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Abstract—Face detection is a basic vision method to find the fa-
cial location. It is usually used in the initial step of advanced facial
analysis. Therefore, this approach is required to work quickly,
especially on low-cost devices to support practical applications.
A deep learning architecture can robustly extract the distinctive
feature by employing a lot of weighted filters. However, the model
produces heavy parameters and computational complexity. A
transformer is a deep learning architecture that can capture
the feature position relationship, which increases the detector
performance. This work in this paper proposes a new efficient
transformer architecture that is implemented to face detection.
It can highlight the spatial information from a similarity map
by utilizing a 2D-convolutional filter. This architecture generates
low computation and lightweight trainable parameters that serve
the proposed face detector to run fast on an inexpensive device.
As a result, this proposed network achieves high performance
and competitive precision with the low-cost model. Additionally,
the proposed transformer module does not significantly add
computation and parameters that can run fast at 95 frames per
second on a Core i5 CPU.

Index Terms—Efficient model, deep learning, face detection,
transformer, real-time.

I. INTRODUCTION

Face detection is a fundamental method in computer vision
to find the location face area in an image. It is usually used
as the initial process of the advanced method, such as facial
expression, landmark, recognition identification, age, race, and
gender classification [1]. Nowadays, portable technology needs
this method installed inside the system [2]. Therefore, face
detection demands work fast in real-time without ignoring the
performance.

Feature extraction is the primary process of face detection
to recognize specific facial features. This method captures
distinctive elements that contain essential information about
the human face, including the nose, eyes, lips, chin, eyebrows,
and cheeks as unique components [3]–[5]. Those features
have different shapes and textures, even though they are the
same color. The relationship between features is also complex
knowledge, containing rich information to distinguish a face
from other objects.

Conventional feature extraction methods have been intro-
duced to localize face elements using Haar-like features [6].
It finds the distinctive feature by subtracting dark and bright
regions in the rectangle field. Furthermore, AdaBoost learns
the candidate’s facial features through a sequential classifier.
Another work [7] has proposed a skin color method to find

facial feature location using a probability model. It uses two
extractors: Haar-like and Local Binary Pattern (LBP). It then
uses the feature characters in the learning phase to boost
features considered elements of the face. The traditional study
showed satisfying efficiency in real-time speed. However, it
constrains the precision that detects a small face, multi-pose,
and complicated background.

The deep learning model has shown excellent results in
extracting the distinctive feature [8]. It even can overcome
a difficult challenge. This extractor can distinguish facial
features by learning the specific element from the instance. A
CNN-based architecture extracts spatial feature area by utiliz-
ing weighted filter [9]–[11]. However, it has a limitation on the
relationship between global regions. Transformer architecture
is used to tackle this issue by building global perspective
correlation [12], [13]. It utilizes a self-attention module to
capture the positional relationship of interest features. It then
mixes the global information according to channel feature
maps to enhance the selective feature stage. Nevertheless, this
approach increases the number of parameters and uses heavy
computation power. It obviously weakens the transformer
architecture in the efficiency sector.

In this work, an efficient transformer architecture is offered
to extract essential features at the end of the backbone. It uses
spatial filter operation to capture the correlation features that
compress the trainable parameter usage. This module also is
assigned to enhance the informative feature through positional
attention. Based on the discussion, the main contributions can
summarize as follows:

1) A new efficient face detector is proposed to localize face
regions that can overcome multi-pose, occlusion, and
extreme background challenges.

2) A novel lightweight transformer module is presented to
discriminate the valuable elements that comprehensively
capture the positional correlation between features.

3) The efficiency of the detector is higher than other CPU
detectors that achieve high precision on several bench-
marks, including Annotated Faces in the Wild (AFW)
[14], PASCAL face [15], and Face Detection Data Sets
and Benchmarks (FDDB) [16].

This paper is arranged as follows: Section II presents the
proposed architecture of face detection. Section III discusses
the training and implementation setup. Section IV explains the
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Fig. 1. The proposed network of face detection. This detector assigns backbone, transition, enhancement, and four detection layer to accurately find the face
location. This model generates 532,000 parameters with 0.22 GFLOPS.

experiment and results. Finally, conclusions and future work
are discussed in Section V.

II. PROPOSED ARCHITECTURE

This section discusses the detector architecture in detail. The
general architecture contains three vital modules: backbone,
transition, enhancement, and prediction. It employs four-level
detection to predict the face location on a different scale, as
shown in Fig. 1.

A. Backbone with transformer

A backbone module plays an important role in discrimi-
nating the distinctive features that impact a detector’s perfor-
mance. The proposed face detector uses a shrinking approach
to reduce the resolution size in the initial stage. Therefore,
it utilizes sequential convolutional operation to catch out the
spatial information. Therefore, It uses a 3 × 3 to shrink the
input map, reducing the spatial scale. In addition, it uses a
bottleneck module that utilizes a 1 × 1 and a 3 × 3 with a
reducing channel in the initial operation. We claim it can save
a number of parameters and computational complexity.

Furthermore, the proposed detector offers a convolutional
with a transformer in a series block (Convers) to comprehen-
sively capture the specific feature and enhance the relationship.
It combines the bottleneck convolution module with an effi-
cient transformer to increase the extractor performance. This
proposed structure can produce lower parameters and compu-
tation than the standard transformer module [13], increasing
the detector’s efficiency. Fig. 2 shows that it uses positional
encoding in the initial stage using a fully connected layer to

remind the position of each element. This output can update
the input features, which provides the weighted information of
location features. In order to extract the features of the input
attention block, it uses a convolutional operation using 5 ×
1 kernel that is an efficient extractor to generate Query, Key,
and Value components.

A dot product attention block is applied to find the similarity
of position features between the Q and K map. It provides a
high probability for elements with the same intensity from
both maps. The similarity map can summarize the position
information of the feature and update the value map that helps
the model obtain valuable information accurately. Then, a
spatial convolution with a ReLU activation filter out the end of
the attention information. Instead of using Fully Connected in
reconstruction stages, it offers efficient convolutional spatial-
based that sequentially determines the narrow correlation area
between each channel. It applies a 5 × 1 convolutional, fol-
lowing batch normalization and SiLU to prevent the vanishing
gradient. Additionally, it uses a residual approach that transfers
input features to the beginning and end of the reconstruction
module. This technique can retain the output feature’s quality
by preventing the loss of information.

B. Transition module

The proposed detector uses a transition module to reduce
the map resolution in medium and high-level features. It
offers a cheap operation block by employing an inverted
separable depthwise convolution block [17]. It contains a 1
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Fig. 2. The proposed efficient transformer using 2D-Convolutional filter

× 1 convolutional with a depthwise operation that generates
a few parameters and operations.

C. Enhancement module

In order to enhance the specific features of each branch
detection layer, we assign the squeeze excitation module. It
adopts [18] work that operates global average pooling to obtain
representative features according to the channel direction. The
fully connected layer is used to construct the selective weight
and then scale the input features.

D. Detection module

The proposed detector employs a multi-level prediction
layer to estimate multiple faces location that accommodates
various scale. It adopts the structure of the work [10] that
utilize four-layer using different anchor scale. It assigns the

0 200 400 600 800 1000
False positives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Proposed (0.9712)
FCPU (0.9700)
ICC-CNN (0.9648)
FaceBoxes (0.9648)
MTC-CNN (0.9635)
DCFPN (0.9538)
MTCNN (0.9435)
LDCF (0.9213)
DP2MFD (0.9131)
BBFCN (0.9060)
Faceness (0.9031)
Conv3d (0.9012)
Hyperface (0.9012)
FastCNN (0.8998)

Barbu et al (0.8859)
HeadHunter (0.8706)
JointCascade (0.8627)
CCF (0.8590)
CasCNN (0.8567)
Acf (0.8524)
Yan et al (0.8523)
MultiresHPM (0.8507)
BoostedExamplerBased (0.8482)
DDFD (0.8404)
SURF GentleBoost MV (0.8372)
NDPFace (0.8169)
PEPAdapt (0.8093)

Fig. 3. Evaluation on the FDDB dataset using true postiove rate at 1,000
false positive.

first layer to predict tiny faces, the second layer to small faces,
the third layer to medium faces, and the fourth layer to predict
large faces. This structure effectively predicts various object
scales by dividing the assignment of each layer according to
the face sizes.

III. TRAINING AND IMPLEMENTATION SETUP

The proposed face detector generates two output vectors,
including regression scores (x, y, w, h) and probability class
(face or none). This prediction is quantified by a Multi boxes
loss [9] to measure the distance of the location and class
probability prediction. This function contains regression and
classification loss that utilize L1 smooth loss and Softmax
loss, respectively. In the training phase, the WIDER FACE
[19] is used for training knowledge with 12,800 pictures
containing various challenges. It uses augmentation by random
cropping, color manipulation, horizontal flipping, and resize
transformation to create more instances for a robust training
model. Additionally, we set several settings to optimize the
training process. It applies Stochastic Gradient Descent (SGD)
optimizer in updating the weighting process with the momen-
tum of 0.9 and the weight decay of 5 · 10−4. It defines batch
size of 32 and multiple learning rates (10−3 - 10−5) with 470
total epochs. In the evaluation stages, it sets IoU (Intersection
over Union) is more than 0.5 to establish the prediction box.
The proposed detector is simulated on a Pytorch application
that uses a GTX1080Ti as an accelerator in the training phase.
Besides, a Core i5-6600 with RAM of 8GB is used as the main
CPU in the testing process.

IV. EXPERIMENTS AND RESULTS

This section examines the detector’s performance on several
datasets and its efficiency on a CPU. It measures the efficiency
cost and compares parameters, computation, and model speed
to other CPU detectors.
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Fig. 4. Average precision results on AFW (a) and PASCAL face (b) dataset.
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Fig. 5. The efficiency comparison of CPU face detector. It examines the speed of model on Core i5-6600 CPU by live streams video.

A. Evaluation on Benchmark

1) FDDB dataset: The dataset provides 2,845 pictures with
5,171 annotated labels. Generally, the image collected is from
the yahoo websites that cover a variety of challenges: multi-
view, illuminance, and background complex. In this dataset,

we use discrete categories by applying a rectangle bounding
box to evaluate the prediction. The proposed detector obtains
excellent performance and is superior to the leading competitor
FCPU [9]. As shown in Fig. 3, it achieves 97% TPR (True
Positive Rate), which also outperforms FaceBocxes and ICC-



CNN.
2) AFW dataset: The dataset provides fewer images than

other datasets, which consist of 203 pictures. It uses 473 labels
to evaluate instances that include several challenges, the same
as the FDDB dataset. We use Average Precision (AP) in this
evaluation dataset for a fair comparison with other detectors.
Fig. 4 (a) illustrates that our detector achieves 99.23% AP.
This performance is 0.11% lower than FCPU.

3) PASCAL face dataset: The dataset contains 851 picture
that provides 1,335 annotated labels. It includes an indoor
and outdoor environment that has complex features and back-
grounds. In addition, this dataset is a subset of PASCAL
VOC, containing single and multiple persons. Fig. 4 (a) shows
that the proposed detector achieves 98.07% that outperforms
other CPU detectors. It has slightly superior performance over
FaceCPU, which differs by 0.01% AP.

B. Efficiency results

A CNN-based object detector tends to generate an abun-
dance of parameters. It is due to the heavy use of convolution
filter operations. It also impacts increasing computing power,
which weakens the efficiency of the sector of a model.
The proposed model results in a lightweight parameter of
532K with 0.2 GFLOPS. This result shows that our proposed
detector is more lightweight than FFCPU [4], FAFCPU [10],
FCPU [9], FaceBoxes [8], and DCFPN [20]. Although EFED
and LWFCPU use lower computational costs than our model,
these competitors did not achieve high precision. Fig. 5
illustrates the results of the proposed detector’s efficiency and
its comparison with other low-cost face detectors.

Furthermore, the proposed detector is evaluated its speed
when implemented on a CPU. It measures the ability of
the detector to work on low-cost devices by computing the
model running time. This experiment uses a Core i5-6600
CPU without a graphics accelerator supporting device, which
increases the capability of practical applications. The proposed
model can smoothly operate at 94.85 FPS, which is faster
than other CPU detectors, including DCFPN, FaceBoxes, and
FCPU. Even though LWFCPU, EFED, and FFCPU are faster
than our model, they have low performance. On the other hand,
FAFCPU has high precision and speed, but the number of
parameters and computations of this detector is higher than
the proposed detector.

V. CONCLUSION

This paper presents a CPU-based face detector that uses an
efficient transformer module to improve its performance. The
proposed transformer model can capture the relationship of
global features that build broader representative information. It
also can highlight the contextual element, improving important
information that impacts correct prediction decisions. As a
result, the proposed detector achieves excellent accuracy that
outperforms the FCPU detector on FDDB and PASCAL face
datasets. Regarding efficiency, the proposed model produces
less computation and parameters than this competitor. It can
smoothly run at 95 FPS on a Core i5 CPU. In future work,

the loss function exploration will be carried out to improve
performance without reducing the inference speed.
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