient backbone
and classification module, as shown in Fig. 1. This architecture
generates 486,822 parameters.

A. The Efficient Backbone

The backbone module employs a sequential convolution
layer to extract facial features from a face. This scheme
performs three times of convolution layers with the same 3 x 3
filter size with a small number of channels and grows from 16
to 32 and then 64. This scheme makes the architecture produce
a few parameters and slight computation. This architecture
applies Leaky Rectified Linear Unit activation, commonly
called Leaky ReLU, in every convolution layer followed by a
batch normalization (BN) to deal with the gradient issue [18].
Three max-pooling operations are also used to downsample
the feature map. This architecture applies two times of 3 x 3
and one time of 2 x 2 sizes with strides 2. The lack of
applying a few convolution layers cause the network over
shallow. As a response, we propose a Residual Mini Multi-
level (RM2L) module as an additional efficient extractor and
a Deep Lite Attention (DELA) module to improve the feature
map’s quality. These modules are put after the final of the
max-pooling operation and before the flatten operation.

B. The Residual Mini Multi-level Module (RM2L)

To improve the capability to extract the facial feature on
the backbone module, we propose a Residual Mini Multi-
level module (RM2L). This module locates after the last
max-pooling layer. Motivated by [15], this module intuitively
combines two feature maps with distinct frequency levels, as
displayed in Fig. 2. Firstly, it divides the input feature map
X into two pieces [X1,Xz]. The first part X is applied a
convolution with 3 x 3 filter size to acquire low-level features,
represented as follows:

Fi(X1) = LReLU (BN (C3(X4))), ()
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Fig. 2. The proposed Residual Mini Multi-level module.

where C3 is a convolution layer with 3 x 3 filter sizes, BN is
batch normalization, and LReLU is Leaky ReLU activation.
Another level feature is created by applying a convolution
layer with 3 x 3 filter size to the aggregation of low-level
features generated on the first part by element-wise addition
with the second part X5, which is illustrated as follows:

Fi(X) = LReLU(BN(C3((F{(X1)) + X2)),  (2)

Different from [15], RM2L does not apply a convolution
layer after concatenating the two feature maps F; and F},
to minimize the number of parameters. As a reserve, if the
module unsuccessful produces improvement to extract the
facial features, this module applies shortcut connections as
a residual mapping [19] to construct the output, which is
described as follows:

RM2L(X) = X + (Fi(X1) & Fir(X)), 3)
where & is a concatenation operation.

C. The Deep Lite Attention Module (DELA)

The proposed architecture employs a shallow backbone that
makes it weak to distill the specific features. This architecture
needs an attention module as a booster before feeding the
feature map into the classification module. A Deep Lite
Attention module (DELA) is proposed to catch essential facial
features. This module consists of two parts, Deep Channel
Attention (DCA) and Lite Spatial Attention (LSA), paired
sequentially, as shown in Fig. 3.

Inspired by [12], modified from [20], DCA inserts a depth-
wise convolution layer with 3 x 3 filter size before the pooling
operation to give a chance for the individual channel to sharpen
and deepen learning without being influenced by the others,

that makes this part called deep channel attention. Unlike on
[12], this module only applies global average-pooling and one
convolution layer with 1 x 1 filter size before executing a
channel-wise multiplication in the last stage to reduce the
computation and number of parameters. This layer is attended
by sigmoid activation to compute the independent attention
weights following [20]. The proposed deep channel attention
module is represented as follows:

DCA(X) = X  o(C1GAE(DC3(X)))), ()

where X indicates as an input of the proposed deep channel
attention module, DC3 is a depthwise convolution with 3 x 3
filter sizes, GAFE is a global average-pooling operation each
channel, C'1 is a convolution layer with 1 x 1 filter sizes and
o is a sigmoid activation.

The disadvantage of applying only a channel attention
module is that this scheme neglects the essence of spatial
information. Therefore, a lite spatial attention (LSA) module
is proposed. Motivated by the spatial attention module on
[21], this module uses a concatenation of global max-pooling
and global average-pooling operations across the channel to
aggregate spatial features map. Different from [21] that applies
a convolution operation with a 7 x 7 filter size to produce a
2D spatial attention map, this module uses a 1 x 1 filter size to
reduce the number of parameters and computation, followed
by sigmoid activation and spatial-wise multiplication with the
input feature map. The proposed lite spatial attention module
is illustrated as follows:

LSA(X) = X x0(C1(GMA(X) & GAA(X))), (5

where X indicates as an input of the proposed lite spatial
attention module. GM A and GAA are global max-pooling
and global average-pooling operations across the channel. C'1
is a convolution operation with 1 x 1 filter sizes and o is a
sigmoid activation.

D. The Classification Module

In the last stage, facial features generated by the back-
bone module will be fed to the classification module that
will compute the probability of each age group class. This
module guides in determining whether the face represents a
child, teen, adult, or old. This module consists of two fully
connected layers with 128 and 4 units, respectively. The first
layer uses batch normalization, ReLU (Rectified Linear Unit)
activation, and dropout mechanism to prevent gradient and
overfitting problems. The second layer uses Softmax activation
to generate the input into the prediction decision.

E. The Face Detector

The proposed recognizer consists of two primary operations,
face detection and face-based age recognition, integrated to
perform face-based age recognition from an image. Face
detection is employed to capture the face region as the Region
of Interest (Rol) from an image before feeding it to the face-
based age recognition network. An efficient face detection op-
eration is demanded to support the face-based age recognizer
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Fig. 3. The proposed Deep Lite Attention Module (DELA).
performing fast in real-time cases. Therefore, this recognizer TABLE T
employs an efficient face detector named LWFCPU [19] that THE EVALUATION RESULTS ON UTKFACE DATASET WITH SETTING 1.
only generates a number of parameters. The face region, the Number of
outcome of the face detector, will be cropped and resized Architectures Baseline Parameters | MAE]
to a precise size suitable for the face-based age recognition i (Million)
hi . OR-CNN [25] Manually-designed - 5.76
architecture input. CORAL [22] ResNet34 21 547
Savchenko [26] MobileNetV1 3.5 5.44
III. IMPLEMENTATION SETUP LRTI [27] ResNet34 21 4.55
In this work, the proposed architecture is trained on UTK- Eérl%\?t[;;]m] Ezzgzgg ii i'i‘;
Face and LFW datasets by uSing 10_3 lnltlal learning rate 2PDG [12] Manualiy—designed 0.46 444
on an Nvidia GeForce GTX 1080Ti with 11GB GPUs with MWR [24] VGGI16 40 437
a batch size of 256 on 300 epochs by using Tensorflow and Proposed Manually-designed 0.49 4.38

Keras framework. If the accuracy does not enhance every 20
epochs, the learning rate will be cut as much as 75%. This
experiment uses the Adam optimizer to optimize the weight
on the Categorical Cross-Entropy loss. To examine the speed
in frame per second or FPS of the proposed architecture and
the recognizer, we employ an Intel Core i7-9750H CPU@2.6
GHz with 20GB RAM.

IV. EXPERIMENTAL RESULTS

This part explains the dataset evaluation, ablation study,
runtime efficiency, and attention modules comparison. In this
experiment, three datasets are used to measure the performance
evaluation of age group prediction.

A. Evaluation on Datasets

1) UTKFace: This dataset accommodates 23,708 facial
images with age variations ranging from 0 to 116. It contains
case variations such as pose, illumination, expression, etc. Two
settings of this dataset are used for evaluation. For the first
regulation, i.e., Setting I, complying with previous research
[22], [23], the dataset is split into two parts, training (80%)
and testing (20%) set. To measure the proposed architecture
on this dataset, the Mean Absolute Error (MAE) of the testing

TABLE I
THE EVALUATION RESULTS ON UTKFACE DATASET WITH SETTING II.

Architectures Numbel('l\zfllli’:;)a meters VA (%)
ResNet34 [19] 21.1 87.13
ResNet50 [19] 23.6 88.43
SquezeeNet [29] + BN 0.74 88.47
MobileNetV2 [30] 2.26 90.08
VGGI1 [31] + BN 344 90.12
2PDG [12] 0.46 90.12
VGG16 [31] + BN 39.8 90.34
VGG13 [31] + BN 34.5 90.42
Proposed 0.49 90.90

set is used for this setting. Table I shows that for Setting I,
the proposed architecture with not more than 500K parameters
achieves the second-best performance with 4.38 MAE, which
differs only by 0.01 from the best one [24]. However, the
proposed architecture is much more efficient than [24] based
on the number of parameters.

The second regulation, i.e., Setting II, is proposed and used
for our recognizer. This dataset is separated into a training



TABLE III

THE EVALUATION RESULTS ON FGNET DATASET.

TABLE V
THE RUNTIME EFFICIENCY ON THE SAME CPU CONFIGURATION.

TABLE IV
THE ABLATION STUDY ON UTKFACE DATASET WITH SETTING II.
Residual Number of
M2L on M2L DCA | LSA Parameters VA (%)

463,268 90.08
v 482,020 90.21
v v 482,020 90.25
v v v 486,820 90.60
v v v v 486,822 90.90

(90%) and validation (10%) set. Regarding class targets, they
can be set according to the purpose of the system. In this
scenario, this dataset is divided into four age groups, 0-11 as
the child group, 12-17 as the teen group, 18-60 as the adult
group, and 61-116 as the old group. To measure the proposed
architecture on this dataset, Validation Accuracy (VA) is used
for this setting. Table II shows that for Setting II, the proposed
architecture achieves 90.90% VA, which outperforms the other
lightweight and deep CNN architectures.

2) FGNET: The dataset accommodates 1,002 facial images
from 82 subjects. The dataset contains case variations such as
pose, expression, and illumination. Complying previous stud-
ies [11], [32], this dataset applies the k-fold cross-validation
and leave-one-person-out (LOPO) approaches. One subject’s
facial images from each fold are used for testing, while
the others are used for training. This evaluation procedure
executes 82 fold representing 82 subjects. Due to the different
number of instances from each person in the dataset, the
number of training and testing sets is various for each fold.
This evaluation calculates the results based on the average
values according to the MAE metric. Table III shows that the
proposed architecture achieves the third-best performance with
2.71 MAE, which differs by 0.48 and 0.15 from the best [24]
and second-best [9], respectively. Nonetheless, the proposed
CNN architecture produces parameters distant below both.

B. Ablation Study

This section elucidates the investigation of the performance
of each proposed module. Firstly, each module is pulled one
by one from the proposed architecture on the UTKFace dataset

Number of Architectures Number of MFLOPs AGR AGR + ¥D
Architectures Baseline Parameters | MAE| Parameters (FPS) (FPS)
(Million) VOGTI BIT+ BN | 34476100 | 510 | 5057 | 4263
+ ,476, K X .

LSDML [32] ResNet 101 44 3.92 VGGIT 311+ BN | 34,421,892 1,270 5512 1537
ARAN (8] VGGI6 414 3.79 ResNet50 [19] 23,595,908 633 56.02 46.02
M-LSDML [32] ResNet101 44 3.74 ResNet34 [19] 21,105,284 217 80.70 61.28
DLDLF [11] VGG16 14 3.71 MobileNetV2 [30] 2,263,108 50.1 121.00 81.79
DRF [11] VGGI16 14 3.41 SquezeeNet [29] + BN 736,340 833 230.67 122.19
DAG-VGGI16 [33] VGGI16 24 3.08 2PDG [12] 459,476 64.5 316.23 144.00
DAG-GoogleNet [33] GoogLeNet 131 3.05 Proposed 486,822 40.6 330.66 144.49
ADPF [3] Manually-designed 14 2.86 AGR indicates the Age Group Recognition
2PDG [12] Manually-designed 0.46 2.75 AGR + FD indicates the Age Group Recognition integrated with Face Detection
MSEFECL [1] Manually-designed 15 2.71
BridgeNet [9] Manually-designed 120 2.56
MWR [24] VGGi6 20 223 with Setting II. Then calculate its performance compared
Proposed Manually-designed 0.49 2711 based on the number of parameters to show the impact of

the existence of each module. Table IV shows the result
reports of this investigation, which is based on the VA metric.
The report shows that employing the mini multi-level module
and adding a residual connection can enhance classification
validation accuracy by 0.13% and 0.04%, respectively. Further,
putting the deep channel and lite spatial attention module can
also improve classification validation accuracy by 0.35% and
0.30%, respectively.

C. Runtime Efficiency

The practical application emphasizes a recognizer to per-
form in real-time on CPU configuration to cut the budget
during system procurement. The proposed architecture can
work efficiently in real-time on a CPU by employing only
486,822 parameters and 40.6 MFLOPs. It can perform 330
frames per second in classifying the age group of the human
face and 144 frames per second in identifying the age group
based on the human face integrated with face detection, as
shown in Table V. The proposed recognizer becomes the fastest
compared to other competitors. Fig. 4 shows the recognition
result of the proposed recognizer, in which the red, blue,
yellow, and green bounding box represents an old’s, an adult’s,
a teen’s, and a child’s face, respectively. This recognizer will
not save the audience’s face images after performing face-
based age group recognition to keep the anonymity and privacy
of the audience.

D. Limitations

The Agger-CPU recognizer is trained on the UTKFace
dataset that covers pose variation. However, the dataset does
not contain many instances for every pose variation, especially
faces with extreme yaw pose. The dataset also does not include
an example of a face in an occluded case. Consequently, in
some cases, the recognizer provides an inaccurate prediction
in predicting the age group of an occluded face and a face
with extreme yaw pose and its variation, illustrated in Fig. 4
(b).

E. Attention Modules Comparison

DELA consisting of DCA and LSA is also compared with
other commonly used attention strategies such as Convo-
lutional Block Attention module (CBAM) [21], Bottleneck
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Fig. 4. The correct (a) and incorrect (b) prediction result of the Agger-CPU.

TABLE VI
THE COMPARISONS OF DIFFERENT ATTENTION MODULES APPLIED ON THE
PROPOSED ARCHITECTURE ON UTKFACE DATASET WITH SETTING II.

Attention Number of AGR AGR + FD

Modules | Parameters | YFLOPS | (ppg) ®ps) | YA (%)
BAM [34] 489,481 41.2 320.14 141.92 90.51
SE [20] 482,532 40.5 342.64 147.29 90.55
CBAM [21] 482,618 40.5 335.86 145.76 90.77
DELA (ours) 486,822 40.6 330.66 144.49 90.90

AGR indicates the Age Group Recognition
AGR + FD indicates the Age Group Recognition integrated with Face Detection

Attention module (BAM) [34] and Squeeze-and-Excitation
(SE) [20]. In the proposed architecture, the attention module is
located following the Residual Mini Multi-level module on the
backbone to perform a fair comparison. Table VI shows that
the proposed architecture with DELA is superior, compared
to the proposed architecture with BAM, SE, or CBAM, based
on the validation accuracy, which differs by 0.39%, 0.35%,

and 0.13%, respectively. According to the speed, the proposed
architecture with DELA is not far behind the best and second-
best, with a difference of only three and one frame per second,
respectively, when integrated with face detection.

V. CONCLUSION

This paper proposes a human face-based age group recog-
nizer using a lightweight architecture with the cheap opera-
tion. This study provides an efficient backbone with Residual
Mini Multi-level (RM2L) and Deep Lite Attention (DELA)
modules. The offered modules help the network to rapidly
extract exclusive facial features and improve its quality with
few parameters and less computation cost. The architecture
achieved competitive performance on the benchmark datasets
compared to other competitors. In addition, the recognizer
integrated with face detection, as a recognizer, can perform
144 frames per second to recognize the face-based age group



in real-time on a CPU device. Moreover, the proposed archi-
tecture with DELA also achieves the best accuracy compared
to the proposed architecture with BAM, SE, or CBAM. In
the future study, other methods, such as the transformer, will
be addressed to improve the recognizer performance. Another
dataset will also be explored to overcome the limitation of the
prediction result. It is also possible to perform face detection
and face-based age group recognition with a single efficient
architecture.
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