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Abstract—Convolutional neural networks (CNNs) have at-
tained the maximum performance today not just for human
posture prediction but also for other machine vision applications
(e.g., object identification, semantic segmentation, images clas-
sification). The Attention Module also reveals their dominance
over other traditional networks (AM). As a result, the focus
of this research is on creating a suitable feed-forward AM for
CNNs. First, input the feature map into the attention module,
which is divided into two dimensions: channel and spatial, after
passing through a stage in the backbone network. The AM
then multiplies these two feature maps and sends them to the
backbone’s next level. The network may collect more data in
terms of long-distance dependencies (channels) and geographic
data, resulting in increased precision efficiency. Our findings
would also reveal a distinction between the use of the attention
module and current approaches. When compared to the baseline-
CNN backbone, switching to a High-resolution network (HRNet)
keeps the projected joint heatmap accurate while reducing the
number of parameters. The suggested architecture outperforms
the baseline-HRNet by 2.0 points in terms of AP. The proposed
network was also trained using the COCO 2017 benchmarks,
which are now available as an open dataset.

Index Terms—machine learning, high-resolution network, effi-
cient attention module, human pose estimation.

I. INTRODUCTION

In today’s world, 2D human posture estimate plays an
essential but difficult role in computer vision, fulfilling a
variety of goals such as human re-identification [1], [2],
activity recognition [3], [4], human pose estimation [5], [6],
and 3D human pose estimation [7], [8]. The fundamental
purpose of the human posture is to identify bodily portions for
human body keypoints. The importance of channel and spatial
backdrop in improving the precision of key point regression
cannot be overstated. As a result, the focus of this study will
be on how to teach the network to pay better attention to
information.

According to recent developments, deep convolutional neu-
ral networks have lately achieved outstanding performance.
Before raising the resolution, most existing techniques route
the input through a network, which is typically made up
of high-to-low resolution subnetworks connected in series.
Hourglass [9], for example, uses a symmetric low-to-high
technique to recover high resolution. SimpleBaseline [10] uses
a few transposed convolution layers to build high-resolution
representations. Dilated convolutions are also used to increase
the last layers of a high-to-low resolution network (such as
VGGNet or ResNet) [11], [12].

Deep neural network convolution has now encoded major
advancements in human posture [13], [14]. However, these
networks face numerous obstacles. To begin, how can the
accuracy of various types of networks be improved (For
example, a real-time network or a network that measures
correctness.) Second, it is common to need to check the speed
of a network while updating or modifying it. Finally, the
current network must increase accuracy while remaining as
fast as possible. This study examines a one-of-a-kind network
as well as the speed and accuracy of the attention module.
Using and not using the attention module is the subject of
the proposed experiment. The experiment also differs from
the Simple Baseline [10] experiment in that it does not use
the attention mechanism and instead uses the Simple Baseline
[10] experiment for upsampling, it instead used the transpose
convolution [15]. The proposed method would focus on how
productive and economical each network situation is.

The proposed technique was used to create a simple fine-
tune attention module called [16], which showed a significant
improvement in mean Average Precision (mAP). The proposed
network, which is based on VGG16 [11], aims to improve the
spatial attention module (SAM) by using two 3×3 convolution
layers instead of a 7×7 convolution layer. By employing a
3×3 kernel, the network keeps the mAP while minimizing the
implementation cost. In addition, the number of parameters
was reduced, which resulted in a faster network. To further
comprehend AM, the suggested network increased 4.7 points
in Average Accuracy for precision while only increasing 16.5
percent of number parameters, compared to the Attention
mechanism standard [16] when using the High-Resolution
Network [17] as a backbone network. This study presents a
novel network attention module that can quickly respond to a
wide range of challenges in a variety of applications, including
object recognition, picture classification, and human position
estimate. The suggested method uses an up-sampling method
to compute joint human posture predictions based on feature
map recovery.

II. RELATED WORK

2D-Human Pose Estimation: Deeppose [18], the most sig-
nificant part of human pose estimation is key-point recognition
and its interaction with geographical data. Simple baseline
employs joint prediction via an end-to-end architecture with
a larger constraint. Later, with the Stacked hourglass network



Fig. 1. Illustrate the suggested 2D-human-pose-estimation architecture’s outline. The proposed method separated the network into four phases, with an attention
module connecting each level.

[9], Newell decreases the number of settings while keeping
high accuracy. Nowadays, Sun with the High-Resolution net-
work [17] maintains the high-resolution map from beginning
to end to maintain the network’s high-level feature till the
end. Gaussian distributions were used in all of the approaches
to depict local joints. Following that, a convolution neural
architecture was used to estimate human posture. To lower em-
ployment expenses, they must limit the number of parameters,
and utilizing suitable attention tactics will do so. As a result,
the proposed technique concentrates on the attention module
in use while boosting accuracy and reducing the number of
parameters.

A 3×3 kernel size, on the other hand, outperforms a 7×7
kernel size when it comes to enhancing network performance.
However, the 7×7 kernel size provides higher precision in
certain more complicated and expensive systems. In compar-
ison, our attention module provides an adequate perspective
for network design with a limited number of parameters and
high speed or a greater number of parameters and lower speed.
The essay then shows how the attention module works in each
method and consequence.

High resolution network: Most convolutional neural net-

works for keypoint heatmap estimation are composed of a stem
subnetwork, similar to a classification network, that decreases
the resolution, a main body that produces representations with
the same resolution as its input, and a regressor that estimates
the heatmaps where the joint positions are estimated and then
transformed in original resolution. Keeping the full resolution
give the network get better accuracy. The main body primarily
employs a high-to-low and low-to-high structure, which may
be supplemented by multi-scale fusion and intermediate (deep)
supervision.

High Resolution architecture connects high-to-low subnet-
works in tandem. It maintains high-resolution representations
throughout the process, allowing for geographically accurate
heatmap estimation. It generates consistent high-resolution
representations by integrating the representations generated by
the high-to-low subnetworks periodically. Our method differs
from most past efforts in that it necessitates a separate low-to-
high upsampling operation as well as an aggregate low-level
and high-level feature map. The technique is superior in joint
identification accuracy and efficient in computing complexity
and parameters without the need for intermediary heatmap
monitoring.



Attention mechanism: Human visualization is critical in
computer vision, and several focus processing algorithms are
being developed to increase CNN efficiency. Wang et al. [19]
have proposed a non-local network to collect long-distance
dependencies. The SENet Channel Focus Module was merged
with the Inception Multi-Branch Convolution in SKNet [20],
which was influenced by SENet [21] and Inception citec36.
Furthermore, the Module for Geographical Attention is based
on Google’s STN [22], which collects feature map backdrop
data. Additionally, the attention module offers various advan-
tages for saliency detection, multi-label categorization, and
individual recognition.

The proposed approach in this study was motivated by the
CBAM architecture [23], which uses element-wise multiplica-
tion to construct the productive in the midst of both spatial
and channel modules. The tensors then add to the preceding
tensors to blend the old and new data from the Attention block.

III. METHODOLOGY

A. Network architecture

Backbone network: Our system utilized a backbone com-
prised of HRNet-W32 and HRNet-W48 [17], as depicted in
Figure 1 for a complete architecture. Each HRNet is divided
into four phases that contain residual blocks and connections.
The original RGB image is reduced in size to 256 × 192
(HRNet-W32, HRNet-W48), the tensor traverses each pillar
layer, and the starting resolution of H ×W is reduced twice
for each stage. Finally, after traveling down the backbone,
the function map’s dimension is reduced to W

16 × H
16 with

256 channels at the network’s final bottom layer. Therefore,
the backbone network will only employ the first subnetwork,
whose size remains {WtimesH until the conclusion of the re-
gression. Furthermore, the channels’ dimensions were doubled
at each level. It progresses from 32 after the first stage to 256
at the end. The baseline network’s role is to collect valuable
data from extract feature maps and provide it to the Training
System, which predicts human joints via cross entropy loss.

After extracting the helpful data from the backbone archi-
tecture, the upsampling architecture recovers the information
by using the tensor from the final layer of the baseline network
and up-scale it. Following that, the feature map will genarate
Gaussian Heat Maps based on the Ground truth, as shown
in Fig.1. The default heat map dimension is same with the
original images 256 × 192 for images worth 256 × 192 and
384×288 for images worth 384×288. In order to fix with the
resolution of the feature maps throughout the training phase,
the heat maps must grasp the image’s scale. For regression,
the network will utilize the ground truth heat map and these
heat maps to generate the predicted human joint.

Attention Module The Attention Mechanism is made up
of two primary components, as shown in Fig.2. First, the
feature information was sent to the channel attention module
following block one in the backbone network (CAM). The
feature information in CAM uses global average pooling to
reduce the tensors from W×H×C to 1×1×C. It first passes
through the convolution block, which converts the tensor to

Fig. 2. Architecture of the Spatial Attention Module (SAM) and Channel
Attention Module (CAM). This diagram illustrates the attention module’s
description, which includes the spatial and channel modules at the bottom
and center of the list, respectively, and the entire attention module at the top.

1 × 1 × C
r , where r is the shrinking ratio which is stick to

16. The weight was then triggered by the CAM using the
ReLU. The last stage in CAM is to employ a 1x1 convolution
layer to resize the channel to 1× 1×C and to normalize the
tensor using the sigmoid. The information for CAM were then
combined using element-wise multiplication.

The tensor will be supplied into the Spatial Attention
Module after passing through the CAM. The tensors in SAM
takes the average pooling for the channel from W ×H×C to
W ×H×1. Following pooling, convolution layers with kernel
size 3×3 were utilized two times to extract the geographical
data for the architecture, and the final step in SAM is fed to
the CAM shown in Figure 2. Finally, the intended solution
employed element-wise extensions to the original tensor and
the tensor after AT to be merged, as well as a new tensor for
the continuous backbone network block.

B. Loss Function

Heat maps are used in this work to illustrate body joint
locations for the loss function. As the ground-truth position
in Fig. 1 by m = {mj} J = 1J , where Xj = (xj, yj) is
the geographical harmonize of the j th body joint for each
image. The value of heat map for Ground-truth Hj is then
constructed using the Gaussian distribution and the mean aj
with variance

∑
as shown below.

Hj(p) ∼ N (aj ,
∑

) (1)

where p ∈ R2 demonstrate the coordinate, and
∑

is ex-
perimentally decided as an identity matrix I. The last layer
of the neural architecture forecast J heat maps, i.e., Ŝ ={
Ŝj

}
j = 1J for J body joints. A loss function is defined

by the mean square error, which is calculated as follows:

L =
1

MJ

M∑
m=1

J∑
j=1

∥∥∥Sj − Ŝj

∥∥∥2 (2)



TABLE I
COMPARISON ON MICROSOFT COCO 2017 VALIDATION DATASET. AM IS MEAN ATTENTION MODULE

Method Backbone Input size #Params AP AP 50 AP 75 APM APL AR
8-Stage Hourglass [9] 8-Stage Hourglass 256×192 25.1M 66.9 - - - - -
Mask-RCNN [24] ResNet-50-FPN 256×192 - 63.1 87.3 68.7 57.8 71.4 -
SimpleBaseline [10] ResNet-50 256×192 34.0M 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [10] ResNet-101 256×192 53.0M 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [10] ResNet-152 256×192 68.6M 73.7 91.9 81.1 70.3 80.0 79.0
Fine-tuning AM [16] ResNet-50 256×192 31.2M 71.4 91.6 78.6 68.2 75.7 76.3
Fine-tuning AM [16] ResNet-101 256×192 50.2M 72.3 92.0 79.4 68.3 77.1 77.1
HRNetBaseline [17] HRNet-W32 256×192 28.5M 74.4 90.5 81.9 70.8 81.0 79.8
HRNetBaseline [17] HRNet-W48 256×192 63.6M 75.1 90.6 82.2 71.5 81.8 80.4
Our HRNet-W32 256×192 36.4M 75.8 91.0 82.7 71.5 82.9 81.2
Our HRNet-W48 256×192 71.8M 76.4 91.1 83.1 72.2 83.3 81.4

M denotes the number of selected in the training process.
Using data from the last layer or backbone architecture, the
trained network generated predict heat maps using ground-
truth heat maps.

IV. EXPERIMENTS

A. Experiment Setup

Dataset. The proposed technique uses the Microsoft COCO
2017 dataset [25] throughout the training and inference pro-
cess. This dataset comprises around 200K pictures and 250K
human samples, each with 17 keypoint labels. The study’s
data collection includes three folders: train set for training,
validation set and test-dev set for testing. Furthermore, the
annotations files for train and validate are open to the public
and are accompanied by the individualist.

Evaluation metrics. This paper utilized Object Key-
point Similarity (OKS) for COCO [25] with OKS =∑

i exp(−di
2/2s2k2

i )δ(vi>0)∑
i δ(vi>0) In this case, di is the Euclidean

distance between the predicted keypoint and the groundtruth,
vi is the target’s visibility flag, s is the object scale, and
ki is a joint for seventeen join in COCO 2017 dataset. The
standard average accuracy and recall value are then computed.
AP and AR are the averages from OKS=0.5 to OKS=0.95, with
APM representing medium objects and APL representing
large objects in Table I.

Implementation details The suggested technique employed
data increase in model training, such as flip, 40 degrees by
outline for rotaion, and scale, which put 0.3 for the factor.
For training images, the batch size was stick to 4 and utilize
the shuffle function. The total number of epochs in our
experiment is 210, with the baseline learning-rate set at 0.001
and multiplied by 0.1 (learning decade factor) at the 170-th and
200-th epoch. The Adam optimizer [26] and the momentum
is 0.9 was employed.

All proposed research are carried out using the Pytorch
framework and tested on two datasets. The picture input
resolution was reduced to 256x192. The model was trained
using CUDA 10.2 and CuDNN 7.3 on a single NVIDIA GTX
1080Ti GPU.

The suggested technique compares each circumstance while
adding the attention module for each step from stage 1 to
stage 3, as shown in Table 1. The Average Precision (AP)

demonstrates that using AM in the first stage gains 1.1 in mAP,
which boosts accuracy more than using AM in the second and
third stages. Furthermore, the AP is enhanced by 1.5 percent,
2.2 percent, and 2.7 percent, respectively, while the number
of parameters grows by 5.96 percent, 15.4 percent, and 27.7
percent for adding AM with stages 1, 2, and 3. In our proposed
network, we used only 2 blocks of AM in stage 1, 3 blocks
for stage 2 and 4 blocks for stage 3.

As shown in Table 2, the proposed approach compares
each case while adding the attention module for each step
from sub-network 1 to sub-network 4. The Average Precision
(AP) shows that utilizing AM in the first sub-network results
in a 1.0 increase in mAP, which improves accuracy more
than using AM in the second, third, and fourth sub-networks.
Furthermore, the AP increases by 1.3 percent, 2.0 percent,
2.6 percent, and 2.7 percent, respectively, while the number
of parameters increases by 9.1 percent, 18.6 percent, 24.5
percent, and 27.7 percent when AM with sub-stages 1, 2, 3,
and 4 is included. In our suggested network, we employed
three blocks of AM in the first sub-network , three blocks in
the second sub-network, two blocks in the third sub-network ,
and one block in the final sub-network. Fig.3 shows the result
of how the attention module impacts the heatmap generate,
which shows AM gained significantly better performance
heatmap prediction for the left wrist and left elbow keypoint
in the seventh and eighth pictures. Moreover, the attention
module also helps the network get better for other joints.

COCO datasets result Our result was estimate on COCO
validation dataset. The AP in the proposed perspective get
better than the Basic High-Resolution standard in whole
circumstance of 1.7 AP, 1.3 AP in HRNet-32, HRNet-W48,
respectively. Furthermore, the average recall (AR) is 1.4 points
higher in the case of HRNet-W32 and 1.2 points higher
with the situation of HRNet-W48. The visualize result can
see in Fig.3 which show that used attention module make
the predicted heat map get more accurate. Figure 4 show
the qualitative result for the COCO 2017 dataset, which
demonstrated attention module increase the result of AP for
the medium and large object in 0.7 AP and 1.5 AP respectively.

However, human pose estimation, like many other designs
today, has a number of issues that must be addressed. The first
issue was that the images had hidden joints that were hard



to train and anticipate. Second, low-resolution human photos
must be correctly removed for human body joints. Following
that are images of crowd scenarios, in which it is frequently
difficult to determine all of the locations of the joints for
all participants. Finally, there is a scarcity of information on
images with incomplete parts for evaluating human postures.

V. CONCLUSION

This research shows the effect of the attention module on
CNNs, with a focus on High-Resolution networks. Further-
more, our work demonstrates that by not increasing the amount
of parameters, the attention module utilized has a bigger effect.
On the other hand, the Attention Module highlighted the
critical feature map rather than the other component. As a
result, the network will improve efficiency, notably for various
activities in the field of computer vision. Future research
will focus on defining specific applications or settings to be
included in our study, such as the surveillance system and the
3D human pose estimation. Another challenge is related to
the limitations in assessing human exposure, which restricts
the network’s accuracy.
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Fig. 3. Qualitative result for human pose estimation in COCO2017 test-dev set


