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AbstractÐ Smart digital advertising requires face detection as
the initial stage to recognize the person’s attributes by localizing
human facial areas. This technology tends to operate with CPU-
based systems. The Deep Convolutional Neural Network ap-
proach has demonstrated excellent accuracy for face detection
work. However, this architecture involves heavy computations
and parameters because it uses many filter operations. It
causes deep architecture to slow down the detector speed.
Moreover, a practical application entails using a detector that
can operate in real-time. The recent CPU-based face detectors
operate slowly in an integrated system. This study proposes
a faster face detector to predict the human face area using
efficient architecture robustly. The architecture consists of a
light backbone to discriminate distinctive features and a four
detection module to predict multiple faces. In order to bridge
the three prediction layers, it implements a high-level transition
module with a cheap operation. It also offers a new light
attentive block to highlight typical facial features at each
detection module efficiently. As a result, this detector achieves
excellent performance and outperforms other low computing
detectors. The proposed detector can fast operate at 112 frames
per second on a Core I5 CPU and at 11 frames per second on
a Lattepanda device, faster than other competitors.

I. INTRODUCTION

Nowadays, the overall development of digital content

creates a new digital marketing environment. Artificial intel-

ligence also encourages the birth of smart digital advertising

that can provide more benefits in the digital marketing

process. Smart digital advertising allows promoted content to

be displayed dynamically according to the audience, which

makes it more targeted [1]. This technology provides an

effective mechanism that only shows relevant promotions for

targeted consumers that are achieved by personalizing the

audience. The demographic information, such as gender and

age, is essential information for personalized advertising tar-

geting [2], [3]. The data was obtained by recognizing through

the face of the audience, which requires face detection as an

initial process [4], [5].

In recent years, Deep Convolutional Neural Networks

(DCNNs) have become very popular because it is robust

and provide exceptional accuracy for various computer vi-

sion works, such as object detection and classification [6].
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DCNNs have provided many breakthroughs, especially in

face detection works. In [7], a DCNNs model was designed

to detect faces that produced high-performance detection.

The DCNNs are capable of learning high-level features from

faces effectively. Moreover, it succeeded in performing a

face verification task and achieved a high accuracy [8]. The

common tendency in developing the DCNNs model is to

design more visceral and more complex DCNNs models to

achieve higher accuracy [9], [10]. However, improving accu-

racy does not necessarily create lighter and faster networks in

many real-world implementations, particularly in supporting

real-time cases. The detection and recognition tasks need to

be sufficiently performed, especially on low-cost computing

devices.

Commonly, designing cheap operation and lightweight

CNN model can generate high-speed performance of de-

tection and recognition task [11]. Many previous works

tried to make CNN models with lighter weight and low

operation for faster processes. In [12], a CNN architecture

was proposed to detect faces that produced rapid detection

with a light network. It can be able to apply in low-cost

computing devices. In another work, [13], the CNN model

with a lightweight and deep approach is proposed to perform

face detection on a low-cost computing device such as

Jetson TX2. It is clear from the literature that most of the

face detection work gives excellent results by utilizing the

DCNNs. However, these works have not been tested further

to provide more satisfactory results. Moreover, face detection

is only an initial process to support further work on real-time

gender and age recognition on low-cost computing devices.

As an initial process, high-speed face detection is needed

to support further work applying the DCNNs. As seen

at work [14], gender recognition is performed after the

face detection process. Gender recognition is performed to

support smart digital advertising such as digital signage. This

kind of system requires a low-cost device [15] to reduce

budget expenditures. It encourages this system to have an

efficient face detector as an initial process of an integrated

system. Therefore, it requires a much lighter and cheaper

operation to be integrated with further work that implements

the CNN and applies to low-cost computing devices.

This work presents a faster face detector based on the

vision approach (ACETRON) using a very lightweight and

cheap operation. Therefore, it supports integration with fur-

ther work and application on low-cost computing devices

in real-time. Two novel modules, namely Mini Multi-level
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Fig. 1. The proposed architecture of the detector. It uses an efficient backbone module to extract human facial features rapidly. The anchor-based technique
is applied in the multi-level detection modules to predict multiple faces based on multi-scale variants. Best viewed in color.

(M2L) convolutional module and Light Attentive module

(LIHAT), are designed to improve the DCNNs architecture

used by the detector. The M2L gradually extracts the ex-

clusive features with fewer parameters than the standard

convolution. The LIHAT is used to escalate and ensure the

critical features based on the channel maps. Therefore, the

detector can perform more advanced and faster to predict

the object’s class. This paper offers the main contributions

as follows:

1) A novel fast face detector proposes a lightweight CNN

architecture with a cheap operation and computation

implemented to support smart digital advertising. It

emphasizes the efficiency and efficacy of the CNN-

based model, which achieves fast real-time speed on a

CPU and an edge device.

2) A new efficient backbone module is introduced that

rapidly extracts distinctive facial features using Mini

Multi-level (M2L), generating few parameters and low-

cost computation. This module combines two grouped

convolution blocks with different frequency levels to

enrich the feature information.

3) A Light Attentive module (LIHAT) is offered as a

single enhancement module to capture the essential

features according to the channel map from input

features. It efficiently boosts the feature map quality at

the four-level of the backbone, increasing the detector

prediction performance.

II. RELATED WORKS

A CNN-based face detection is one of the works that

shows outstanding progress, especially in performance. In

[16], TinaFace, a backbone based on DCNNs, was proposed

to perform face detection. The backbone surpassed most of

the other recent more extensive models in detecting faces.

In another work [17], the DCNNs combined with YOLOv5

were designed to build a face detector, namely YOLO5Face.

Both works were designed to perform quickly on GPU.

However, they slowly run when they perform on the CPU.

These days, face detectors specially designed for CPU or

low-cost computing devices arise to respond to the shortage

described in the previous paragraph. In [18], a Light and Fast

Face Detector (LFFD) was built and successfully performed

face detection on low-cost computing devices such as Rasp-

berry Pi. The LFFD proposes a model with fewer filters that

drives the face detector to run fast. Faceboxes [19] success-

fully performs face detection on a CPU in real-time. The

network architecture used rapidly digest convolution layers

(RDCL) and multiple-scale convolution layers (MSCL) to

extract the important element and enrich the receptive field.

FlashNet [20], a lightweight network model with few

parameters, was designed to detect faces. The detector can

detect faces in real-time and achieves high running speed

on the CPU. Later, FCPU [21] successfully performs real-

time face detection not only on the CPU but also on several

low-cost devices such as Lattepanda and Rasberry Pi. In this

article, the proposed model constructs the CNN approach
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Fig. 2. Mini Multi-level convolutional block is a light extractor feature
that combines different receptive frequencies.
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by using a backbone module that produces more lightweight

with a cheaper operation. The detector focused on increasing

running speed while maintaining the average precision.

III. PROPOSED ARCHITECTURE

The proposed face detector consists of four components:

backbone, transition, light attentive module, and multi-scale

detection. Fig. 1 shows that it applies four detection layers

by assigning various scales anchors to predict the bounding

box’s location, size, and class.

A. Efficient backbone

A CNN-based architecture generally employs feature ex-

traction to discriminate essential features that support pre-

diction performance. It plays an essential role in capturing

important information from an input image so that the

proposed network does not dismiss the performance of each

sub-module. The detector utilizes a sequential convolutional

block with a small number of channel layers. It causes the

detector to produce a few parameters, light computation, and

low memory usage. In order to support this capability, the

proposed detector applies a shrinking block at the beginning

of the stage, which emphasizes the efficient shrinkage of the

feature map. This strategy can reduce overhead computation

while avoiding heavy parameter models. Therefore, it op-

erates a 5 × 5 kernel size followed by 3 × 3 convolution
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cheap operation module.

layers to shrink the feature map size. This architecture uses

a large stride at the initial phase to drastically decrease the

size of the feature map without compromising the quality of

the extracted features.

In order to increase the selectivity on low-level layers, it

applies a bottleneck technique using sequential 1 × 1 and 3

× 3 convolution, which compresses the channels layer at the

beginning of the block. This approach benefits the model by

producing a few parameters. The end of the shrinking block

generates 32 times smaller feature maps than input images

by providing feature information on 128 channels. It allows

the detector to absorb little memory usage for extracting

process with keeping its performance to filter the interest

information.

Furthermore, it implements a stem module that plays a

role in comprehensively extracting features by discriminating

against facial elements from the background. The need for

a real-time system demands that the stem module offers an

efficient feature extractor. However, this does not eliminate

the performance of the discriminator, so it encourages the de-

tector to be able to distinguish facial and background features

accurately. The Mini Multi-level (M2L) convolutional block

intuitively fuses two feature maps with different frequency

levels of input features (xi), as shown in Fig. 2. It delivers

different level features and combines them to enrich the

information.

This structure adopts [22], increasing efficiency by apply-

ing only two convolutional levels. The initial process splits

two channel-based feature map inputs [x1

i , x
2

i ] to reduce the

computational complexity in subsequent operations. Each

extractor will get input with a smaller channel layer, so this

approach also reduces the number of trainable parameters.

The first segment (x1

i ) is applied 3 × 3 convolutions to obtain

low-level features as illustrated:

Fl(xi) = ReLU(BN(Wu(x
1

i ))), (1)

where it ignores bias and then sequentially applies Batch

Normalization (BN) and Rectified Linear Unit activation

(ReLU) to prevent vanishing gradient problems. Another

level feature is generated by applying a 3 × 3 convolution

filter to the aggregation of low-level and second segment
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(x2

i ) can be described as:

Fh(xi) = ReLU(BN(Wv(Fl(xi) + x2

i ))). (2)

M2L output is obtained by combining the two feature maps

with different levels to enrich the feature frequency by

applying the concatenate operation (⊕). In addition, 1 × 1

convolution is applied in the following process to reconstruct

every single spatial pixel, as can be illustrated as follows:

M2L(xi) = ReLU(BN(Wz(Fh(xi)⊕ Fl(xi)))). (3)

Mini Multi-level convolutional block gradually employs up-

dated filter operation at different frequency levels. It em-

phasizes multi-scale convolutions considering both deeper

semantics. Additionally, it increases the diversity of the

receptive area while preventing saturation of sensitivity of the

deeper convolutions. Instead of using only one M2L block,

the proposed detector sequentially applies four modules

to improve prediction accuracy on medium and high-level

features. It reduces computational and parameter usage and

applies grouped convolution to all 3 × 3 filters on the M2L

convolutional block.

B. Multi-scale detection

Face detectors generally utilize the detection layer to

predict the face area by estimating its coordinates and size

boxes. Several works [17], [19], [21] have proven that multi-

layer can improve predictive performance. Each prediction

layer will be responsible for specific object sizes. It handles

the inconsistency issue of the rigid receptive field, which has

difficulty accommodating different facial scales. Therefore,

the ACETRON involves this approach to enhance localiza-

tion precision. It avoids excessive computation and memory,

slowing down the real-time speed. Thus, the proposed de-

tector adopts a pyramidal feature hierarchy that eliminates

extra convolution and up-sampling techniques. It applies four

detection levels to predict faces of varying sizes. Two layers

are applied to the last two levels of the backbone, while

the other is applied to the interval stage of the high-level

transition module.

Each prediction layer employs a head convolutional block

that applies 3 × 3 updated kernels to generate the regression

(x, y, w, h) and classification (face or none) predictions. The

center coordinates and the size of the bounding boxes are

predicted in the regression layer, while the classification

score provides the probabilities of the two classes. The

proposed detector applies multi anchors to help initialize the

size of the predicted box. This assignment applies different

anchors sizes to each prediction level. It helps detectors focus

on obtaining specific features according to facial dimensions

and establish the consistency of each detection layer. Based

on this strategy, it installs anchor sizes of 384 and 512 to

predict large faces on the first level, 256 and 192 for medium

faces. Tiny and small faces were predicted on the third and

fourth layers by applying [128, 96, 64, 32] and [16, 8],

respectively.

C. High-level Transition Module

This module has a role in bridging the three prediction

layers by implementing a cheap operation module. It also

transforms the dimensions of the feature map to support

a multi-scale detection approach. Ghost module [23] and

Depthwise convolution [24] were adopted to avoid com-

putation overhead on low-cost devices. Fig. 3 shows that

it employs 1 × 1 convolution (F1x1) at the beginning of

the process to extract channel-based from the (xi) input

features on a single spatial. Then, it applies depthwise

convolution and simple attention, respectively. This module

can be illustrated as:

Tr(xi) = satt(Wdw(F1x1(xi)))⊕ F1x1(xi), (4)

where Wdw is the updated single filter and satt is the simple

attention that helps improve the feature map produced by

the linear filter. In order to obtain essential information

from spatial context information, it applies average pooling

to summarize the mean of each spatial pixel. The simple

attention module can be described as:

satt(xi) = xi ∗ δ(W1x1(Avgpool(xi))), (5)

where 1 × 1 convolutional serves to scale the spatial rep-

resentation, then generates the probability of each pixel by

applying the sigmoid activation (δ). Fig. 4 shows that spatial

attention updates the input feature using a channel-based

representation to select the pixels of interest and provide

better specific features on the high-level features map.

D. Light attentive module

The proposed architecture uses an enhancement module

to boost the potency of crucial features from the input map.

Because the lightweight backbone is weak to refine the

specific features, it should be improved by inserting a special

block before the head of a detection. A Light Attentive

module (LIHAT) is proposed as an attention module that can

capture essential facial features with low computation and

memory complexity. It globally highlights long dependencies

according to each map that can select rich channels without

ignoring valuable information. It also ensures that every

relationship between facial components is represented, which

can be illustrated as:

Att(xi) = xi ∗ δ(W1d(Avgpool(xi) ∗Maxpool(xi))). (6)

It applies associative aggregation of average Avgpool and

max-pooling Maxpool to summarize the channel represen-

tation. This combination obtains a definite summary of the

feature map to help increase precision in selecting interest

features. In addition, it uses 1D convolution to reconstruct

spatial information efficiently. It then applies sigmoid acti-

vation (δ) to generate a weighted score that will be used

to update the information map on input features (xi), as

shown in Fig. 1. The LIHAT module enhances the quality

of the information map for adaptive feature refinement. It
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allows the detector to operate fast at low computations and

significantly save parameters.

IV. TRAINING AND TESTING CONFIGURATION

A learning module requires a set of data to model the

characteristics of the features. The WIDER face dataset was

selected as a training dataset that provides varied instance

information and contains many challenges. This dataset cov-

ers multiple faces with different gender, ages, expressions,

scales, poses, illuminances, and occlusions. The benchmark

contains 32,203 images, of which 12,800 images are used

for the training phase. The augmentation techniques are

employed to enrich knowledge and prevent overfitting issues.

The method applies random cropping, scale transformation,

color distortion, and horizontal flipping, which adopts a work

[19]. The cropping result is resized to a high resolution of

1024 × 1024 used for the input dimensions of the training

model.

The entire training and evaluation phases are simulated

using the PyTorch framework. The ACETRON network is

trained in end-to-end mode applying a mini-batch of 32

that divides the dataset into small partitions. It applies the

Mean Squared Error [25] and the Softmax loss [21] as

the regression and classification loss, respectively. This loss

compares all anchor predictions with ground-truth through

IoU (Intersection over Union), generating positive and neg-

ative boxes. Then the whole neuron performs updating the

weights based on this error score. Furthermore, the training

process defines random weights initialization at all kernels

in the beginning iteration. The backpropagation process

updates the neuron weights by employing the Stochastic

Gradient Descent (SGD). Additionally, the optimizer uses

the regularization decay of 5 · 10−4 to optimize updating

weights. The proposed detector is trained by applying a

gradual learning rate: 10−3 learning rate at 300 epochs, 100

epochs at a 10−4 learning rate, 50 epochs at a 10−5 learning

rate, and 20 epochs at a 10−6 learning rate. The evaluation

phase instructs an anchor matching method by setting 0.5

IoU. It uses a GTX1080Ti only in the training phase to

increase computation speed. The detector speed was tested

on process evaluation with low-cost computing devices, such

as PC Intel Core I5-6600 CPU @3.30 GHz with 8 GB RAM

and Lattepanda Intel Cherry Trail Z8300 Quad Core CPU

@1.4 GHz with 4 GB RAM. In the inference stage, all

detection in the whole prediction layers is combined and

then utilized Non-maximum Suppression (NMS) of 0.5 to

select the best box as the final prediction.

V. EXPERIMENTAL RESULTS

This section explains an ablation experiment and the

evaluation of benchmarks, including Annotated Faces in

the Wild (AFW), PASCAL face, and Face Detection Data

Sets and Benchmarks (FDDB). It also describes the runtime

performance compared to other detectors and the implemen-

tation detector operating on low-cost computing devices.

TABLE I

ABLATION STUDY OF EACH PROPOSED MODULE.

Proposed Module
Experiment

1 2 3 4 5

Backbone
√ √ √ √ √

M2L module
√ √ √ √

Multi-scale detection
√ √ √

Cheap operation module
√ √

LIHAT module
√

TPR on FDDB (%) 97.52 96.77 97.02 92.11 90.50

Parameters 489,630 488,174 534,764 583,148 368,108

GFLOPS 0.23 0.23 0.24 0.22 0.16

FPS on VGA-resolution 112.06 123.56 135.22 151.84 210.10

A. Ablative study

This subsection is examined each proposed module by

replacing a one-by-one module, which is then measured

in its performance and efficiency. This approach will show

the weaknesses and strengths of each proposed module. It

applies the same training setting, besides particular mod-

ule changes. The FDDB dataset is used as an evaluation

dataset to assess the True Positive Rate (TPR) at 1,000 false

positives as detector accuracy. TABLE I shows that it is

evaluated by substituting and removing each module. Then,

the performance, parameters, computational complexity, and

speed are analyzed comprehensively. Firstly, the experiment

removes all the light attention modules on each branch

detection. It decreases the accuracy by 0.75%, but this

investigation did not significantly impact parameters and

GFLOPS. This module can increase the ability of detection

without obstructing the detector’s efficiency. Secondly, the

cheap operation module is changed with 1 × 1 convolution. It

increases 46.6K parameters and TPR by 0.25%. Thirdly, the

experiment only uses one detection layer at the network end.

It inserts all anchors only on a detection layer. Although the

examination boosted the speed by 16.62 FPS, it declined TPR

and added parameters by 4.91% and 48K, respectively. The

last experiment eliminates the whole M2L block so that only

the shrinking block remains. It shows that M2L can increase

the performance by 1.61%, but it also adds the parameters

by 215K. In addition, this module decreases the processing

rate by 58.26 FPS.

B. Evaluation on dataset

The evaluation of the proposed detector is examined on the

AFW, PASCAL FACE, and FDDB datasets by comparing the

performance with other competitors.

1) AFW dataset: This dataset contains 205 images with

473 faces that capture from Flickr images. The challenges

provide various ages, glasses, skin colors, and expressions

with different backgrounds. The proposed detector achieves

99.45% of average precision (AP), as shown in Fig. 5. It

outperforms the CPU-based detectors, including FCPU [21]

and FaceBoxes [19]. Moreover, the commercial detectors

(Face++ and Picasa) obtain low accuracy. The qualitative re-

sult shows that ACETRON can accurately locate the face, as

illustrated in Fig. 8 (a). The weakness of the detector predicts
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TABLE II

EFFICIENCY COMPARISON WITH OTHER FACE DETECTORS. SPEED RESULTS ARE TESTED ON VGA-RESOLUTION.

Detector
Number of
Parameter

GFLOPS
TPR on FDDB

(%)
PC Core i5

(FPS)
Lattepanda

(FPS)

FaceBoxes [19] 654,178 0.15 96.48 70.23 6.25

DCFPN [26] 1,019,834 0.54 95.38 72.57 7.19

LFFD [18] 1,964,656 8.17 97.31 10.91 0.73

RetinaFace-Mobile [27] 426,610 0.76 97.25 21.11 1.51

FlashNet [20] 151,786 0.18 97.33 75.64 6.27

FCPU [21] 989,832 0.20 97.00 90.24 8.76

ACETRON 489.630 0.23 97.52 112.06 11.12

Fig. 5. Evaluation results on AFW dataset.

Fig. 6. Evaluation results on PASCAL FACE dataset.

background objects and dog faces as human faces. However,

the multi-pose and illuminance variation challenges can be

overcome by this detector.

2) PASCAL FACE dataset: This dataset consists of 851

images that contain 1,335 faces. A set of faces is obtained

from the subset of the PASCAL person dataset. The variety

of background supplies challenges the indoor and outdoor

environment to generate variations in lighting. Fig. 6 shows

Fig. 7. Evaluation results on FDDB dataset based on true positive rate at
1000 false positives.

that the proposed detector achieves an AP of 98.52%. It

outperformed FCPU and FaceBoxes by 0.46% and 1.48%,

respectively. The qualitative results in Fig. 8 (b) show that

ACETRON can detect faces in variation scale, pose, and

occlusion. The proposed detector falsely predicts objects with

textures and colors similar to faces.

3) FDDB dataset: This dataset contains 5,171 faces an-

notated in 2,845 images collected from Yahoo websites.

It provides many challenges, including occlusions, multi-

poses, illuminance, and low image resolutions. Fig. 7 shows

that the proposed detectors are examined on discrete cri-

teria with a true positive rate metric (TPR) at 1,000 false

positives. The performance of ACETRON is superior than

LFFD [18], Retinaface-mobile[27], FlashNet [20], FCPU,

and FaceBoxes. Even the detector performance is 0.19%

different from FlashNet. Fig. 8 (c) illustrates that a hand

and background object traps the detector to predict faces.

This problem does not weaken the detector’s performance

in detecting various sizes, poses, expressions, genders, and

occluded faces.

C. Runtime Performance on CPU devices

A vision-based detector observes patterns from objects

through visual input. It has the same way with eyes that

can interact with the brain to decide perception. This system
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(a)

(b)

(c)  

(d)

Fig. 8. Qualitative results of the proposed detector on AFW (a), PASCAL FACE (b), FDDB datasets (c), and a video in real-world application (d).

requires a short processing time to synchronize it with the

action. A practical application also emphasizes a vision

method to operate in real-time. A digital advertising system

automatically offers consumer interest with fast processing

times. Integration with an advanced module can reduce

the speed of the overall system. Therefore, the need for

a fast initial detector is an appropriate solution without

compromising detection accuracy. In addition, the issue of

speed is often associated with its implementation on CPU-

based devices, which are generally used for smart digital

advertising technologies.

In the testing stage, input lives stream video taken from

a webcam to examine the real scenarios performance and

real-time speed of the detector at 1,000 frames on VGA

resolution. Fig. 8 (d) shows that the detector can detect

human faces using accessories (masks and glasses). Even

a partially occluded face challenge does not restrict the

detector from locating its location. On the other case, some

faces are not detected in certain positions due to disappear-

ing facial features such as eyes, eyebrows, and forehead.

Nevertheless, this detector is still feasible to apply to smart

digital advertising technology because most human faces are

detected accurately in real-time.

The proposed detector generates 490K parameters, less

than the FCPU as the fastest competitor. The implementation

results show that the detector achieves a speed of 112.06

frames per second on a CPU Intel Core i5, as shown in

TABLE II. This speed is superior to the FCPU of 21.82

FPS. In addition, other results also show that the proposed

detector is faster than the FlashNet detector that outperforms

by 0.19% TPR on the FDDB dataset. The proposed detector

also achieves the fastest detector on Lattepanda devices. This

device exploits a clock speed of 1.4GHz, classified as a

low-cost computing device. The competitors run slowly in

this device, so they tend to depend on expensive devices.

The ACETRON speed shows that this efficient detector can
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be operated on low-cost devices. The proposed architec-

ture implements fewer operations and layers, resulting in

low computational and memory complexity. Additionally, it

keeps the precision of detection that accurately localizes the

multi-scale face area.

VI. CONCLUSIONS

This paper presents a fast face detection using the

lightweight CNN architecture that works in real-time on

the CPU devices. The ACETRON detector employs several

efficient modules that generate few parameters and compu-

tation complexity. The proposed architecture consists of four

main modules: an efficient backbone, transition, lightweight

attention, and multi-scale detection. Light backbone and

attentive modules help the network to distinguish distinctive

features rapidly and highlight the specific essential elements.

These modules use few operations and layers that produce

less computation cost and support the proposed detector to

quickly operate on low-cost computing devices. As a result,

the ACETRON achieves excellent performance compared

with CPU-based detectors on the benchmark datasets. The

network is fastest than other models and can operate at

real-time speeds of 112 FPS on a CPU and 11 FPS on a

Lattepanda device. The real scenario results show that the

detector can detect multiple faces with various challenges

of scales, positions, and occlusions. In future work, the

transformer module will be explored to enhance the small

feature face. Besides, a specific evaluation can be conducted

on the animal faces dataset to examine the detector in a

challenging environment.
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