Efficient Residual Bottleneck for Object Detection
on CPU

Jinsu An, Muhamad Dwisnanto Putro, Kang-Hyun Jo
Department of Electrical, Electronic and Computer Engineering, University of Ulsan
Ulsan, South Korea
jinsu5023 @islab.ulsan.ac.kr, dwisnanto.putro@ gmail.com, acejo@ulsan.ac.kr

Abstract—Object detection is the most fundamental and impor-
tant task in computer vision. With the development of hardware
such as computing power of GPUs and cameras, object detection
technology is gradually improving. However, there are many
difficulties in using GPUs in industrial fields. Therefore, it is
very important to use efficient deep learning technology in the
CPU environment. In this paper, we propose a deep learning
model that can detect objects in real-time from images and
videos using CPU. By modifying the CSP [1] bottleneck, which
corresponds to the backbone of YOLOVS [2], an experiment was
conducted to reduce the amount of computation and improve the
FPS. The model was trained using the MS COCO dataset, and
compared with the original YOLOVS, the number of parameters
was reduced by about 2.4%, and compared with RefineDetLite,
the mAP value was measured to be 0.367 mAP, which is 0.071
higher than that of RefineDetLite. The FPS was 23.010, which
was sufficient for real-time object detection.

Index Terms—Object Detection, Real-time Detection, CPU,
Low-cost, Efficiency

I. INTRODUCTION

Object detection is the most fundamental and important task
in computer vision to discriminate the position and class of an
object in an image. It has been continuously studied over the
past few years and essential research field that can be applied
in various fields such as surveillance systems, autonomous
driving, and robotics, and is the basis of other computer vision
studies. The rapid development of deep learning technology
over the past few years has greatly improved object detec-
tion technology. Due to the deep learning technology and
the computing power of GPUs, the performance of object
detection has been greatly improved, resulting in significant
results in the field of computer vision. Many applications,
such as medical monitoring, autonomous driving, intelligent
surveillance systems, anomaly detection, and robotic vision,
are built on deep learning object detection.

Advances in hardware such as (Graphic Processing Unit)
GPU computing power and cameras have had a significant
impact on the improvement of object detection technology.
Cameras are getting smaller and cheaper, higher resolution,
and GPU computing power is getting bigger and more ef-
ficient. These advances in hardware have made it possible
to perform computer vision with real-time object detection
and tracking. Many object detection methods utilize deep

Identify applicable funding agency here. If none, delete this.

learning technology and GPU computing power to produce
fast and good results, but these methods are too difficult to
use in industrial fields. This is because it is too expensive
to utilize the computing power of the GPU in the industrial
field. Using deep learning technology in a CPU environment
is much slower than using the computing power of the GPU
and the results are not good. It creates dependence on the
expensive devices. Research to make a deep learning network
lighter, faster, and more efficient using efficient deep learning
technology in a CPU environment is very important.

The object detection task has developed over the past 20
years and is generally divided into two methods. It is a
method of traditional image processing and deep learning.
There are two types of deep learning methods, one-stage and
two-stage methods. The method proposed in this paper is a
one-stage-based deep learning method. One-stage-based object
detection predicts the bounding box of an image without a
region suggestion step. Therefore, it can be used in real-
time applications due to its short calculation time. However,
since the operation speed is prioritized, it is difficult to detect
irregularly shaped objects or small objects. The advantage of
the one-stage method is that it is faster because the structure
is relatively simple than the two-stage method.

YOLOVS has been introduced as excellent object detection,
which applies CSP bottleneck to extract the essential features
and Path Aggregate Network (PAN) to fuse the information of
medium and high-level features. A three convolutional (C3) is
used to discriminate the object features against the background
efficiently. The C3 layer used in the existing YOLOVS is
a CSP bottleneck with three convolution and consists of a
bottleneck and three convolution layers. In order to run the
object detection algorithm on the CPU in real-time, it is
necessary to reduce the number of parameters in the deep
learning object detection network. In this work, we adjusted
the convolution of the C3 layer by reducing the number of
layer, and replace the order of the concatenation and addition
operations of the feature map. The main contributions of this
work are as follows:

1. A real-time object detection is proposed to localize the
specific object that can be operated on a CPU device.

2. A new structure of the convolutional block is introduced
by modifying the fusion operation on the CSP bottleneck
module.

(o]

640

320
160

Conv 6 x 2

@ Detection

Conv 1x1
Conv3x3 Upsample

Efficient Residual Bottleneck Concatenate

pin

SPPF C3

Fig. 1. Proposed Architecture.

II. PROPOSED ARCHITECTURE
A. General Architecture

The framework of YOLOvVS has three main components.
It is composed of Backbone, Head, and Neck, and Backbone
extracts image features and delivers it to the Head through the
Neck. Neck creates a feature pyramid by collecting feature
maps extracted from Backbone. Finally, it consists of an output
layer that detects objects in the head. Among them, the C3
layer used in the backbone was modified to lighten the deep
learning object detection model.

B. Efficient Residual bottleneck

The C3 layer is a CSP bottleneck with three convolutions
and extracts a total of four features from the backbone in the
framework of YOLOVS. To make the C3 layer for extracting
features light, we changed the three convolutions to two
convolutions, and changed the order of the concatenation and
addition operations to match the extracted feature maps.

C. Path Aggregate Network - Multi Detector

Path aggregate network (PANet) [3] is a network used in
YOLOVS’s Neck. In general, low-level features are useful
when detecting small objects, but even when detecting large
objects, low-level features that respond strongly to edges or
small instances are required. We also need a high-level feature
that captures the context of the image to detect small objects.
For this purpose, if low-level and high-level features are
effectively utilized, more accurate localization is possible. It
fuses the feature information from different frequency levels
to enrich the knowledge and increase selection performance
at the head block. In the existing Feature Pyramid Network

(FPN) [4], low-level information is transmitted to high-level
through more than 100 layers. In PANet, only about 10 layers
are used to transmit low-level information to high-level. This
means that low-level features can be transferred to high-level
features intact and low-level information can be utilized even
when detecting large objects.

D. Multi-box Loss

It uses three loss functions, including IoU loss, binary
cross entropy, and confidence loss. The supervision method
is adopted from YOLOVS work that uses Bounding-box re-
gression is the most widely used method in object detection
algorithms. It is used to predict the position of an object to
be detected using a rectangular box. This method aims to
correct the position of the predicted bounding box. Bounding-
box regression uses an overlapping area of a ground-truth box
and predicted box location, called Intersection over Union
(IOU). First, the IoU loss evaluates the difference between
the predicted box position and the intersection of the box on
the real object, the center point distance, and the aspect ratio.
Second, we apply a confidence loss to evaluate whether an
object is in each cell. Finally, we measure the error in the
probability of the predicted object class using binary cross
entropy. Binary cross entropy is applied to effectively measure
the probability class of training models, which solve many
classification problems simultaneously. The multi-box loss [5]
is expressed as follows by combining the above three loss
functions.

G A G? A
Lyp = Acoord Z Z gZZJLcoord +)\obj Z Z 1ZZJL0bj

g=la=1 g=1la=1

G? A
+>\cls Z Z]-ZZJLCIS;
g=1la=1
(1
III. IMPLEMENT DETAIL

In this session, experiments with the MS COCO dataset are
described through the proposed architecture. As an experimen-
tal environment, the model was implemented using PyTorch
library in a Linux environment. The experiment was performed
on Intel Xeon Gold CPU, and Nvidia Tesla V100 32GB GPU
was used to train the deep learning model. It uses a Intel IS
6600 @3.3GHz, 32GB RAM as the main CPU to test the
speed of the model.

IV. EXPERIMENTAL RESULTS
A. Evaluate on dataset

The proposed method tested the object detection perfor-
mance on the MS COCO2017 dataset. There are a total of
80 different classes in COCO datset, and it consists of a total
of 143,575 image data. The COCO dataset contains objects
of various sizes, complex backgrounds, and many obstacles.
We train the proposed model with 118,287 image data, val
the model with 5,000 images, and test the model with 20,288
images. The object detection model extracts and learns the
features of various objects included in the dataset, and is
evaluated through the dataset. To evaluate the model, we used
Average Precision (AP), which measures the accuracy of the
predicted bounding box. We derive AP for a total of 80 classes,
and finally measure the mean Average Precision (mAP) value
for all classes. As a result, the mAP value of the proposed
method was measured to be 0.367.

B. Runtime efficiency on CPU

The proposed method focuses on running the real-time
object detection algorithm on the CPU. In order for the
algorithm to work in real time, the number of parameters
must be reduced and the FPS must be high. By modifying
the convolution layer of the CSP bottleneck module, it was
possible to reduce the number of parameters and improve the
FPS. Compared to RefineDetLite, the mAP value was about
0.07 higher, and the FPS at 320x320 resolution was about 15
FPS higher. The number of parameters is also about 2.4% less
compared to YOLOVS, so it is possible to obtain an FPS value
that can perform object detection in real time while increasing
the computational efficiency.

V. CONCLUSION

In this paper, we propose Efficient Residual Bottleneck for a
deep learning algorithm capable of real-time object detection.
In order to reduce the amount of computation, the existing
CSP bottleneck was corrected, and training was performed

Input(h x w x c)

hxw xc/2

h xw x c/2

hxw xc/2

CConcatenate
hxwxc

Addition
hxwxc

Conv

Output(h x w x c)

Fig. 2. Efficient Residual Bottleneck.

TABLE I
DETECTION RESULT COMPARISONS ON MS COCO, WHERE TIME@ CPU1
MEANS RUNNING TIME TESTED ON INTEL 17-6700@3.40GHZ AND
TIME @ CPU2 MEANS RUNNING TIME TESTED ON INTEL 15
6600@3.30GHz.

Model mAP 0.5:.95 | Backbone time@CPU1 | time@CPU2
SSD [6] 0.193 MobileNet 128ms -
SSDLite [7] 0.222 MobileNet 125ms

SSDLite [7] 0.221 MobileNetV2 120ms

Pelee [8] 0.224 PeleeNet 140ms

Tiny-DSOD [9] 0.232 DDB-Net+D-FPN [180ms

SSD [6] 0.251 VGG 1250ms

SSD [6] 0.28 ResNet101 1000ms

YOLOV3 [10] 0.282 DarkNet53 1300ms
RefineDetLite [11] 0.268 Res2NetLite72 130ms
RefineDetLite++ [11] 0.296 Res2NetLite72 131ms -
YOLOV5s-ERB 0.367 CSPDarknet53 43ms
YOLOV5s-ERB_wosppf 0.334 CSPDarknet53 36ms
YOLOVvV5s-ERB_conv3 0.366 CSPDarknet53 40ms

on the MS COCO dataset. The mAP value was measured to
be 0.367, which was 0.071 mAP higher than RefinedeLite,
which was 0.296, and the FPS was 23.010, which was 15.38
FPS higher than RefinedeLite, which was 7.633. The number
of parameters is 7,060,349, which is about 2.4% smaller than
YOLOVS.

ACKNOWLEDGMENT
This result was supported by ”“Regional Innovation
Strategy (RIS)” through the National Research

Foundation of Korea(NRF) funded by the Ministry of
Education(MOE)(2021RIS-003)

REFERENCES

[1] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W.
Hsieh, “Cspnet: A new backbone that can enhance learning capability
of cnn,” 2019.

[2] “Yolov5,” https://github.com/ultralytics/yolov5.

[3] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” CoRR, vol. abs/1803.01534, 2018. [Online].
Available: http://arxiv.org/abs/1803.01534

[5]

[8]

[9]

[10]

(11]

T. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan,
and S. J. Belongie, “Feature pyramid networks for object
detection,” CoRR, vol. abs/1612.03144, 2016. [Online]. Available:
http://arxiv.org/abs/1612.03144

M. D. Putro, D.-L. Nguyen, A. Priadana, and K.-H. Jo, “Fast person
detector with efficient multi-level contextual block for supporting assis-
tive robot,” in 2022 IEEE 5th International Conference on Industrial
Cyber-Physical Systems (ICPS), 2022, pp. 1-6.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325,
2015. [Online]. Available: http://arxiv.org/abs/1512.02325

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” CoRR, vol. abs/1801.04381,
2018. [Online]. Available: http://arxiv.org/abs/1801.04381

R. J. Wang, X. Li, S. Ao, and C. X. Ling, “Pelee: A real-time object
detection system on mobile devices,” CoRR, vol. abs/1804.06882, 2018.
[Online]. Available: http://arxiv.org/abs/1804.06882

Y. Li, J. Li, W. Lin, and J. Li, “Tiny-dsod: Lightweight object
detection for resource-restricted usages,” CoRR, vol. abs/1807.11013,
2018. [Online]. Available: http://arxiv.org/abs/1807.11013

J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” CoRR, vol. abs/1804.02767, 2018. [Online]. Available:
http://arxiv.org/abs/1804.02767

C. Chen, M. Liu, X. Meng, W. Xiao, and Q. Ju, “Refinedetlite:
A lightweight one-stage object detection framework for cpu-only
devices,” CoRR, vol. abs/1911.08855, 2019. [Online]. Available:
http://arxiv.org/abs/1911.08855

