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Abstract—Advanced multiple object tracking requires multi-
task learning in order to solve object detection and data asso-
ciation tasks simultaneously. One fundamental characteristic of
multi-task learning is that there is correlated information among
tasks, and leveraging this property in training the model can
result in better generalization performance. However, in multiple
object tracking, most existing methods learn such property by
treating multiple task losses equally and independently. In this
paper, we take the weighting of multiple object tracking losses
into consideration, relying on the related information among
object detection and data association tasks. Firstly, this paper
introduces a simple but effective Learned Weighting Factors
(LWF) method where the weighting factors are learned through
shallow neural networks. These learned factors are used to
balance multi-task losses during training dynamically. Thus, our
LWF method avoids manually tuning these weighting factors
because this process is difficult and expensive caused by the high
dimension of the search space. To the best of our knowledge,
the proposed LWF method is a new and different perspective
in the literature. Secondly, we conduct extensive experiments on
two benchmark datasets, i.e., MOT16 and MOT20, surpassing
state-of-the-art trackers without extra training samples. Video
surveillance demos are available at https://bit.ly/3hkgBxo.

Index Terms—Multiple object tracking, object detection, data
association, multi-task learning

I. INTRODUCTION

Multi-task learning is a learning paradigm [1], which learns
the related information across multiple tasks to improve the
generalization performance of all tasks. In the deep learning
generation, multi-task learning encodes the task relatedness in-
formation in two components: (i) multi-task architectures with
shared network parameters train multiple tasks simultaneously,
(ii) task weighting is to balance the joint learning of multiple
tasks to prevent an objective imbalance that one or more
tasks can overwhelm training. Being multi-task learning issue,
multiple object tracking (MOT) can be potentially improved
from multi-task learning perspectives. Based on such ability,
this paper leverages the benefits of multi-task learning into
learning MOT research.

MOT is a fundamental yet challenging task in the computer
vision field, which has been widely used in many real-world
applications such as video surveillance systems, autonomous
systems, and human computer interaction. The MOT requires
multi-task learning that learns the shared information about:
(i) object detection task classifies and localizes the presence
of all objects over all frames, (ii) data association task
associates detection results over the time-domain based on

object identities. Conventionally, object detection task includes
classification and regression (localization) sub-tasks, and data
association is treated by the classification task. Accordingly,
multi-task learning in MOT consists of one regression task
and two classification tasks. If these tasks are related, com-
bining all tasks into a single tracking model is to learn the
complementary information across tasks by using a shared
layer mechanism. This strategy reduces the computation cost
and boosts the generalization performance. Otherwise, if these
tasks are unrelated, learning all tasks together without prior
knowledge can degrade the performance [2]. However, in
the existing MOT methods [3]–[16], when jointly learning
multiple tasks, they treat all tasks equally without investigating
which tasks are related.

For the task balancing problem, in the optimization view,
the joint learning of MOT tasks minimizes multiple loss
functions during training. However, optimizing all task losses
equally can lead to objective imbalance due to the opposite
characteristics of the various tasks as follows:

1) The range of each task loss is inharmonious because
the regression task takes input offsets in the logarithmic
range with [0,∞), while the input to the classification
objectives is normalized in the range [0, 1].

2) The contribution of each task to the total loss is altered
since the gradient norm of each task is different.

3) The difficulties of the tasks are heterogeneous since
the regression task only makes predictions on positive
samples, while the classification objective computes
predictions for all samples (e.g., negative samples and
positive samples).

Therefore, these reasons perturb the gradients when updating
network weights and cause more challenging to balance loss
values. Recent MOT methods [3]–[12], [14]–[16] used a
weighted sum of objectives to the single total loss where hard
weighting factors are employed to balance the ranges of each
task. They state that the performance of the models is sensitive
to the weighting factors. Usually, optimal factors are manually
tuned by many experiments, which is expensive and difficult
due to the high dimensions of the search space. Moreover,
these weighting factors are fixed during training and do not
reflect the relationship of the tasks since classification and box
regression tasks have a positive correlation.

To address this problem, this paper presents a new Learned
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Weighting Factors (LWF) method that predicts weighting
factors via lightweight neural networks, dynamically balancing
multiple loss functions. This strategy relies on a data-driven
process, and thus it ignores manual tuning weighting factors.
The correlation and difficulty of the tasks are revealed to guide
these weighting factors at each iteration during training.

II. RELATED WORKS

Multi-task learning. In recent years, many methods have
been proposed to improve the generalization performance of
multi-task learning in task weighting [18]–[21].

In the existing literature, there are two ways that bal-
ance the multi-task losses for updating network weights in
an optimal manner, balancing gradient magnitude [18] and
assigning task-specific weighting factors [19]–[21]. SPMTL
[19] presents a self-paced regularizer where parameters in
this regularizer are generated to adjust the hardness level of
tasks and task samples. GradNorm [18] dynamically balances
the task-specific gradient magnitude based on L1 gradient
normalization to guide the task-specific weighting factors.
Motivated by the task priorities of SPMTL, Dynamic Task
Prioritization [20] extends this idea to more various tasks,
which focuses on the learning of difficult tasks. The method
in [21] exploits homoscedastic uncertainty theory to balance
multi-task losses, and the final weighting factors are derived by
optimizing likelihood function. Unlike existing methods, this
paper learns weighting factors via shallow neural network self-
supervised by multi-task losses while other methods generate
weighting factors based on task priorities [19], [20], gradient
normalization [18], and task uncertainty [21].

MOT. In the existing literature, MOT methods are grouped
into two main types: tracking-by-detection and joint-detection-
and-tracking. In the tracking-by-detection methods [3]–[10],
detection and data association tasks are treated in isolation,
i.e., each separate network is learned for each task. Specif-
ically, these methods firstly locate objects in each frame by
detectors and then associate these detections over time based
on Kalman motion prediction, Re-ID appearance features, and
IoU similarity. DeepSORT [8] matches detected boxes by
Re-ID features and associates to the the the next frame by
Hungarian matching. POI [10] combines the re-implemented
detector on extra datasets and deep learning-based Re-ID
to improve the performance. In joint-detection-and-tracking
methods [11]–[16], detection and data association tasks are
jointly learned through a single network. Tracktor [11] uses
the box results at the current frame as region proposals for the
next frame and then refines these proposals via the regression
head of the detector. CenterTrack [12] takes two adjacent
frames and prior heatmaps as input and predicts center offsets
for the current frame. JDE [13] and FairMOT [16] add one
Re-ID branch to the head of the detector to obtain higher
performance. CTracker [15] adds one ID verification branch
for learning the IoU similarity between two frames to the
object detector and proposes Joint Attention Module (JAM)
to model the related task. However, in the multi-task learning
view, most MOT methods [3]–[16] treat multi-task branches

independently or balance multi-task losses equally. Although
joint-detection-and-tracking methods inherit the benefit from
multi-task learning, these methods weakly consider the impor-
tance of related tasks in both network and optimization.

III. THE PROPOSED METHOD

In this section, we analyze objective imbalance problem
originating from jointly learning multi-task losses of MOT in
subsection III-A and propose a solution for this problem based
on this analysis in subsection III-B.

Fig. 1 shows the overall architecture of the joint-detection-
and-tracking network. The used backbone network is ResNet-
50 pre-trained on ImageNet for feature extraction. Following
common methods, FPN [17] is used for constructing multi-
level feature maps. The proposed LWF method performs a
weighted sum of three objectives (Lcls, Lreg, and Lreid) where
weighting factors are learned, shown in Fig. 2.

A. Objective Imbalance in MOT

To investigate the objective imbalance because of multi-task
learning, we revisit the definition of each task loss. Based on
this analysis, a novel learned weighting factors (LWF) method
is proposed to solve the objective imbalance problem in object
detection and data association tasks.

Conventionally, the classification loss Lcls is defined as:

Lcls =
1

Npos +Nneg

Npos+Nneg∑
i=1

FL(pi, p̂i), (1)

FL(pi, p̂i) = −a(1− pi)
b log(p̂i), (2)

where Npos, and Nneg are the number of positive samples, and
number of negative samples. Following by common methods,
if the IoU (Intersection of Union) between the anchor box and
the ground truth bounding box is greater than a threshold, this
sample is considered as the positive sample, and otherwise.
FL(pi, p̂i) indicates the Focal loss in which a, and b are bal-
anced coefficients to control the contribution of hard samples.
pi, and p̂i are the predicted classification score and class label.
The range of the classification probability scores are limited
by intervals [0, 1] because of that:

pi = δ(x) =
1

1 + e−x
, (3)

where δ is the sigmoid activation function normalizing the
digit score x to output the confident scores for each class.

The regression objective Lreg is smoothL1 loss:

Lreg =
1

Npos

Npos∑
i=1

∑
j∈{x,y,w,h}

smoothL1(oi,j − ôi,j), (4)

where oi,j , and ôi,j are the regressed offsets and transformed
targets. Specifically, oi,j = {oi,x, oi,y, oi,w, oi,h} and ôi,j =
{ôi,x, ôi,y, ôi,w, ôi,h} are the transformed coordinates (e.g.,
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Fig. 1. The overall architecture of the multiple object tracking network includes four components: backbone network, feature pyramid network (FPN), multi-
task branches, and multi-task losses. The input of this system is a sequence of frames generated videos with 30 frames per second. The backbone network
extracts informative features from the images. The feature pyramid FPN [17] indicates multi-level feature maps with different scales. Lcls, Lreg , and Lreid

are classification, regression, Re-ID objectives, which serve as the input of the Learned Weighting Factors (LMF) module. Ltotal is the total loss. α, β, and
γ are coefficients learned by the LWF module. The output of the system is the localization of objects and identity numbers.

box center (x, y), spatial dimensions of the bounding box)
generated by log function, defined by the recent detectors as:

oi,x = (xi − xa
i )/w

a
i , oi,y = (yi − yai )/h

a
i ,

oi,w = log(wi/w
a
i ), oi,h = log(hi/h

a
i ),

ôi,x = (x̂i − xa
i )/w

a
i , ôi,y = (ŷi − yai )/h

a
i ,

ôi,w = log(ŵi/w
a
i ), ôi,h = log(ĥi/h

a
i ), (5)

where {xi, yi, wi, hi} denotes the offset prediction (box’s cen-
ter, width, and height) for positive sample i. {xa

i , y
a
i , w

a
i , h

a
i }

is the coordinates of the anchor box. {x̂i, ŷi, ŵi, ĥi} indicates
the coordinates of the ground truth bounding box.

As shown in Equation 5, the box’s normalized center
(oi,x, oi,y) is still in real numbers and (oi,w, oi,h) is trans-
formed by the log function. It is obvious that the input to the
regression loss is converted to range [0,∞) while the input to
the classification loss is normalized to intervals [0, 1]. This
makes the range of each objective inconsistent. According
to Equations 1 and 4, we observe that the classification
task focuses on classifying all samples (negative samples and
positive samples), while the regression task only calculates loss
values for positive samples. Hence, learning the classification
task is more difficult than the regression task, since negative
samples can contain hard samples (IoU scores around the pre-
defined threshold) that have higher loss values.

Following common methods [12], [13], [15], [16], the Focal
loss is applied for the Re-ID objective computed as:

Lreid =
1

Npos

Npos∑
i=1

FL(idi, îdi), (6)

where idi, îdi are the identity confident scores, ID truth label
based on IoU matching of same targets. Because Re-ID loss
is the classification loss, the input to the loss is limited to the
range [0, 1].

Finally, the total loss Ltotal is the weighted sum of objec-
tives, defined as:

Ltotal = αLcls + βLreg + γLreid, (7)

where α, β, and γ are the weighting factors fixed during
training, i.e., hard weighting factors (HWF).

During optimization, the parameters are updated using Gra-
dient Descent, defined as:

θt = θt−1 − lr
∂Ltotal

∂θt−1

= θt−1 − lr
∂(αLcls + βLreg + γLreid)

∂θt−1
, (8)

where θ is the network weights. lr is the learning rate. As
shown in Equation 8, the performance of the network is
sensitive to the weighting factors. If we do not balance the
range of each objective, the model will heavily pay attention
to a certain task. As a result, the regression loss values are
always much larger than the classification loss and Re-ID
loss values. Thus, the regression loss takes up the largest
proportion of the total loss. It is proved in Equations 1, 4,
and 6 since the number of input variables in each objective
is different. Specifically, the regression objective takes four
variables (box’s center, width, and height) as input, while the
classification objective only takes one variable as input. Hence,
the tracking model focuses too much on the regression task,
unnerving the advantage of multi-task learning.

From the above comprehensive analyses, it reveals the
objective imbalance issue in jointly learning multi-task losses.

TABLE I
SEVERAL EXPERIMENTS WITH HWF ON THE MOT16 VALIDATION SET

α β γ Training time (h) MOTA↑ IDF1↑ MOTP↑
0.5 1.0 1.5 20 74.8 65.8 85.2
0.5 2.0 1.0 20 74.3 65.2 85.5
0.7 0.4 0.9 20 74.9 65.2 84.9
1.0 1.0 1.0 20 73.1 63.3 85.3
1.0 0.5 1.5 20 74.9 65.3 84.9
2.0 0.9 1.7 20 75.2 65.2 84.9

B. Learned Weighting Factors (LWF)

In conventional approaches [3]–[12], [14]–[16], the weight-
ing factors are selected based on many experiments to get
optimal values. It takes many hours to complete each trial. For



example, Table I describes the different values of weighting
factors. The total training time takes 120h (5 days) for all
experiments, which are measured by a Tesla V100 GPU.
Because the search space with three tasks is large, it is difficult
to find optimal weighting factors (the model achieves better
performance at these values). Moreover, the weighting factors
are fixed during training, and the network can not reflect the
correlation of each task. Therefore, using the HWF strategy is
a straightforward way to balance multi-task losses.

To avoid sub-optimal selection and manual tuning of
weighting factors, this paper proposes learned weighting fac-
tors (LWF) operation, which leverages the relationship of
detection and Re-ID tasks to predict weighting factors. Our
strategy empowers the weighting factors process to be dy-
namic and learnable through lightweight neural networks. The
weighting factors are formulated as shown in Fig. 2.

concat

FC
(3, C

), R
eLU

FC
(C

, C
), R

eLU

FC
(C

, 3), Sigm
oid()

model
learning
status

F L

Fig. 2. The Learned Weighting Factors (LWF) sub-network is proposed
to learn weighing factors self-supervised by three losses of MOT from the
learning status. concat stands for a concatenation operation. FC(3, C) is the
fully connected layer with input dimension 3, and output dimension C. N
denotes the number of hidden layers.

Our key solution is to accommodate α, β, γ dynamically
during training. As described in Fig. 1, the Lcls, Lreg , and
Lreid are computed at every iteration, taken from the model
learning status and these factors become free hyperparameters.
In another aspect, the weighting factors are generated by
considering the difficulty of each task. Thus, using multi-task
losses from the learning status to generate weighting factors is
an intuitive way and can adapt the network weights according
to task-dependent. However, in this way, the gradient of
weighting factors is ignored during backward pass. It is worth
noting that weighting factors in this way are not supervised by
the model during training, omitting the information of class
labels, ground truth boxes, and ID labels.

To create weighting factors in an optimal way, our LWF
method is proposed, which is described in Fig. 2. The
LWF module is the sub-network self-supervised by multi-
task losses, which takes Lcls, Lreg, and Lreid features as
inputs to predict weighting factors for each task. The LWF
network is simple, which includes several fully connected
(FC) layers mapping concatenated features into a higher
dimensional vector. These layers perform the global interaction
of the prediction and objectives, which reflects the positive
correlation between detection and Re-ID tasks. Since α, β, and
γ are always positive values, the ReLU activation function is
employed to avoid potential risks. The sigmoid function fully
captures task dependencies, i.e., which objective is enabled

to be emphasized at each iteration. Accordingly, the vector
L = [α, β, γ]T for weighting factors can be calculated as:

F = concat(Lcls,Lreg,Lreid), (9)
L = σ(W3δ2(W2δ1(W1F))), (10)

where σ and δ indicate ReLU and sigmoid functions. W1 ∈
R3×C , W2 ∈ RC×C and W3 ∈ RC×3 are linear transforms
implemented by FC layers. In this way, the gradient of the
LWF network is propagated to the overall network, and our
LWF network is very lightweight, which only affects the
training time of the network.

IV. EXPERIMENTS AND RESULTS

A. Datasets, Evaluation Metrics, and Implementation Details

The performance of the proposed method is evaluated
on two benchmark datasets: MOT16 [22] and MOT20 [23].
Further information about these datasets is described in Table
II, where #training and #testing indicate the number of training
and testing videos, respectively.

TABLE II
SOME DESCRIPTIONS OF TWO BENCHMARKS

Dataset #training #testing Camera Condition
MOT16 7 7 moving, static outdoor
MOT20 4 4 static indoor, outdoor

More importantly, in this paper, we only train the model on
the training set of the MOT16 or MOT20 while CenterTrack
[12], JDE [13], and FairMOT [16] use combinations of other
large-scale datasets for training. Thus, we do not include some
methods in this paper for fair comparisons.

All tracking performances are measured by three standard
metrics: Multiple Object Tracking Accuracy (MOTA), ID F1
score (IDF1) defined by CLEAR MOT, and Higher Order
Tracking Accuracy (HOTA). All experiments are conducted by
the deep learning Pytorch framework. The backbone ResNet-
50 is pre-trained on the dataset ImageNet. The weight initial-
ization of the newly added convolutional layers in the FPN,
multi-task branches, and LWF module is fulfilled from the
Gaussian distribution. The GPU Tesla V100 device with Cuda
10.2, and CuDNN 7.6.5 is used to train the model for 100
epochs with a batch size of 8. The Adam optimizer is applied
for minimizing the detection and Re-ID losses. The learning
rate is set to 5×e−5, and the number of anchor boxes tiled per
one feature location is set to A = 1 for all implementations.

B. Results

This subsection analyzes the main tracking results computed
on the testing set of two benchmarks in subsection IV-B1, as
well as the ablation study carried out on the MOT16 validation
set in subsection IV-B2.

1) Comparison with State-of-the-art Methods: In this sub-
section, we describe the main tracking results of the proposed
network on testing sets of the MOTChallenge benchmark,
listed in Table III. The bold font denotes the best result
across all state-of-the-art methods. Since the test sets of MOT



TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE TESTING SETS OF THE MOTCHALLENGE BENCHMARKS

Dataset Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓

MOT16 [22]

DMAN [3] 46.1 54.8 73.8 17.4 42.7 7909 89874 532
MOTDT [4] 47.6 50.9 74.8 15.2 38.3 9253 85431 792
BLSTM-MTP [5] 48.3 53.5 - 17.0 38.7 9792 83707 735
Tracktor [11] 54.4 52.5 78.2 19.0 36.9 3280 79149 682
MPNTrack [6] 58.6 61.7 78.9 27.3 34.0 4949 70252 354
TADAM [7] 59.1 59.5 - - - 2540 71542 529
DeepSORT [8] 61.4 62.2 79.1 32.8 18.2 12852 56668 781
ArTIST [9] 63.0 61.9 - 29.1 33.2 7420 59376 635
JDE [13] 64.4 55.8 - 35.4 20.0 - - 1544
POI [10] 66.1 65.1 79.5 34.0 20.8 5061 55914 805
CTracker [15] 67.6 57.2 78.4 32.9 23.1 8934 48305 1897
Ours 69.2 58.4 78.9 32.3 24.1 6036 48579 1628

MOT20 [23]
SORT20 [24] 42.7 45.1 - 16.7 26.2 27521 264694 4470
Tracktor++ [11] 51.3 47.6 - 24.9 26.0 16263 253680 2584
Ours 53.5 45.6 76.9 35.0 19.8 42702 191973 6156

benchmarks are not provided for evaluation, all the tracking
results are uploaded to the official MOT evaluation protocols.

Our proposed network achieves state-of-the-art perfor-
mances on two datasets in terms of the MOTA score and IDF1.
In MOT16, the proposed network achieves an MOTA score of
69.2%, which outperforms all other trackers by a clear margin.
More specifically, our method outperforms DeepSORT [8] by
7.8%, JDE [13] by 4.8%, POI [10] by 3.1%, and strong method
CTracker [15] by 1.6%, respectively. In recent MOT20 dataset,
we compare our method with SORT20 [24], and Tracktor++
[11], which achieves better performance among them.

2) Ablation Study:
a) Hyperparameters in LWF: The experiments are con-

ducted to investigate how the model is affected by the number
of hidden channels C and hidden layers N in the LWF module.
These results are shown in Table IV and Table V.

TABLE IV
THE EFFECTS OF C ON THE PERFORMANCE

C MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ #params
4 74.9 66.0 85.3 279 1926 0.04k
8 75.2 66.2 85.2 272 1881 0.11k
16 75.3 66.5 85.7 279 1653 0.35k
32 76.2 67.0 85.9 286 1709 1.22k
64 75.9 67.1 85.9 284 1763 4.48k

128 75.5 67.0 85.8 285 1965 17.15k

Table IV shows that the performance is best when the number
of hidden channels C = 32. The results are saturated when
employing too high C. The explanation for this phenomenon
is that setting C = 32 is sufficient to contain the informative
features extracted from objective values of all images.

TABLE V
THE EFFECTS OF N ON THE PERFORMANCE.

N MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ #params
1 76.2 67.0 85.9 286 1709 1.22k
2 76.0 66.6 85.8 280 1863 2.24k
3 74.8 65.9 85.2 259 1691 3.26k

We report the effects of the number of hidden channels
N on the tracking performance by fixing C = 32 and
changing N . Table V shows that stacking more FC layers
in the LWF module degrades performance, which is due to
the fact that the network is overfitting to the input objective
[Lcls,Lreg,Lreid]

T . The LWF sub-network only brings 1.22k
(thousand) of parameters, which is tiny compared to the
tracking model.

b) Behaviors of LWF: As shown in Fig. 3, the learning
curves of weighting factors are reciprocal constraints toward
balancing detection and Re-ID losses. The curves of factor α
and γ tend to increase weighting values while the curve of
factor β shows the opposite influence. It is easy to understand
that the regression loss is always larger than classification and
Re-ID losses (discussed in Section III-A of this paper). Hence,
the weighting factor β is lower to control the regression objec-
tive consistent with the other losses, reducing the contribution
of the regression task to the overall gradient. From the above
analyses, we confirm that the proposed LWF can leverage
multi-task learning in practical applications.

TABLE VI
TIME COMPLEXITY ANALYSIS

Method MOTA GFLOPs #params FPS
Baseline 74.9 64.73 38.62 15.64

Ours 76.6 51.85 36.25 16.79

c) Time cost analysis: Table VI shows the inference
speed (FPS - frames per seconds) of the baseline and our
proposed network. These FPS values are measured on the same
computer device with a single Tesla V100 GPU. As expected,
our method outperforms the baseline in terms of tracking ac-
curacy and inference speed. Specifically, our network achieves
a MOTA score of 76.6% and 16.79 FPS, while the baseline
gets a MOTA score of 74.9% and 15.64 FPS.

V. CONCLUSION

This paper introduced a novel Learned Weighting Factors
(LWF) module, which dynamically balances multi-task losses
in the MOT during training. The lightweight LWF module
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Fig. 3. The curves illustrate learning behaviors of weighting factors under the supervision of the LWF sub-network. The horizontal axis indicates the number
of training iterations (iters). The vertical axis describes the weighting factor values.

attached to the MOT network learns weighting factors self-
supervised by multiple objectives. It is a new and different
perspective in solving multi-task learning and specific MOT
task. The proposed method is evaluated on the MOT16, and
MOT20 benchmarks, achieving state-of-the-art performance.
We hope that our method can serve as the simple baseline
for multi-task learning research. In the future, the proposed
method will be applied to multiple high-level tasks such as
abnormal action detection, human pose tracking, and human
behavior detection in video surveillance systems.
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European Conference on Computer Vision. Springer, 2020, pp. 474–
490.

[13] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, “Towards real-time
multi-object tracking,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI
16. Springer, 2020, pp. 107–122.

[14] B. Shuai, A. Berneshawi, X. Li, D. Modolo, and J. Tighe, “Siammot:
Siamese multi-object tracking,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021, pp. 12 372–
12 382.

[15] J. Peng, C. Wang, F. Wan, Y. Wu, Y. Wang, Y. Tai, C. Wang, J. Li,
F. Huang, and Y. Fu, “Chained-tracker: Chaining paired attentive regres-
sion results for end-to-end joint multiple-object detection and tracking,”
in European Conference on Computer Vision. Springer, 2020, pp. 145–
161.

[16] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot: On the
fairness of detection and re-identification in multiple object tracking,”
International Journal of Computer Vision, vol. 129, no. 11, pp. 3069–
3087, 2021.

[17] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[18] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks,” in International Conference on Machine Learning. PMLR,
2018, pp. 794–803.

[19] C. Li, J. Yan, F. Wei, W. Dong, Q. Liu, and H. Zha, “Self-paced multi-
task learning,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[20] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic
task prioritization for multitask learning,” in Proceedings of the Euro-
pean conference on computer vision (ECCV), 2018, pp. 270–287.

[21] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.
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