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Abstract—Age detection has become incredibly substantial in
various scenarios such as video surveillance, forensic applications,
and advertising platform. An age detector is expected to operate
on low-cost devices or CPU devices to minimize the budget of
the implementation system. This work presents an efficient face-
based age group detector (Age-CPU) that can operate fluidly on a
CPU. It proposes two perspectives convolution architecture with
depthwise global attention modules (2PDG) on this detector. It
applies two kernel sizes to consider different sizes of the feature
area of the object reinforced with enhancing block. The depthwise
layer on the attention module helps the architecture extract
features more focused and deeply. It convolves each channel
with an individual depthwise kernel. The architecture is trained
and validated on the UTKFace and FG-NET datasets. 2PDG
acquires competitive accuracy compared to other competitors’
architectures on the datasets. Furthermore, the proposed detector
can operate 100 frames per second on a CPU device, which is
speedy to execute in real-time.

Index Terms—face-based age group, efficient detector, atten-
tion module, real-time detector, a CPU device

I. INTRODUCTION

Age detection technology has attracted a significant number
of researchers. The objective of this technology is to estimate
age group [1]–[3] or even exact age [4] as one of the facial
attributes of a subject. The age group is obtained by dividing
the full age range into several aging groups [2]. It is used
as a target class in predicting the desired age group for
various purposes, such as differentiating between adults and
children for restriction purposes. Face-based age detection
can be conducted by analyzing a face detected by a camera.
Age detection has become incredibly substantial in various
scenarios such as video surveillance, forensic applications
[5], and advertising platforms [6]. Face-based age detectors
commonly consist of a face detector and an age estimator.
The face detector detects the face and obtains the face area
from the images. The age estimator estimates the age based on
the detected face area. An age estimator consists of a feature
extractor and a classifier in modern techniques. Firstly, it is
used to extract age features from the face. Secondly, it predicts
the age or age group based on the extracted features.

The Convolutional Neural Network (CNN) is a technique
used in many works [4], [7], [8] to implement age estimation

and has been proven to show good performance. Chen et al.
[9] used a CNN architecture as a baseline for age estimation
work. They modified the original AlexNet model and proposed
a novel architecture called Attribute-Region Association Net-
work (ARAN), generating 414 million parameters. Li et al.
[8] proposed a CNN architecture called BridgeNet for age
estimation consisting of local regressors and gating networks.
The local regressors split the data space to settle heterogeneous
data, and gating networks learn aware continuity weights. The
BridgeNet architecture generates 120 million parameters.

As time goes by, many works aim to design a more efficient
CNN architecture with fewer parameters to create a more
efficient CNN architecture. Shen et al. [10] used the CNN
technique integrated with deep differentiable random forests
methods to perform age estimation. It generates only 14 mil-
lion parameters. Another work [4] proposed an attention-based
CNN architecture called attention-based dynamic patch fusion
(ADPF). It consists of two separate CNN, the AttentionNet and
the FusionNet model. The first model is used to dynamically
locate and rank age-specific patches, and the second uses the
discovered patches to predict the subject’s age. The ADPF
also generates only 14 million parameters. These two works
show that the CNN architecture they developed has fewer the
number of a parameter, which makes it more efficient.

The age detector is expected to run on low-cost devices
or CPU devices to reduce the costs of the implementation
system. Therefore, the light CNN architecture with very few
parameters is required, making the detector more efficient and
compatible with running in real-time on low-cost or CPU
devices. The CNN architecture with a few parameters also
makes the detector run faster. This work presents an efficient
real-time face-based age group detector with a low parameter
appropriate for a CPU device.

An efficient face-based age group detector (Age-CPU) pro-
posed two perspectives convolution architecture with depth-
wise global attention modules (2PDG) that offer two view
contextual ways reinforced with attention modules. It applies
two kernel sizes to reckon different sizes of the feature area of
the object. The architecture only produces a few parameters
that make the detector efficient and run faster. Therefore, the
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Fig. 1. The proposed architecture of the efficient face-based age group detector. It uses two perspectives convolution architecture with depthwise global
attention modules.

face-based age detector can be convenient for low-cost or CPU
devices. The contribution of this work summarizes as follows:

1) An efficient CNN backbone using two perspectives con-
volution architecture with squeezed kernels is proposed
to extract features with two diverse kernel sizes. Both
run detachedly during the feature extraction component
reinforced with attention modules. It can capture ade-
quate quality information from distinct feature areas of
the object.

2) A new depthwise global attention module is proposed as
an escalation module to improve the quality of the fea-
ture map from the input feature. The performance result
gains competitive accuracy with other architectures on
UTKFace [11] and FG-NET [12] datasets.

3) An efficient face-based age group detector is offered that
is suitable for implementation on a CPU device. The
performance result gains competitive speed with other
common and light CNN architectures.

II. PROPOSED ARCHITECTURE

The proposed architecture employs two convolution layer
sequences that run parallel with depthwise global attention
modules, as shown in Fig. 1. In this architecture, the backbone
efficiently extracts features of faces, and the classification
module predicts the age group of the face. The proposed
architecture of this work generates 459,347 parameters.

A. The Backbone

The Age-CPU proposes a backbone using two perspectives
convolution architecture with depthwise global attention mod-
ules to extract age features from the face image. Inspired
by the backbone in [13], this backbone of the proposed
architecture only consists of two sequences of convolution
layers, the primary key for extracting age features from a face.
It applies different kernel sizes to capture features based on

local dependencies in various areas in each sequence. We name
them as different perspectives in viewing. It aims to obtain
more information and enrich the spatial component extracted
from the images. Unlike in [13], it only uses 3 × 3 and 5 ×
5 kernel sizes in this backbone. Each perspective consists of
three convolution layers arranged sequentially with one-times
expansion in the number of kernels from 16, 32, and 32. Leaky
ReLU (Leaky Rectified Linear Unit) activation function and a
batch normalization technique [14] are used after convolution
operations to bargain with the gradient problem. It also applies
a dropout technique before the last convolution layer to prevent
overfitting [15].

In order to shrink the feature map and summarize the essen-
tial features with high activation values, it applies max-pooling
operations with different sizes. After the first and second
convolution layers, it put a 3 × 3 max-pooling layer with
strides two to summarize the broader area in this architecture’s
low and middle-level features. Further, it put a 2 × 2 max-
pooling layer with stride two after the last convolution layer.
The attention module is assigned to improve the quality of
the feature map produced by the previous layers, as will be
discussed in detail in the next section. Then, a concatenate
operation is applied to fuse the two perspectives, followed by
a flattening process to make a one-dimensional vector and feed
them to the classification module.

B. The Depthwise Global Attention Module (DG)

In the CNN technique, an attention mechanism is an
approach of selectively focusing on a few features of the
images while ignoring others. Expanding the global attention
mechanism in [16], we not only perform a global average-
pooling operation to aggregate each feature map but also
perform a global max-pooling operation in a parallel manner
as shown in Fig. 2. It aims to strengthen the exactitude in
selecting interest features because it globally highlights each
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Fig. 2. The proposed depthwise global attention module. It is used to improve
the quality of the feature map.

channel and uses it as a basis to determine which channels
have rich interest features. It produces two vectors representing
the feature summary of the corresponding channel. Further, a
concatenation operation is applied to fuse these vectors.

In order to provide an opportunity on each channel to
deepen learning without being impacted by information from
other channels before summarizing, depthwise convolution is
applied before the global pooling operations. It only convolves
each channel with an individual depthwise kernel. After the
concatenation operation, two sequential 1 × 1 convolution
operations are applied to capture channel-wise dependencies
fully. It will also capture the dependencies of two aggregation
operations results. A dimensionality-reduction mechanism is
used with a reduction ratio r at the first convolution layer to
make it more efficient. A Leaky ReLU activation is also used
after the first convolution layer to avoid the loss of valuable
information because the activation considers the positive and
negative values. The proposed depthwise global attention
module equation is expressed as:

d(x, k) =WD(x, k), (1)

A(x, d) = x ∗ σ(WC2(δ(WC1(Co [Ga(d), Gm(d)])))), (2)

where x is the input of the attention module, d is the output of
the depthwise convolution layer, WD is learnable parameters
in the depthwise convolution layer, k is the kernel size applied
in the depthwise convolution layer, Ga is the global average-
pooling operation, Gm is the global max-pooling operation,
Co is the concatenation operation, δ refers to the Leaky ReLU
activation function, WC1 and WC2 are learnable parameters in
the two 1 × 1 convolution layers, and σ indicates the Sigmoid
function used to normalize the attention weights. The kernel
size of the depthwise convolution layer depends on which
perspective the attention module will be applied. The kernel
size is 3 × 3 or 5 × 5.

C. Classification Module

This module is used to compute the probability of the age
group class to predict the age group of the face detected by the
camera. It consists of two dense layers. The first layer consists
of 128 units with ReLU (Rectified Linear Unit) activation.
The second layer consists of the Softmax activation function
that generates the input vector to possibilities representing the
prediction result class. The equation of the Softmax activation
function is expressed as:

S (zi) =
ezi∑N
j=1 e

zj
(i = 1, 2, ..., N) , (3)

where z1, z2, ..., zN are the input values of the Softmax layer
and the output value S (zi) represents the probability that the
sample belongs to the i-th class. In order to prevent overfitting,
a dropout operation is also performed before the second layer.

D. Face Detector

The face-based age group detector requires face detection
as a preliminary process to obtain the face area as a Region of
Interest (RoI) and feed it as an input for the detector architec-
ture. In order to support the performance of the face-based age
group detector, a face detector with efficient performance is
required, mainly to perform in real-time scenarios. Therefore,
the LWFCPU [17] face detector with light architecture is
utilized in this work. It only applies twelve convolutional
layers and generates a few parameters capable of running fast
in real-time on low computing or CPU devices.

III. IMPLEMENTATION SETUP

The proposed architecture is implemented on Keras 2.3.1
and the Tensorflow 2.0 framework. It trained on the NVIDIA
Tesla V100-PCIe 32GB as an accelerator and tested on Intel
Core i7-9750H CPU @ 2.60GHz with 20GB RAM. The
training and validation process is conducted on the UTKFace
and FG-NET datasets with 300 number of epoch in the training
stage. The initial learning rate is set to 10−3 and will be
reduced to 75% when the accuracy does not improve every
20 epochs. The training uses a batch size of 256. Moreover,
Adam is used as an optimizer to update the weight based on
Categorical Cross-Entropy loss. This implementation setup is
applied to all the dataset settings of this work.

IV. EXPERIMENTAL RESULTS

The examination result of the proposed architecture on the
datasets benchmark will be described in this section. The
runtime efficiency, limitation, ablative study, and attention
modules comparison are also described in this section.

A. Evaluation on Datasets

1) UTKFace (Aligned and Cropped Faces): The dataset
contains more than 23,000 facial images covering many vari-
ations such as expression, illumination, age, resolution, pose,
etc. The age variations range from 0 to 116. Three commonly
used settings and one proposed setting are adopted for this
dataset evaluation. In the first setting, i.e., Setting I, following

Authorized licensed use limited to: University of Ulsan. Downloaded on October 26,2022 at 05:59:31 UTC from IEEE Xplore.  Restrictions apply. 



prior work [18], the dataset is divided into the two subsets
with a random permutation split, 90% as training and 10% as
testing sets. It will randomly reorder a collection of objects
in a different order than the original or previous order. In this
setting, five age groups are used as age class targets, 0-24,
25-49, 50-74, 75-99, and 100-116. In the second setting, i.e.,
Setting II, following prior work [19], the dataset is divided
into the three subsets with a random permutation split, 80%
as training, 10% as validation, and 10% as testing sets. In this
setting, the same five groups as Setting I are used.

In the third setting, i.e., Setting III, following prior work
[20], the dataset is divided into the three subsets with a random
permutation split, 10,437 images as training, 3,252 images as a
validation, and 10,719 images as testing. In this setting, seven
age groups are used as age class targets, 0-3 as baby’s face, 4-
12 as child’s face, 13-19 as teenager’s face, 20-30 as young’s
face, 31-45 as adult’s face, 46-60 as middle-aged’s face, and
61-116 as senior’s face. The fourth setting, i.e., Setting IV,
is used for our detector. This detector aims to distinguish
between a child’s and an adult’s faces. In order to avoid an
extreme separation between two classes, the dataset is divided
into three age groups as age class targets, 0-11 as child’s face,
12-17 as teen’s face, and 18-116 as adult’s face. It is also
divided into the two subsets with a random permutation split,
90% as training and 10% as testing sets.

In this dataset, results are conveyed based on two metrics.
They are Mean Absolute Error (MAE) for the Setting I and
Validation Accuracy (VA) for the Setting II-IV, which are
shown in Table I and Table II, respectively. As can be seen in
Setting I, 2PDG with only 459,605 parameters outperforms all
competitor architectures that applied transfer learning mech-
anism. In Setting II-III, 2PDG achieves competitive perfor-
mance based on the validation accuracy of the other architec-
tures. For Setting II, 2PDG result is below [19], which differs
only by 0.43, but it only generated about 50% less number of
parameters. In Setting IV, the proposed architecture achieves
the best performance concerning validation accuracy of the
common architectures, especially of the two light architectures
such as MobileNetV2 and SqueezeNet, which differed by 0.33
and 1.81, respectively. The proposed architecture also produces
more efficiency than the other architectures according to the
number of parameters.

2) FG-NET: The dataset comprises 1,002 facial images
from 82 subjects covering illumination, expression, and pose
variations. Every subject of this dataset has more than ten
facial images. Following prior work [10], [21], it uses the
leave-one-person-out (LOPO) and k-fold cross-validation tech-
niques in this dataset. In every fold, facial images of one
subject are used for testing and the rest for the training
process. There are 82 subjects on this dataset.Therefore, this
evaluation process implements 82 fold, and the conveyed
results are the average values. The evaluation result of this
dataset reports according to the MAE metric, shown in Ta-
ble III. It can be seen that 2PDG with the training setting
achieves competitive performance and occupies the third-best
ranking with 2,75 MAE, which differs only by 0.19 and 0.02

TABLE I
EVALUATION RESULTS ON UTKFACE SETTING I (FIVE AGE GROUPS)

DATASET

Architectures Number of
Parameters MAE

ResNet50 with Transfer Learning [18] 23,597,957 9.66
InceptionV3 with Transfer Learning [18] 21,813,029 9.50
DenseNet with Transfer Learning [18] 7,042,629 9.19
2PDG 459,605 8.55

TABLE II
EVALUATION RESULTS ON UTKFACE SETTING II-IV DATASET

Architectures Number of
Parameters VA (%)

UTKFace Setting II (Five Age Groups)
Best CNN [19] 963,069 79.12
2PDG 459,605 78.69

UTKFace Setting III (Seven Age Groups)
Facenet [20] - 56.90
FFNet [20] - 64.00
MTCNN [20] - 70.10
2PDG 459,863 65.07

UTKFace Setting IV (Three Age Groups)
SqueezeNet + Batch Normalization 735,823 94.60
InceptionV3 21,808,931 95.06
ResNet50V2 23,570,947 95.10
VGG16 + Batch Normalization 39,786,819 95.27
VGG11 + Batch Normalization 34,417,795 95.48
VGG13 + Batch Normalization 34,472,003 95.82
MobileNetV2 2,261,827 96.08
2PDG 459,347 96.41

from the best and the second-best, respectively. Even so, the
proposed architecture generates total parameters far below the
competitors. Moreover, 2PDG reaches an MAE value under
3.00. It indicates that it can execute adequately even with a
small dataset.

B. Runtime Efficiency and Limitation

Age-CPU with 2PDG architecture is designed to operate
on low-cost devices or CPU devices to minimize the budget
of the implementation system. With only 459,347 parameters,
2PDG can perform efficiently in real-time on CPU-based. It
achieves 166 FPS in classifying face-based age group (Age
Group) and 100 FPS in recognizing facial age group when
integrated with face detection (Face + Age Group). 2PDG
becomes the most rapid detector on the CPU compared to
other competitors, as shown in Table IV. Fig. 2 (a) shows
the correct prediction results of the Age-CPU detector on the
CPU. The green bounding box indicates a child’s face, the blue
bounding box indicates a teen’s face, and the red indicates an
adult’s face. As shown in Fig. 2 (b), the proposed detector
is still weak in predicting the age group on the face with
yaw pose because the UTKFace dataset does not have many
instances, especially on the face with yaw pose.

C. Ablative Study and Attention Modules Comparison

In this experiment, the performance of each proposed mod-
ule is investigated by removing each of them, then measuring
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TABLE III
EVALUATION RESULTS ON FG-NET DATASET

Architectures Loss Function Optimizer Number of Parameters MAE
DEX [22] Euclidean - 120 M 4.63
Mean-Variance Loss [7] Mean-Variance SGD 20 M 4.10
GA-DFL [23] - - 138 M 3.93
LSDML [21] - - 44 M 3.92
ARAN [9] Manually-designed - 414 M 3.79
M-LSDML [21] - - 44 M 3.74
DLDLF [10] Manually-designed - 14 M 3.71
DRF [10] Manually-designed - 14 M 3.41
DAG-VGG16 [24] - - 24 M 3.08
DAG-GoogleNet [24] - - 131 M 3.05
ADPF [4] Diversity & Age Estimation SGD 14 M 2.86
BridgeNet [8] Regression & KL Divergence SGD 120 M 2.56
VGG16 + Batch Normalization Mean Absolute Error SGD 40 M 3.11
VGG16 + Batch Normalization Categorical Cross Entropy SGD 40 M 3.03
VGG16 + Batch Normalization Mean Absolute Error Adam 40 M 3.01
VGG16 + Batch Normalization Categorical Cross Entropy Adam 40 M 2.73
MobileNetV2 Categorical Cross Entropy Adam 2.34 M 3.12
SqueezeNet + Batch Normalization Categorical Cross Entropy Adam 0.77 M 3.05
2PDG Categorical Cross Entropy Adam 0.46 M 2.75

TABLE IV
COMPARISON OF ARCHITECTURE SPEEDS ON A CPU

Architectures Age Group
(FPS)

Face +
Age Group

(FPS)
InceptionV3 31 27
ResNet50V2 35 32
VGG16 + Batch Normalization 38 33
VGG13 + Batch Normalization 45 38
VGG11 + Batch Normalization 50 41
MobileNet V2 56 46
Squeezenet + Batch Normalization 99 71
2PDG 166 100

TABLE V
ABLATIVE STUDY OF PROPOSED ARCHITECTURE

Settings Number of
Parameters VA (%) Age Group

(FPS)

Face +
Age Group

(FPS)
2P 456,579 95.49 201 113
2PG 458,195 95.95 170 103
2PDG 459,347 96.41 166 100

its performance and efficiency. It will reveal the influence of
the presence of each proposed module. It uses the UTKFace
Setting IV dataset in this investigation. According to the VA
metric, the result reports are shown in Table V. It can be seen
that utilizing the proposed global attention module (2PG) can
increase classification capability by 0.46%. Further, adding the
depthwise convolution layer at the global attention module
(2PDG) can increase classification capability by 0.46%. In
addition, the use of the modules does not significantly reduce
the efficiency of the architecture, which only decreases 13 FPS.

The proposed attention module with various reduction ratios
r is also compared with other lightweight attention methods
such as Squeeze-and-Excitation (SE) [25] and Convolutional

(a)

(b)

Fig. 3. The correct prediction result (a) and the incorrect prediction results
(b) of the Age-CPU detector.

Block Attention Module (CBAM) [26], which is illustrated in
Table VI. In order to perform a fair comparison, it applies
the attention module in the proposed backbone (2P). The
validation accuracy of the proposed attention module, DG
(r=4) is higher than SE (r=4) and CBAM (r=4), which differ

Authorized licensed use limited to: University of Ulsan. Downloaded on October 26,2022 at 05:59:31 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VI
COMPARISONS OF DIFFERENT ATTENTION METHODS WHEN USING
PROPOSED TWO PERSPECTIVE NETWORK (2P) AS THE BACKBONE

Attention
Modules

Number of
Parameters VA (%)

Age
Group
(FPS)

Face
+ Age
Group
(FPS)

SE (r=4) [25] 457,603 95.70 181 106
DG (r=8) 458,571 95.82 169 101
DG (r=2) 460,899 96.12 164 100
CBAM (r=4) [26] 457,719 96.20 128 85
DG (r=4) 459,347 96.41 166 100

by 0.71% and 0.21%, respectively. Based on speed, 2PDG
ranks second best after SE, with a difference of only 6 FPS
when integrated with face detection. CBAM ranks the lowest
in terms of speed because this module consists of a channel
and a spatial attention module.

V. CONCLUSION

This study proposes an efficient real-time face-based age
group detector with lightweight architecture. It offers two
perspectives convolution architecture with depthwise global
attention modules (2PDG). The proposed depthwise global
attention module is used to improve the quality of the feature
map resulting from the previous operation. The 2PDG gained
competitive accuracy compared to other competitors on the
UTKFace and FG-NET datasets. As a result, the detector can
operate at 100 FPS to recognize the age group of the face
when working on a CPU device in real-time. The proposed
attention module also gains the best performance compared
with other attention modules such as SE and CBAM. In future
work, the dataset will be explored more thoroughly to address
the limitations of the proposed detector. It is also potential for
future work to combine age estimation straight into the face
detection network to become one package detector.
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