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Combination of Deep Learner Network and Transformer for 3D Human Pose Estimation

Tien-Dat Tran1∗, Xuan-Thuy Vo2, Duy-Linh Nguyen3, and Kang-Hyun Jo4∗

1,2,3,4Department of Electrical, Electronic, and Computer Engineering, University of Ulsan,
Ulsan, 44610, Korea

Email: (tdat,xthuy)@islab.ulsan.ac.kr, ndlinh301@mail.ulsan.ac.kr, acejo@ulsan.ac.kr ∗ Corresponding author

Abstract: Deep neural networks (DNNs) have attained the maximum performance today not just for human pose estima-
tion but also for other machine vision applications (e.g., semantic segmentation, object detection, image classification).
Besides, the Transformer shows its good performance for extracting the information in temporal information for video
challenges. As a result, the combination of deep learner and transformer gains a better performance than only the utility
one, especially for 3D human pose estimation. At the start point, input the 2D key point into the deep learner layer and
transformer and then use the additional function to combine the extracted information. Finally, the network collects more
data in terms of using the fully connected layer to generate the 3D human pose which makes the result increased precision
efficiency. Our research would also reveal the relationship between the use of the deep learner and transformer. When
compared to the baseline-DNNs, the suggested architecture outperforms the baseline-DNNs average error under Protocol
1 and Protocol 2 in the Human3.6M dataset, which is now available as a popular dataset for 3D human pose estimation.
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1. INTRODUCTION

In today’s world, 3D human posture estimate plays
an essential role in computer vision, fulfilling a variety
of goals such as human re-identification [1], [2], activity
recognition [3], [4], 2D human pose estimation [5], [6],
and 3D human pose estimation [7], [8]. The fundamental
purpose of the human posture is to identify bodily por-
tions for human body keypoints. The importance of deep
neural network also use spatial information that decrease
the error of 3D key point in regression stage. As a re-
sult, the focus of this study will be on how to teach the
network to pay better 3D accurate pose estimation.

According to recent developments, deep convolutional
neural networks have lately achieved outstanding perfor-
mance. Before raising the resolution, most existing tech-
niques route the input through a network, after that apply
the 3D human pose estimation on the 2D result, which
show in Fig.1. The 3D network take the series of 2D key-
point as the input and is typically made up of high-to-low
resolution subnetworks connected in series. Hourglass
[9], for example, uses a symmetric low-to-high tech-
nique to recover high resolution. SimpleBaseline [10]
uses a few transposed convolution layers to build high-
resolution representations. Dilated convolutions are also
used to increase the last layers of a high-to-low resolution
network (such as VGGNet or ResNet) [11], [12]. In other
hand, some network remain the High-resolution network
to make the 2D keypoint better[13] or also use attention
mechanism[14] to make the network better in AP (Aver-
age Precision) for 2D human pose estimation

Deep neural network has now encoded major advance-
ments in human posture [15], [16]. However, these net-
works face numerous obstacles. To begin, how can the
accuracy of various types of networks be improved (For
example, a real-time network or a network that measures
correctness.) Second, it is common to need to check the

Fig. 1. Summary the process from input image to 3D
human pose estimation

speed of a network while updating or modifying it. Fi-
nally, the current network must increase accuracy while
remaining as fast as possible. This study examines a one-
of-a-kind network as well as the speed and accuracy of
the combination of transformer and deep learner network.
Using and not using the transformer is the subject of the
proposed experiment. The experiment also differs from
the Simple Baseline [17] that it does not use the trans-
former mechanism. The Simple Baseline also experi-
ments for only deep learner network, which used a lot
of layer of fully-connected layer.

The proposed technique was used to create a 3D pose
network, which showed a significant improvement in
Mean Per Joint Position Error (MPJPE). The proposed
network, which is based on the deep learner network [17],
aims to improve the evolution theory for the 2D key-
point by using the gene method. By employing a new
transformer inside the deep learner network, the network
keeps the MPJPE higher while minimizing the imple-
mentation cost. In addition, the number of parameters
was reduced, which resulted in a faster network. To fur-
ther comprehend transformer inside, the suggested net-
work decrease the error 0.3 points in Average MPJPE
while decreasing the number parameters. This study
presents a novel 3D network that can quickly respond to
a wide range of challenges in a variety of applications, in-
cluding object recognition, picture classification, and hu-
man position estimate. The suggested method uses do not



Fig. 2. Illustrate from 2D to 3D human pose estimation. The proposed method separated the network into two stages, the
first stage take ideal from transformer and the second for deep layer network.

use 2D ground truth for joint human posture predictions
for the fair competition.

2. METHODOLOGY

2.1 Network architecture

Our system utilized a backbone comprised of HRNet-
W32 and HRNet-W48 [13], as the main architecture for
2D human pose estimation. After that, a series of key-
point for humans will apply for making 3D which can
show in Fig.2. First, from 2×k, in which k is the number
of key-point, the proposed architecture is divided into two
stages. The first stage takes the ideal from transformer
[18]. we used the fully connected layer to extract the
information of 2 × k keypoint into d-dimension which
is set at 1024 and apply 8 layers of the fully connected
layer. After that, our network utilizes element multiplica-
tion for 2 × k and d by a skip connection. Hence we ap-
ply sigmoid to extract the probability and one more time
fully connected to make 3 × k. In the second stage, the
tensor traverses each pillar layer, utilizing only the fully
connected layer to extract the information of 2 × k into
the d-dimension similar to the first stage. However, in the
second stage, the proposed architecture did not apply the
sigmoid so the information is just about the key point. Fi-
nally, we used an additional function for stage 1 and stage
2 to combine information from the deep learner network
and transformer network followed by a final fully con-
nected layer (Linear) to make the 3D information.

2.2 Loss Function

The Heat maps which generate from the last layer of
3D human pose network. We apply the baseline MPJPE
loss to minimize the error. By m = {mj} J = 1J ,
where Xj = (xj, yj) is the geographical harmonize of
the j th body joint for each image. The value of heat
map for Ground-truth Hj is then constructed using the
Gaussian distribution and the mean aj with variance

∑
as shown below.

Hj(p) ∼ N (aj ,
∑

) (1)

where p ∈ R2 demonstrate the coordinate, and
∑

is
experimentally decided as an identity matrix I. The last
layer of the neural architecture forecast J heat maps, i.e.,
Ŝ =

{
Ŝj

}
j = 1J for J body joints. A L2 loss function

is defined by the mean of MPJPE, which is calculated as
follows:

L =
1

MJ

M∑
m=1

J∑
j=1

∥∥∥Sj − Ŝj

∥∥∥2 (2)

M denotes the number of selected in the training process.
Using 3D pose data from the last layer or backbone ar-
chitecture, the trained network generated predict 3D joint
maps using ground-truth 3D pose.

3. EXPERIMENTS

3.1 Experiment Setup
3.1.1 Dataset

The biggest 3D human pose estimation benchmark
with precise 3D labels is called Human 3.6M (H36M),
and it comprises of 3.6 million photos taken by four syn-
chronized cameras at 50 frames per second. Seven pro-
fessionals are engaged in 15 daily tasks including ”wait-
ing”, ”smoking”, and ”posing”. By adding the subject ID
to S, we indicate a group of data. For example, S15 in-
dicates data from subjects 1 and 5. Five individuals (S1,
S5, S6, S7, and S8) are utilized for training, and two sub-
jects (S9 and S11) are employed for evaluation, all in ac-
cordance with the standard procedure from earlier works
[28]. A single model is trained for all actions using the
frames from all viewpoints.

With millimeter-based Mean Per Joint Position Error
(MPJPE), we assess the model’s performance. The use of
two common assessment methodologies. While protocol
2 (P2) first aligns the ground-truth 3D poses with the pre-
dictions via a rigid transformation, protocol 1 (P1) com-
putes MPJPE immediately, which is the euclidean dis-
tance between grouth-truth and predicted keypoint. Pro-
tocol P1 eliminates the impact of the first stage model by
using inputs of ground truth 2D key points. Moreover,



Table 1. Quantitative comparisons with state-of-the-art on Human3.6M dataset under protocol #1 and protocol #2 for
fully-supervised methods. Bold number is the best performance in each case

.
Protocol # 1 Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [19] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Fang et al. [20] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Yang et al. [21] CVPR’18 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Pavlakos et al. [22] CVPR’18 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Moon et al. [23] CVPR’19 51.5 56.8 51.2 52.2 55.2 47.7 50.9 63.3 69.9 54.2 57.4 50.4 42.5 57.5 47.7 54.4
Liu et al. [24] ECCV’20 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu et al. [25] CVPR’21 45.2 49.9 47.5 50.9 54,9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Li et al. [17] CVPR’20 † 47.0 47.1 49.3 50.5 53.9 58.5 48.8 45.5 55.2 68.6 50.8 47.5 53.6 42.3 45.6 50.9
Our 45.0 48.3 46.6 49.8 54.0 59.0 48.7 45.1 57.7 68.2 49.0 48.2 52.9 41.0 45.1 50.6
Protocol # 2 Dir. Disc Eat Greet Phone Photo Pose Punch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [19] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Fang et al. [20] AAAI’18 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Pavlakos et al. [22] CVPR’18 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Yang et al. [21] CVPR’18 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Sharma et al. [26] ICCV’19 35.3 35.9 45.8 42.0 40.9 52.6 36.9 35.8 43.5 51.9 44.3 38.8 45.5 29.4 34.3 40.9
Cai et al. [27] ICCV’19 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Liu et al. [24] ECCV’20 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Li et al. [17] CVPR’20 † 34.5 34.9 37.6 39.6 38.8 45.9 34.8 33.0 40.8 51.6 38.0 35.7 40.2 30.2 34.8 38.0
Our 34.1 36.0 36.4 39.9 39.4 45.0 35.9 32.8 43.1 52.1 37.3 36.6 39.7 30.2 35.8 38.3

the proposed paper also use an industrial dataset that in-
cluded 4 videos. The video record the people’s action in
the industrial laboratory with 9980 for a total number of
frames. Our quantitative results for Fig.3 and Fig.4 take
from this dataset.

3.1.2 Implementation details
. The monocular camera is implemented on training

process. We train 2D human pose estimation with the
input size is 384 × 288 and the output heatmap is same.
For the 3D human pose network, the batch size was set
at 24. The total number of epochs was stick 210. We
set the learning-rate at 0.001 the learning decade factor is
0.1 at the 170-th and 200-th epoch. All the experimental
research are implemeted by using the Pytorch framework
and tested on the H36M datasets. The Adam optimizer
[29] and the momentum is 0.9 was employed.

The proposed architecture was trained using CuDNN
7.3 and CUDA 10.2 on a single NVIDIA GTX 1080Ti
GPU.

3.1.3 Human3.6M datasets result
Our result was estimated on the Human 3.6M test

dataset. The value of error in the proposed perspective
which show in Table 1 gets better than other research
standards in Protocol #1 in some activities such as Di-
rection - 45.0, Eating - 46.6, Greeting - 49.8, Purchases -
45.1, SittingDown - 68.2, Smoking - 49.0, WalkDog 52.9
and the average error is 50.6 which is the best for the
comparison research. However, For Protocol #2 our re-
search only takes third place with an average error is 38.3.
Photo and Smoking take the best accuracy with the lowest
error of 45.0 and 37.3 respectively. Smoking is the action
that our architecture detect well in all case. In Table 1,
† is mean we only use the result for backbone network
training for the Human 3.6M dataset with out the method
to make the dataset more bigger or using multy view for
fair compatition.

Human pose estimation, like many other modern de-
signs, has a variety of problems that need to be solved.
The pictures’ concealed joints, which were challenging

to train for and predict, were the first problem. Second,
joints in the human body must be accurately eliminated
from low-resolution human images. The photographs
that follow show crowd situations, when it is usually chal-
lenging to pinpoint where each participant’s joints are lo-
cated. Last but not least, there is a dearth of data on pho-
tos with missing pieces for assessing human postures.

4. CONCLUSION

This paper presents a novel 3D deep learner network
combined with the transformer network is introduced and
achieves a better result for the monocular condition when
compared with the baseline. From the 2D ground-truth
keypoint, the network generate the 3D information by us-
ing both fully connected network and transformer, which
show that it outperform for the error and the number of
parameter compared with the baseline. For the future
work, the network can improve performance by using
temporal information which affects much in the error for
3D human pose estimation. The other work is to find out
how to solve the challenge of human posture estimation,
which construct the network hard to gain superior per-
formance. In addition, applications and environments for
our research such as those developed in mobile devices,
which need small of number parameters, can progress
with the proposed ideal.
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Fig. 3. Qualitative result for 2D human pose tracking in video 1 of industrial dataset
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