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Abstract—Multiple object tracking involves multi-task learning
to handle object detection and data association tasks concur-
rently. Conventionally, object detection consists of object clas-
sification and object localization (e.g., object regression) tasks,
and data association is treated as a classification task. However,
various tasks can cause inconsistent learning due to that the
learning targets of object detection and data association tasks
are different. Object detection focuses on positional information
of objects while data association requires strong semantic in-
formation to identify same object target. Besides, advantageous
character of multi-task learning is the correlation between tasks,
and adopting such character in learning the networks can
result in better generalization performance. However, existing
multiple object tracking methods learn this information by
treating multi-task branches independently. To understand the
behaviours of multi-task networks in multiple object tracking, in
this paper, we explore task-dependent representations through
empirical experiments and observe that multi-task branches in
multiple object tracking are complementary. To better learn such
information, we introduce a novel Correlation Estimation (CE)
module to estimate the correlation between object classification
and bounding box regression based on statistical features of box
regression quality. Finally, extensive experiments are conducted
on the benchmark dataset MOT17. As a result, our method
outperforms state-of-the-art online trackers without requiring
additional training datasets.

Index Terms—Multiple object tracking, multi-task network,
multi-task learning

I. INTRODUCTION

Multi-task learning is a learning paradigm [1], which learns
the related information across multiple tasks to boost the gen-
eralization learning of all possible tasks. In the deep learning
generation, multi-task learning encodes the task relatedness in
two aspects: (i) network architectures with shared represen-
tation train multiple tasks simultaneously, (ii) task weighting
is to balance the joint learning of multiple tasks to prevent
an objective imbalance that one or more tasks can overwhelm
training. Being multi-task learning problem, multiple object
tracking (MOT) can be potentially improved from multi-task
learning methods. Inspired by such ability, this paper takes
two aspects of multi-task learning into account.

MOT is a basic yet challenging task in the computer vision
research, and has been widely used in many applications such
as object detection [2], video surveillance systems [3], human
behaviors, and facial landmark detection. The MOT requires
multi-task learning that learns the shared representation about:

(i) object detection detects the presence of objects in all
frames, (ii) data association associates these detections over
the time-domain based on object identities. By definition,
object detection task includes classification and regression sub-
tasks, and data association is solved by the classification task.
Accordingly, multi-task learning in MOT comprehends one
regression task and two classification tasks. If these tasks
are related, combining all tasks into a single tracking model
is to learn the complementary information across tasks by
using a shared layer mechanism. This strategy reduces the
computation cost and boosts the generalization performance.
Otherwise, if these tasks are unrelated, learning all tasks to-
gether without prior knowledge can degrade the performance.
However, in the existing MOT methods [4]–[17], when jointly
learning multiple tasks, they treat all tasks equally without
investigating which tasks are related. Specifically, in two
aspects of multi-task learning, these methods treat multi-task
branches independently and balance task losses equally.

In the multi-task network aspect, most MOT methods [4]–
[15], [17] design independent network branches for detection
and data association tasks, which weakly learn the common
features among tasks. These network designs increase model
complexity and do not fully leverage the benefits of multi-task
learning to the MOT task. To know how network branches
work, in this paper, a comprehensive comparison between
three tasks (two classifications and one regression) is con-
ducted to investigate which tasks in MOT are related. By
empirical experiments, we find the interesting fact that the
three tasks in MOT are complementary, and regression in
detection and classification in the data association can share
the common information during training. This means bounding
box regression is strongly correlated to the appearance features
supervised by object identities for data association. Based on
these insights, we propose a novel Correlation Estimation (CE)
module to better learn complementary information between
object classification and box regression according to quality
features of box predictions.

II. LITERATURE REVIEW

Multi-task learning. In recent years, many methods have
been proposed to improve the generalization performance of
multi-task learning in deep network architecture [19]–[24].
Cross-Stitch [19] learns related tasks by linearly combining
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Fig. 1. The overall architecture of the joint-detection-and-tracking method consists of three parts: backbone network, feature pyramid network (FPN), and
tracking head (multi-task branches). The video of this system is separated into a sequence of frames (at 30 frames per second) as the input images. The
backbone network extracts informative features from the images. The feature pyramid FPN [18] indicates multi-level feature maps with different scales. The
proposed multi-task branches with CE module (Correlation Estimation) include three branches in which classification and regression branches are sub-tasks
of object detection, and Re-ID branch is used to predict identification scores for data association procedure. The output of the system is the coordinates of
objects and identity numbers.

multi-task activation functions. MTAN [20] proposes a soft
attention mask attached to the task-specific branch to learn
task interactions. Fully-adaptive feature sharing [21] explores
dynamic multi-task networks from thin to wide fashion based
on the task grouping method. PAD-Net [22] assumes that
learning auxiliary tasks can help target tasks, and final predic-
tions are produced by gathering these auxiliary tasks via the
multi-modal distillation approach. PAP-Net [23] empirically
analyzes the multi-task network in PAD-Net and proposes the
affinity module to learn the task relationship. MTI-Net [24]
explores the task relatedness at different scales through three
new modules, multi-scale multi-model distillation, feature
propagation, and feature aggregation. Differently, this paper
investigates the multi-task networks in terms of statistical
features of box regression quality while existing methods
explore the benefits of learning related tasks in different views
such as multi-task activation functions [19], and attention
mechanisms [20]–[24].

MOT. MOT is grouped into the online and offline methods
according to the input frames. Online tracking methods use
past and current frames as input images, thus reducing high
computational costs. Offline tracking takes whole frames as
input for the network. Even though offline methods bring
significant improvements by combining motion features and
optical flow, they rely on high model complexity. The first
online tracking technique in [9], [25] consists detection and
Re-ID (data association), based on CNNs. As MOT dataset
[26] has object localization provided by detectors, for example,
DPM, and Faster R-CNN [27], most of the tracking methods
focus on data association procedure. Currently, several online
one-shot trackers [13], [14], [16] join detection and Re-
ID into a single end-to-end architecture to obtain a more
efficient tracker, leveraging re-localization to enhance the
data association step. This work uses the single end-to-end
network as the baseline. Generic object detections [27]–[29]
are applied for specific categories, such as human detections

[26], which achieves remarkable improvements. This paper
utilizes RetinaNet [28] for the detection step.

III. LEARNING MULTI-TASK BRANCHES IN MOT

In this section, we discuss the task relatedness of MOT and
propose efficient structures for learning multi-task branches.
The proposed joint-detection-and-tracking network is de-
scribed in Fig. 1. The used backbone network is ResNet-
50 pre-trained on ImageNet for feature extraction. Following
common methods, FPN [18] is used for constructing multi-
level feature maps. We defer to the supplementary material the
detailed dimensions of the backbone and FPN architectures.
The tracking head (multi-task branches) with the proposed CE
module learns the complementary information across tasks. In
this paper, Re-ID appearance features are used for the data
association task. The detailed architecture of the tracking head
is shown in Fig. 2(f).

In the following, a thorough comparison between the de-
tection and Re-ID network structures is performed to find the
shared representation of the tracking head, shown in Table I.
Each row in this table corresponds to each head structure in
Fig. 2. Based on this comparison and its analysis, we propose
the final multi-task branches with the CE module in Fig. 2(f).

TABLE I
COMPARISON OF DIFFERENT TYPES OF HEAD STRUCTURE ON THE MOT17

VALIDATION SET

Type GFLOPs #params (M) MOTA↑ IDF1↑ MOTP↑
(a) 64.73 38.62 74.9 66.6 85.3
(b) 64.73 38.61 75.5 66.6 85.0
(c) 38.96 33.89 75.4 67.5 85.7
(d) 51.84 36.25 75.2 67.8 85.6
(e) 51.84 36.25 75.6 66.2 85.5
(f) 51.85 36.25 76.1 67.3 85.6

Three parallel branches have been widely explored in Cen-
terTrack [13], JDE [14], and FairMOT [17] as shown in Fig.
2(a). This structure treats classification, regression, and Re-ID
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Fig. 2. Comparison between different types of tracking head: (a) Triple Branches used in CenterTrack, JDE, and FairMOT; (b) Joint Branches proposed
by CTracker; (c) Shared Branches, where parameters of three branches are shared; (d) Double Branch-cls, where classification and Re-ID branches shares
parameters; (e) Double Branch-reg, where regression and Re-ID branches shares parameters; and (f) Double Branch-reg with CE, which extends the double
branch-reg structure by adding a correlation estimation (CE) module. H ×W ×A denotes height, width, and the number of anchor boxes. 4A indicates four
regressed offsets.

⊗
is element-wise matrix multiplication.

tasks independently, which has a high computational cost but
inferior performance.

CTracker [16] utilizes the Joint Attention Module (JAM) to
focus on local semantic features of the combined classification
and Re-ID features, illustrated in Fig. 2(b). The regression
branch uses combined features to improve detection and track-
ing performance. This method states that classification and Re-
ID branches are complementary. Although this head structure
takes advantage of task-dependent learning, it utilizes more
stacked convolution layers causing computational overhead.
Specifically, JAM achieves a MOTA score of 75.5% at 64.73
GFLOPs (Giga Floating-point Operations Per Second).

Fig. 2(c) describes the simplified structure of the track-
ing head in which parameters of three branches are shared.
Interestingly, the performance is similar to type (b), while
reducing the model complexity to 38.96 GFLOPs (by half of
type (b)). It reveals that the three tasks are complementary.
Thus, leveraging the correlation learning of the three tasks
can improve tracking performance.

To consider how each task affects the others, the shared
convolution is shown in Fig. 2(d), (e). More specifically, the
classification and Re-ID branches have the same parameters to
investigate related tasks across these two tasks, shown in Fig.
2(d). Alternatively, shared regression and Re-ID branches are
performed in Fig. 2(e) to consider the collaborative learning
of these two tasks. As a result, the MOTA score of type (e) is
higher than type (d). It is understood that the classification task
learns semantic features to distinguish objects and background,
while the Re-ID task learns appearance features to identify two
objects. Therefore, learning classification features complement
Re-ID features. Re-ID and regression tasks make predictions
on the same semantic features, and thus both can share the
complementary information during training.

From the above observations, the extension of the double
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Fig. 3. The detailed sub-network of Correlation Estimation (CE), where
E denotes the number of hidden channels.
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branch-reg with the CE module is explored in Fig. 2(f) to
learn three related tasks in an effective way. Motivated by
the analysis in the PISA [30], the CE module is proposed to
estimate the correlation between regression and classification
tasks in a different perspective, regression quality, illustrated
in Fig. 3. The regression distribution implemented by the
softmax function φ is considered as Dirac delta distribution
defined by the BBENet, which reflects ambiguities of the
real dataset. The input of the CE sub-network is four offset
parameters of the bounding box. Straightforwardly, the Topk
values are used to measure regression quality D. If Topk
values are higher, the bounding box distribution is sharper (i.e.,
corresponding to higher regression quality) and vice versus.
These values guide classification score during NMS (Non-
maximum Suppression). The CE module only has three 1×1



convs followed by ReLU and sigmoid to yield the quality
feature Q. Finally, the classification feature I is multiplied by
the quality feature Q to leverage joint representation J:

J = I×Q, (1)
D = Topk(φ(R)), (2)
Q = δ(W′

3σ
′
2(W

′
2σ

′
1(W

′
1D))), (3)

where R is the regression feature that denotes regressed offsets
of the bounding box. W′

1 ∈ R4×E , W′
2 ∈ RE×E and W′

3 ∈
RE×1 are linear transforms implemented by 1×1 convolution.

The PyTorch code of the Correlation Estimation (CE) mod-
ule is illustrated in the Algorithm 1. The input of the CE
module is the regression features with four offset channels
(box’s center, height, and width). The selected Topk values
must be suitable for input channel dimension, e.g., channel
dimensions are divisible by Topk values. Thus, the Topk
values can only be one, two, or four. During training and
testing, we set Topk = 2 for all implementations since this
value does not affect the performance.

Algorithm 1 Pytorch code of the CE sub-network
import torch
import torch.nn as nn
import torch.nn.functional as F

# E is the number of hidden channels

# topk_value forms regression quality

# (C_r is divisible by Topk value)

####initial_layers####

CE_net = nn.Sequential(

nn.Conv2d(2*topk_value, E, kernel_size=1),

nn.ReLU(inplace=True),
nn.Conv2d(E, E, kernel_size=1),

nn.ReLU(inplace=True),
nn.Conv2d(E, 1, kernel_size=1),

nn.Sigmoid())

def CE_module(regress_feat):

# regress_feat (tensor): size [N, C, H, W]

# N: batch size

# C_r=4: number of regressed offset variables

# H, W: height, width of feature map

x = regress_feat

N, C_r, H, W = x.size()

# model distribution probability

prob = F.softmax(x.reshape(N, 2, 2, H, W),dim=2)

# quality estimation by Topk

qe, _ = prob.topk(topk_value, dim=2)

qe = qe.reshape(N, -1, H, W)

# forward to CE network

corr_score = CE_net(qe)

return corr_score

Model complexity is shown in the last row of Table I. The
CE module only brings negligible additional GFLOPs, and
thus it does not affect the training or testing time of the one-
shot tracker. And the number of parameters (# params) is the
same as type (e). Moreover, the extension of type (e) achieves
a MOTA score of 76.1%, which surpasses all structures. It
demonstrates the CE sub-network is simple yet effective.

IV. EXPERIMENTS AND RESULTS

A. Datasets, Evaluation Metrics, and Implementation Details

The performance of the proposed method is evaluated on
the benchmark dataset: MOT17 [26]. This dataset contain 7
training videos and 4 testing videos. More importantly, in
this paper, we only train the model on the training set of
the MOT17 while CenterTrack [13], JDE [14], and FairMOT
[17] use combinations of other large-scale datasets for training.
Thus, we do not include some methods in this paper for fair
comparisons.

All results are measured by three standard metrics: Multiple
Object Tracking Accuracy (MOTA), ID F1 score (IDF1) de-
fined by CLEAR MOT, and Higher Order Tracking Accuracy
(HOTA). Additional metrics include Multiple Object Tracking
Precision (MOTP), the percentage of Mostly Tracked targets
(MT), the percentage of Mostly Lost targets (ML), the total
number of False Positive (FP), the total number of False
Negatives (FN), and the number of Identity Switches (IDS).
Among them, the MOTA score is the primary metric used for
comparison with other methods.

All experiments are conducted by the deep learning Pytorch
framework. The backbone ResNet-50 is pre-trained on the
dataset ImageNet [31]. The weight initialization of the newly
added convolutional layers in the FPN, tracking head, and CE
module is filled from the normal distribution. Two GPU Tesla
V100 devices with Cuda 10.2, and CuDNN 7.6.5 are used to
train the model for 100 epochs with a batch size of 8. The
Adam optimizer is applied for minimizing the detection and
Re-ID objectives. The learning rate is set to 5×e−5, and the
number of anchor boxes tiled per one feature location is set
to A = 1 for all implementations.

B. Results

This subsection analyzes the main performances conducted
on the testing set of the benchmarks in subsection IV-B1, as
well as the ablation study carried out on the MOT17 validation
set in subsection IV-B2.

1) Comparison with State-of-the-art Methods: In this sub-
section, we describe the main results of our method on testing
sets of the MOTChallenge benchmark, listed in Table II. The
bold font indicates the best result among all state-of-the-
art online methods. Since MOT benchmarks did not provide
annotations for testing, all the detection and Re-ID results
are uploaded and evaluated to the official MOT evaluation
protocol.

Our proposed network achieves state-of-the-art perfor-
mances on the dataset MOT17 in terms of the MOTA score
and IDF1. More specifically, we achieve an MOT score of



TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE TESTING SETS OF THE MOT17 BENCHMARKS

Dataset Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓

MOT17

DMAN [4] 48.2 55.7 75.9 19.3 38.3 26218 263608 2194
MOTDT [5] 50.9 52.7 76.6 17.5 35.7 24069 250768 2474
Tracktor [12] 53.5 52.3 78.0 19.5 36.6 12201 248047 2072
BLSTM-MTP [6] 53.6 55.8 - 23.5 34.4 23583 236185 1845
Tracktor++ [12] 54.4 56.1 78.1 25.7 29.8 44109 210774 2574
TADAM [8] 59.7 58.7 - - - 9676 21629 1930
DeepSORT [9] 60.3 61.2 79.1 31.5 20.3 36111 185301 2442
CenterTrack [13] 61.5 59.6 - 26.4 31.9 14076 200672 2583
ArTIST [10] 62.3 59.7 - 29.1 34.0 19611 191207 2062
SiamMOT [15] 65.9 63.3 - 34.6 23.9 18098 170955 3040
CTracker [16] 66.6 57.4 78.2 32.2 24.2 22284 160491 5529
Ours 67.6 57.6 79.0 31.7 26.0 16485 161502 4983

67.6%, which is superior to all the other trackers, including
TADAM [8] (59.7%), DeepSORT [9] (60.3%), CenterTrack
[13] (61.5%), SiamMOT [15] (65.9%), and CTracker [16]
(66.6%).

TABLE III
INVESTIGATION OF E IN CE MODULE

E MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ #params
16 74.3 65.8 85.1 259 1954 0.34k
32 74.6 66.6 85.2 270 2060 1.18k
64 75.7 66.3 85.7 270 1493 4.41k

128 76.1 67.3 85.6 278 1668 17.02k
256 74.8 66.2 85.2 266 2115 66.81k

2) Ablation Study:
a) Hyperparameters in CE: Table III shows that the

results of the model are sensitive to the variation of E.
Specifically, setting E = 128 gets the optimal MOTA score
among various values. Moreover, our CE module is very
lightweight, which only takes 0.0004% of #params of the
whole tracking network.

b) Performance on the MOT testing set: The detailed
performances of our method on testing sets of MOTChallenge
benchmarks are listed in Table IV.

TABLE IV
THE PERFORMANCE ON EACH VIDEO OF MOT17 TESTING SET

Video MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ IDs↓
MOT17-01 47.5 39.7 76.8 6 165 65
MOT17-03 87.2 66.8 78.9 124 3565 505
MOT17-06 56.6 56.2 78.5 65 397 216
MOT17-07 50.6 41.3 77.8 12 480 230
MOT17-08 30.3 30.1 83.1 11 225 178
MOT17-12 42.8 51.8 80.9 14 186 70
MOT17-14 40.1 43.1 78.4 13 477 397

Overall 67.6 57.6 79.0 735 16485 4983

c) Qualitative Results: The qualitative results of the
proposed method are described in Fig. 4. Human identification
is addressed by the identity number. Each curve denotes the
predicted trajectory over the time domain.

V. CONCLUSION

This paper leverages the benefits of multi-task learning into
improving the MOT network. The comprehensive analysis of

the tracking head structure is investigated through empirical
and theoretical analysis. As a result, we find the interesting
fact that three tasks in MOT are complementary, and jointly
learning such property can result in better generalization
performance. To form better representation, the lightweight
Correlation Estimation (CE) sub-network is proposed, which
improves classification features by learning the estimated
regression quality. The proposed method is evaluated on
the dataset MOT17, achieving state-of-the-art performance.
We hope that our method can serve as the simple baseline
for multi-task learning research. In the future, the proposed
method will be applied to multiple high-level tasks such as
abnormal action detection, human pose tracking, and human
behavior detection in video surveillance systems. It is a new
and different perspective in solving multi-task learning and
specific MOT task.
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