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Abstract. In recent years, Vision Transformer (ViT) has achieved an
outstanding landmark in disentangling diverse information of visual in-
puts, superseding traditional Convolutional Neural Networks (CNNs).
Although CNNs have strong inductive biases such as translation equivari-
ance and relative positions, they require deep layers to model long-range
dependencies in input data. This strategy results in high model complex-
ity. Compared to CNNs, ViT can extract global features even in earlier
layers through token-to-token interactions without considering geomet-
ric location of pixels. Therefore, ViT models are data-efficient and data-
hungry, in another work, learning data-dependent and producing high
performances on large-scale datasets. Nonetheless, ViT has quadratic
complexity with the length of the input token because of the natural dot
product between query and key matrices. Different from ViTs-and-CNNs-
based models, this paper proposes a Dynamic Circular Convolution Net-
work (DCCNet) that learns token-to-token interactions in Fourier do-
main, relaxing model complexity to O(Nlog(N) instead of O(N2) in
ViTs, and global Fourier filters are treated dependently and dynamically
rather than independent and static weights in conventional operators.
The token features, dynamic filters in spatial domain are transformed to
frequency domain via Fast Fourier Transform (FFT). Dynamic circular
convolution, in lieu of matrix multiplication in Fourier domain, between
Fourier features and transformed filters are performed in a separable way
along channel dimension. The output of circular convolution is revered
back to spatial domain by Inverse Fast Fourier Transform (IFFT). Ex-
tensive experiments are conducted and evalued on large-scaled dataset
ImageNet1k and small dataset CIFAR100. On ImageNet1k, the proposed
model achieves 75.4% top-1 accuracy and 92.6% top-5 accuracy with the
budget 7.5M paramaters under similar setting with ViT-based models,
surpassing ViT and its variants. When fine-tuning the model on smaller
dataset, DCCNet still works well and gets the state-of-the-art perfor-
mances. Both evaluating the model on large and small datasets verifies
the effectiveness and generalization capabilities of the proposed method.

Keywords: Vision Transformer · Dynamic Global Weights · Fourier
Transform · Image Classification
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1 Introduction

In the view of understanding involved visual data, the model compresses high
dimension of image data to lower spaces and keeps informative features through
processing layer-by-layer of the model. The way the model compresses and
extracts the features relies on what the image encompasses. As we interpret
datas, one point in the image contains two components: content (intensity val-
ues) c ∈ R3 and geometric information w ∈ R2. The image is interpreted as
I ∈ R5×N , where N = H ×W is number of pixels in the image. With the for-
mulation of convolution, CNNs aggregate information of local windows to the
center of the local windows in the sliding manner and also capture the relative
position wi−j inside local window. General speaking, CNN models [8,13,20] can
extract helpful features that the image contains and result in translation equiv-
ariance and locality. Otherwise, Transformer invented by [32] views a sentence
as a sequence of words (tokens) and compute word-to-word relationship and dy-
namically aggregate these features by global multi-head self-attention blocks for
machine translation. With the success of Transformer in both general modeling
capabilities and scalable models, ViT [5] tries to adapt self-attention operation
in computer vision. Each image is separated into a sequence of patches (tokens),
and the model learns an affinity matrix of token-to-token similarity. The ViT
only considers content-to-content relationships from the input images or input
features and can fail to capture positional information. The lack of geometric
wi−j results in weak inductive biases. The model needs a lot of data to compen-
sate for the absence of wi−j .

In terms of model complexity, the convolution operation is more efficient
than the self-attention block. To extract global features, CNN-based models
stack a series of convolution layers with residual connections that create a large
computational cost. At the heart of Transformer, self-attention operation re-
quires quadratic complexity with the lengths of input tokens and the model is
not acceptable to adapt self-attention operation at earlier layers. Especially for
down-stream tasks, these networks perform predictions on the input features
with high resolution. With the bottleneck computation of ViT, many methods
try to reduce the cost O(N2) to O(N) [22], sub-sample the query, key, and value
matrices [33, 34], and compute attention in local windows mimicking convolu-
tion [18, 19]. Another line of research is to enhance the weak inductive biases
of the transformer. The affinity matrix is supplemented with positional infor-
mation such as absolute positional embedding [32], relative positional embed-
ding [2, 4, 19, 23]. Other works [14, 15, 21, 22] attempt to combine the strengths
of convolution and self-attention operations to build hybrid networks. They in-
herit the strong inductive biases of CNNs and the strong modeling of ViTs, and
deliver better performance than pure CNNs and ViTs.

On the research trend of Transformer, this paper develops a new operator,
dubbed Dynamic Circular Convolution (DCC), which can extract and aggregate
global features by performing the circular convolution between reweighted global
Fourier kernels and Fourier transformed features. The reweighting coefficients
are generated conditioned on the input features and are dynamically adopted
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according to the content of the input. The DCC layers are used to replace self-
attention blocks in ViT, called DCCNet. Our proposed DCCNet brings four
benefits: (1) Global features are extracted in one layer; (2) the content and
geometric information of the input image are utilized when computing circular
convolution; (3) the generated weights are input-dependent instead of input-
independent in conventional convolution; and (4) the complexity is O(N(logN))
rather than O(N2) in Transformer.

To verify the effectiveness of the proposed method, we conduct the exper-
iments on the large dataset Imagenet1k, and small dataset CIFAR100. As a
result, the DCCNet surpasses the baseline ViT and its variant by a clear margin
under the same setting and budget (7.5M parameters and 1.2 GFLOPs).

2 Related Works

In this section, we briefly review some related works about Convolutional Neural
Networks, Vision Transformer and its variant, and Fourier transform in computer
vision.

CNNs: In 2012, with the development of parallel hardware computation, AlexNet
[13] successfully train the convolution networks on large datasets and open new
directions in Computer Vision. VGG [28] enlarge the network depth by stack-
ing a sequence of plain 3 × 3 convolutions. Even though VGGNet achieves the
large improvement on large-scale ImageNet dataset, the model causes vanishing
gradient problem when the depth beyond 19 layers. ResNet [8] proposes residual
blocks that can eliminate vanishing gradient and number of layers are stacked up
to 1000 layers. From that event, many works are introduced to improve the base-
line ResNet such as dense connection [11], deformable convolution [3], depthwise
seperable convolution [10,27], and multiple branches [30].

ViT: Recently, ViT [5] integrated the original Transformer [32] developed for
natural language processing and established new state-of-the-art performances
on image classification and downstream tasks. Because ViT has a simple struc-
ture and uniform representation, there are a lot of works that improve ViT model
in both learning and cost. PVT [33] builds a multi-scale vision transformer net-
work that gradually decreases spatial dimensions across stages. On each stage of
PVT, key and value matrices are down-sampled to smaller token sizes. Instead of
computing attention from all tokens, Swin [19] models local attention in prede-
fined windows and also constructs hierarchical networks inspired by CNNs-based
models. With these insightful properties, Swin outperforms the strong baseline
ResNet [8] and sets new records in detection, segmentation and tracking per-
formance. MobileViTv2 [22] proposes a separable self-attention operation that
reduces the cost of original self-attention from O(N)2 to O(N).

Compensation for weak inductive biases of self-attention operation, methods
[4,18,19,23] integrates relative positional information to attention maps. CPE [2]
introduces a conditional positional encoding based on local relative neighborhood
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of 3× 3 depthwise convolution. Rather than marrying convolution operations to
Transformer models, MobileViT [21] embeds Transformer blocks to stage 3, 4, 5
of MobileNetv2 [27]. Similar paradigm, NextViT [14] designs a hybrid network for
embedded devices based on integration of the group convolution blocks in earlier
stages and original self-attention blocks in later stages. EfficientFormer [15] adapt
the idea of PoolFormer [38] and MetaFormer [39] and neural architecture search
for constrained devices.

Based on the intuitive designs of Transformer and its variants, HorNet [24] ex-
tends matrix multiplication of self-attention operation to high-order interactions
based on depth-wise separable convolution and recursive gates. FocalNet [37] uses
multi-scale depth-wise separable convolutions and gated aggregation at each con-
volution to output multiple modulations.

Fourier Transform: FFC [1] proposes fast Fourier convolution and independently
applies convolution and ReLU activation functions on the real and imaginary in-
put features. Lama [29] adapt FFC operation to image inpainting. GFNet [25]
learns global features in Fourier domain based on circular convolution and ViT
models. AFNO [6] separates complex tensors into real and imaginary parts and
utilizes the MLP module to mix these two parts. In this paper, we extend the
circular convolution in GFNet to be dynamic and efficient. In GFNet, complex
features and global filters are multiplied independently on each channel. There-
fore, there is a way the model can efficiently learn the feature on both the spatial
and channel axes. Moreover, in our core operator, both real and imaginary parts
of the complex tensors are learned together instead of separation in the AFNO
network.

3 Methodology

In this section, we leverage the overall network of the ViT [5] into our DCCNet
in subsection 3.1 and analysis the proposed dynamic circular convolution block
in subsection 3.2.

3.1 Overall Architecture

The DCCNet follows the single-scale architecture of the original ViT [5], shown
in Fig. 1. Given input image with dimension I ∈ R3×H×W , Patch Embedding
splits and flattens the image I into a sequence of tokens with size dP ×N , where
N is the number of the tokens 1, H and W are height and width of image.
Specifically, we use patch sizes of P × P and strides with patch window value
over the image to produce the total tokens N = H∗W

P 2 and dN = 3∗P 2. Followed
by non-overlap processing of the ViT implementation, 16× 16 convolution with
stride 16 is used in Patch Embedding as patch generation, corresponding to each
token with size 16× 16.
1 Consistent term with original Transformer [32], also called number of patches
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Fig. 1. The overall architecture of the DCCNet. N indicates the number of tokens
with channel dimension dm and L is the number of stacked DCC blocks. dP , dm are
channel dimension after patch embedding, and channel dimension of the model. C is
the number of predefined classes.

Linear Projection module projects a sequence of tokens with channel dimen-
sion dP to a sequence of tokens with dm. We use Linear layer to perform this
process. The Dynamic Circular Convolution (DCC) block learns the token-token
interaction that results in long-range dependencies between tokens. The DCC
block includes two processes: (1) spatial mixings are performed by Dynamic Cir-
cular Convolution, and (2) MLP Channel Mixer mix token information along
channel dimension. Between two processes, residual connections are used ac-
cording to [38, 39] and each token is normalized by Layer Normalization before
forwarding to each module. The detailed analysis of the DCC block is described
in subsection 3.2. MLP Mixer contains two linear layers with expansion rate r.
During training, based on [5, 25], we set r = 4 for all blocks.

Finally, Global Average Pooling (GAP) in MLP Head flattens a set of tokens
to 1D dimension dm and one linear layer projects flatten token dm to number of
classes C.

3.2 Dynamic Circular Convolution

The pipeline of the DCC operation is described in Fig. 2. Given the input feature
X ∈ Rdm×N , we reshape and permute the input X to 2D dimension dm ×
HP ×WP . Hence, the order of pixels in the input feature is still preserved. The
permuted input features are processed in three steps: (1) 2D FFT (Fast Fourier
Transform)transforms X in spatial domain to frequency domain by Fast Fourier
Transform [1]; circular convolution is performed between transformed tensor and
dynamic kernels to model global features; and 2D IFFT (Inverse Fast Fourier
Transform) reserves dynamic and global tensor back to spatial domain.
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Fig. 2. The detailed architecture of the Dynamic Circular Convolution (DCC). 2D FFT
and 2D IFFT denote Fast Fourier Transform and Inverse Fast Fourier Transform. W1,
W2 are learnable parameters in frequency domain. Squeeze denotes mean computation
along spatial dimension.

Given the permuted input with dimension dm ×HP ×WP , complex tensor
is generated by 2D FFT as follows,

X [:, u, v] = F(X) =

HP−1∑
m

WP−1∑
n

X[:,m, n]e
−j2π( um

HP
+ vn

WP
)
, (1)

where X [:] is used to get the index of the channel. u, v are the coordinate of
each output complex values X ∈ Cdm×HP×WP and m,n are the coordinate of
each input real values X ∈ Rdm×HP×WP . HP = H

P ,WP = W
P are the height and

width of the permuted sequence of tokens. Conventionally, angular frequencies
along height and width dimensions are computed as:

ωh = 2πfh = 2π
u

HP
, (2)

ωw = 2πfw = 2π
v

WP
. (3)

In equation 1, there is a one-to-one mapping from the real domain to the fre-
quency domain. It means that we convert the non-periodic signal to a periodic
signal based on the theorem of the Fourier transform and fully preserve all the
information of the input. The image can be decomposed into a function of sine
waves.
One of the insightful property of Fourier transform is that there has a conjugate
symmetry of the complex tensor X and leveraging such property can reduce the
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model complexity without losing information [1]. This view can be represented
as:

X [:, u, v] = X ∗[:, HP − u,WP − v]. (4)

Therefore, the model complexity is O(HPWP log(HPWP )) with respect to the
length of the input tokens. While ViT-based models have quadratic complexity
with the length of the input tokens, we enjoy much lower computational costs.
A half of complex tensor Xs = X [:, :, 0 : WP /2 + 1] need to be computed and
restored. It can relax memory intensive and still extract global features. Inside
the equation 1, since the sum operation is used, the scale step is proposed to
normalize all the accumulated values. During implementation, scale is conducted
by average operation.

The model learns global features through self-attention operations or large
kernel sizes. In this paper, we employ matrix multiplication between complex
tensors X and global kernels. These global kernels are the same size as the
scaled input Xs ∈ Cdm×HP×WP /2+1. Hence, matrix multiplication between them
in the spatial domain is called circular convolution in the frequency domain.
In GFNet [25], they treat global kernels independently and statically because
circular convolution is separable. It leads to a way that can mix the information
of the input tensor along the channel dimension. Inspired by weight generation
of self-attention operation [32], we define dynamic coefficients Dα ∈ Cdm×1×1 as
follows:

Dα = {α1, ..., αdm
} = W2 ⋆ (W1 ⋆ f(Xs)), (5)

where ⋆ is convolution operation. f(.) indicates squeeze function that converts
2D input Xs to 1D vector. W1 ∈ Cdm× dm

r and W2 ∈ C
dm
r ×dm are linear transfor-

mations in the frequency domain, mixing information of the squeezed complex
tensor. Then, the dynamic coefficients Dα is used to redistribute the static global
kernel G ∈ Cdm×H×(W/2+1) via element-wise matrix multiplication,

GD = {αi ∗ Gi|αi ∈ C;Gi ∈ CH×(W/2+1)} ∈ Cdm×H×(W/2+1), (6)

The dynamic circular kernel GD is convoluted with the scaled input Xs to output
global receptive field,

Y = Xs ◦ GD, (7)

where Y ∈ Cdm×H×(W/2+1) is the output of the circular convolution and ◦
denotes circular convolution.

Finally, we reserve the Fourier feature back to the spatial domain using the
2D Inverse Fast Fourier Transform (IFFT) and this operation is addressed as
follows:

Y [:,m, n] = F−1(Y) =
1

N

H−1∑
u

W−1∑
v

Y[:, u, v]ej2π(
um
H + vn

W ), (8)

where N is the number of tokens used for normalization.
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Table 1. Comparison with state-of-the-art models on ImageNet validation set

Method Top-1 Acc (%) Top-5 Acc (%) #params GFLOPs
T2T-ViT-7 [40] 71.7 - 4.3M 1.2
DeiT-Ti [31] 72.2 91.1 5.7M 1.3
gMLP-Ti [17] 72.3 - 7.0M 1.3

PiT-Ti [9] 73.0 - 4.9M 0.71
TNT-Ti [7] 73.9 91.9 6.1M 1.4

GFNet-Ti [25] 74.6 92.2 7.5M 1.3
LocalViT-T [16] 74.8 92.6 5.9M 1.3

ViTAE [36] 75.3 92.7 4.8M 1.5
DCCNet (our) 75.5 92.7 7.7M 1.2

4 Experiments and Results

4.1 Experiments

Datasets: The proposed DCCNet is trained and evaluated on the large-scale
dataset ImageNet1k [26], and the small dataset CIFAR100 [12]. For ImageNet1k,
this dataset includes 1.2M training images and 50k validation images with 1000
categories. CIFA10 contains 50k training and 10k testing images from 10 classes.
Like CIFAR10, CIFAR100 contains 50k training and 10k testing images with 100
classes.

Experimental Setup: All implementations are conducted using the Pytorch frame-
work, and the codebase is Timm [35] for fair comparisons with other methods.
We follow the setting of methods [5,25]. The model is trained for 300 epochs on
two Tesla V100 GPUs. The batch size is 512 images per GPU, and the input
images are resized to 224× 224. The basic learning rate is 5× e−4 and learning
schedule is cosine with warmup epochs of 5. The optimizer is AdamW with mo-
mentum 0.9 and weight decay 0.05. The DCCNet does not use EMA model and
strong data augmentation like [19,20].

4.2 Results

ImageNet dataset: Table 1 shows the main results evaluated on ImageNet vali-
dation set between DCCNet and other methods. As a result, DCCNet achieves
75.5% Top-1 accuracy and 92.2% Top-5 accuracy, which surpasses state-of-the-
art ViT-based models around 7M parameters and 1.2 GFLOPs, such as 71.7%
Top-1 in T2T [40], 72.2% in DeiT [31], 72.3% Top-1 in gMLP [17], 73.0% Top-1
in PiT [9], 73.9% Top-1 in TNT [7], 74.6% Top-1 in GFNet, 74.8% Top-1 in
LocalViT [16], and 75.3% Top-1 in ViTAE [36]. This comparison verifies the
effectiveness of the proposed DCCNet.

CIFAR 100: Table 2 describes the comparison between the DCCNet and other
methods on the small dataset CIFAR100. With largely smaller parameters and
GFLOPs than other methods, the DCCNet gets 84.1% Top-1 accuracy under
budget 7.5M paramters and 1.2 GFLOPs.
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Table 2. Results on small dataset CIFAR 100

Method Top-1 Acc #params #GFLOPs
DeiT-T [31] 67.59 5.3M 0.4
PVT-T [33] 69.62 15.8 0.6
Swin-T [19] 78.07 27.5M 1.4

DCCNet (ours) 84.10 7.5 1.2

Ablation study: We investigate the effect of reduction ratio r ∈ {8, 16, 32} in
linear matrices of the DCC block on the model performance and cost illustrated
in Table 3. When changing the reduction r, the Top-1 performances are similar.
For a trade-off between accuracy and cost, we select r = 16 for all experiments.

Table 3. Ablation study on the reduction ratio r

Reduction r Top-1 Acc (%) Top-5 (Acc%) #params GFLOPs
8 75.4 92.7 7.9 1.3
16 75.5 92.7 7.7 1.2
32 75.2 92.4 7.6 1.2

Amplitude and Phase Spectrum: We visualize the amplitude and phase spectrum
on Fig. 3. As we can see, the detailed patterns in the amplitude spectrum are
clear, and its spectrum has the symmetric property demonstrated in [1].

5 Conclusion

This paper presents a feature extractor based on Fast Fourier Transform and
dynamic weight generations, called DCCNet. All spatial operations, especially for
circular convolution, are performed in the frequency domain through the FFT.
Leveraging the conjugate symmetry of FFT can result in better performance
and efficient model complexity. Instead of static weight in conventional circular
convolution, this work dynamically produces complex weight matrices of circular
convolution conditioned on the input features. And this operator also mixes
the information of a complex weight tensor along the channel dimension. This
channel mixing can complement circular convolution that is separable and input-
independent. Experiments are conducted on both large and small datasets, and
the DCCNet achieves better performance than other methods. It verifies the
effectiveness of the proposed methods and its generalization capability.
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(a) Amplitude Spectrum (b) Phase Spectrum

Fig. 3. The amplitude spectrum (a) and phase spectrum (b) of the dynamic circular
convolution.
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