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Abstract— Smart digital advertising requires face detection as
the initial stage to recognize the person’s attributes by localizing
human facial areas. This technology tends to operate with CPU-
based systems. The Deep Convolutional Neural Network ap-
proach has demonstrated excellent accuracy for face detection
work. However, this architecture involves heavy computations
and parameters because it uses many filter operations. It
causes deep architecture to slow down the detector speed.
Moreover, a practical application entails using a detector that
can operate in real-time. The recent CPU-based face detectors
operate slowly in an integrated system. This study proposes
a faster face detector to predict the human face area using
efficient architecture robustly. The architecture consists of a
light backbone to discriminate distinctive features and a four
detection module to predict multiple faces. In order to bridge
the three prediction layers, it implements a high-level transition
module with a cheap operation. It also offers a new light
attentive block to highlight typical facial features at each
detection module efficiently. As a result, this detector achieves
excellent performance and outperforms other low computing
detectors. The proposed detector can fast operate at 112 frames
per second on a Core I5 CPU and at 11 frames per second on
a Lattepanda device, faster than other competitors.

I. INTRODUCTION

Nowadays, the overall development of digital content
creates a new digital marketing environment. Artificial intel-
ligence also encourages the birth of smart digital advertising
that can provide more benefits in the digital marketing
process. Smart digital advertising allows promoted content to
be displayed dynamically according to the audience, which
makes it more targeted [1]. This technology provides an
effective mechanism that only shows relevant promotions for
targeted consumers that are achieved by personalizing the
audience. The demographic information, such as gender and
age, is essential information for personalized advertising tar-
geting [2], [3]. The data was obtained by recognizing through
the face of the audience, which requires face detection as an
initial process [4], [5].

In recent years, Deep Convolutional Neural Networks
(DCNNs) have become very popular because it is robust
and provide exceptional accuracy for various computer vi-
sion works, such as object detection and classification [6].
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DCNNs have provided many breakthroughs, especially in
face detection works. In [7], a DCNNs model was designed
to detect faces that produced high-performance detection.
The DCNNs are capable of learning high-level features from
faces effectively. Moreover, it succeeded in performing a
face verification task and achieved a high accuracy [8]. The
common tendency in developing the DCNNs model is to
design more visceral and more complex DCNNs models to
achieve higher accuracy [9], [10]. However, improving accu-
racy does not necessarily create lighter and faster networks in
many real-world implementations, particularly in supporting
real-time cases. The detection and recognition tasks need to
be sufficiently performed, especially on low-cost computing
devices.

Commonly, designing cheap operation and lightweight
CNN model can generate high-speed performance of de-
tection and recognition task [11]. Many previous works
tried to make CNN models with lighter weight and low
operation for faster processes. In [12], a CNN architecture
was proposed to detect faces that produced rapid detection
with a light network. It can be able to apply in low-cost
computing devices. In another work, [13], the CNN model
with a lightweight and deep approach is proposed to perform
face detection on a low-cost computing device such as
Jetson TX2. It is clear from the literature that most of the
face detection work gives excellent results by utilizing the
DCNNs. However, these works have not been tested further
to provide more satisfactory results. Moreover, face detection
is only an initial process to support further work on real-time
gender and age recognition on low-cost computing devices.

As an initial process, high-speed face detection is needed
to support further work applying the DCNNs. As seen
at work [14], gender recognition is performed after the
face detection process. Gender recognition is performed to
support smart digital advertising such as digital signage. This
kind of system requires a low-cost device [15] to reduce
budget expenditures. It encourages this system to have an
efficient face detector as an initial process of an integrated
system. Therefore, it requires a much lighter and cheaper
operation to be integrated with further work that implements
the CNN and applies to low-cost computing devices.

This work presents a faster face detector based on the
vision approach (ACETRON) using a very lightweight and
cheap operation. Therefore, it supports integration with fur-
ther work and application on low-cost computing devices
in real-time. Two novel modules, namely Mini Multi-level
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Fig. 1. The proposed architecture of the detector. It uses an efficient backbone module to extract human facial features rapidly. The anchor-based technique
is applied in the multi-level detection modules to predict multiple faces based on multi-scale variants. Best viewed in color.

(M2L) convolutional module and Light Attentive module
(LIHAT), are designed to improve the DCNNs architecture
used by the detector. The M2L gradually extracts the ex-
clusive features with fewer parameters than the standard
convolution. The LIHAT is used to escalate and ensure the
critical features based on the channel maps. Therefore, the
detector can perform more advanced and faster to predict
the object’s class. This paper offers the main contributions
as follows:

1) A novel fast face detector proposes a lightweight CNN
architecture with a cheap operation and computation
implemented to support smart digital advertising. It
emphasizes the efficiency and efficacy of the CNN-
based model, which achieves fast real-time speed on a
CPU and an edge device.

2) A new efficient backbone module is introduced that
rapidly extracts distinctive facial features using Mini
Multi-level (M2L), generating few parameters and low-
cost computation. This module combines two grouped
convolution blocks with different frequency levels to
enrich the feature information.

3) A Light Attentive module (LIHAT) is offered as a
single enhancement module to capture the essential
features according to the channel map from input
features. It efficiently boosts the feature map quality at
the four-level of the backbone, increasing the detector
prediction performance.

II. RELATED WORKS

A CNN-based face detection is one of the works that
shows outstanding progress, especially in performance. In
[16], TinaFace, a backbone based on DCNNs, was proposed
to perform face detection. The backbone surpassed most of
the other recent more extensive models in detecting faces.
In another work [17], the DCNNs combined with YOLOv5
were designed to build a face detector, namely YOLO5Face.
Both works were designed to perform quickly on GPU.
However, they slowly run when they perform on the CPU.

These days, face detectors specially designed for CPU or
low-cost computing devices arise to respond to the shortage
described in the previous paragraph. In [18], a Light and Fast
Face Detector (LFFD) was built and successfully performed
face detection on low-cost computing devices such as Rasp-
berry Pi. The LFFD proposes a model with fewer filters that
drives the face detector to run fast. Faceboxes [19] success-
fully performs face detection on a CPU in real-time. The
network architecture used rapidly digest convolution layers
(RDCL) and multiple-scale convolution layers (MSCL) to
extract the important element and enrich the receptive field.

FlashNet [20], a lightweight network model with few
parameters, was designed to detect faces. The detector can
detect faces in real-time and achieves high running speed
on the CPU. Later, FCPU [21] successfully performs real-
time face detection not only on the CPU but also on several
low-cost devices such as Lattepanda and Rasberry Pi. In this
article, the proposed model constructs the CNN approach
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Fig. 3. High-level transition module using cheap operation block.

by using a backbone module that produces more lightweight
with a cheaper operation. The detector focused on increasing
running speed while maintaining the average precision.

III. PROPOSED ARCHITECTURE

The proposed face detector consists of four components:
backbone, transition, light attentive module, and multi-scale
detection. Fig. 1 shows that it applies four detection layers
by assigning various scales anchors to predict the bounding
box’s location, size, and class.

A. Efficient backbone

A CNN-based architecture generally employs feature ex-
traction to discriminate essential features that support pre-
diction performance. It plays an essential role in capturing
important information from an input image so that the
proposed network does not dismiss the performance of each
sub-module. The detector utilizes a sequential convolutional
block with a small number of channel layers. It causes the
detector to produce a few parameters, light computation, and
low memory usage. In order to support this capability, the
proposed detector applies a shrinking block at the beginning
of the stage, which emphasizes the efficient shrinkage of the
feature map. This strategy can reduce overhead computation
while avoiding heavy parameter models. Therefore, it op-
erates a 5 × 5 kernel size followed by 3 × 3 convolution
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cheap operation module.

layers to shrink the feature map size. This architecture uses
a large stride at the initial phase to drastically decrease the
size of the feature map without compromising the quality of
the extracted features.

In order to increase the selectivity on low-level layers, it
applies a bottleneck technique using sequential 1 × 1 and 3
× 3 convolution, which compresses the channels layer at the
beginning of the block. This approach benefits the model by
producing a few parameters. The end of the shrinking block
generates 32 times smaller feature maps than input images
by providing feature information on 128 channels. It allows
the detector to absorb little memory usage for extracting
process with keeping its performance to filter the interest
information.

Furthermore, it implements a stem module that plays a
role in comprehensively extracting features by discriminating
against facial elements from the background. The need for
a real-time system demands that the stem module offers an
efficient feature extractor. However, this does not eliminate
the performance of the discriminator, so it encourages the de-
tector to be able to distinguish facial and background features
accurately. The Mini Multi-level (M2L) convolutional block
intuitively fuses two feature maps with different frequency
levels of input features (xi), as shown in Fig. 2. It delivers
different level features and combines them to enrich the
information.

This structure adopts [22], increasing efficiency by apply-
ing only two convolutional levels. The initial process splits
two channel-based feature map inputs [x1

i , x
2
i ] to reduce the

computational complexity in subsequent operations. Each
extractor will get input with a smaller channel layer, so this
approach also reduces the number of trainable parameters.
The first segment (x1

i ) is applied 3 × 3 convolutions to obtain
low-level features as illustrated:

Fl(xi) = ReLU(BN(Wu(x
1
i ))), (1)

where it ignores bias and then sequentially applies Batch
Normalization (BN) and Rectified Linear Unit activation
(ReLU) to prevent vanishing gradient problems. Another
level feature is generated by applying a 3 × 3 convolution
filter to the aggregation of low-level and second segment



(x2
i ) can be described as:

Fh(xi) = ReLU(BN(Wv(Fl(xi) + x2
i ))). (2)

M2L output is obtained by combining the two feature maps
with different levels to enrich the feature frequency by
applying the concatenate operation (⊕). In addition, 1 × 1
convolution is applied in the following process to reconstruct
every single spatial pixel, as can be illustrated as follows:

M2L(xi) = ReLU(BN(Wz(Fh(xi)⊕ Fl(xi)))). (3)

Mini Multi-level convolutional block gradually employs up-
dated filter operation at different frequency levels. It em-
phasizes multi-scale convolutions considering both deeper
semantics. Additionally, it increases the diversity of the
receptive area while preventing saturation of sensitivity of the
deeper convolutions. Instead of using only one M2L block,
the proposed detector sequentially applies four modules
to improve prediction accuracy on medium and high-level
features. It reduces computational and parameter usage and
applies grouped convolution to all 3 × 3 filters on the M2L
convolutional block.

B. Multi-scale detection

Face detectors generally utilize the detection layer to
predict the face area by estimating its coordinates and size
boxes. Several works [17], [19], [21] have proven that multi-
layer can improve predictive performance. Each prediction
layer will be responsible for specific object sizes. It handles
the inconsistency issue of the rigid receptive field, which has
difficulty accommodating different facial scales. Therefore,
the ACETRON involves this approach to enhance localiza-
tion precision. It avoids excessive computation and memory,
slowing down the real-time speed. Thus, the proposed de-
tector adopts a pyramidal feature hierarchy that eliminates
extra convolution and up-sampling techniques. It applies four
detection levels to predict faces of varying sizes. Two layers
are applied to the last two levels of the backbone, while
the other is applied to the interval stage of the high-level
transition module.

Each prediction layer employs a head convolutional block
that applies 3 × 3 updated kernels to generate the regression
(x, y, w, h) and classification (face or none) predictions. The
center coordinates and the size of the bounding boxes are
predicted in the regression layer, while the classification
score provides the probabilities of the two classes. The
proposed detector applies multi anchors to help initialize the
size of the predicted box. This assignment applies different
anchors sizes to each prediction level. It helps detectors focus
on obtaining specific features according to facial dimensions
and establish the consistency of each detection layer. Based
on this strategy, it installs anchor sizes of 384 and 512 to
predict large faces on the first level, 256 and 192 for medium
faces. Tiny and small faces were predicted on the third and
fourth layers by applying [128, 96, 64, 32] and [16, 8],
respectively.

C. High-level Transition Module

This module has a role in bridging the three prediction
layers by implementing a cheap operation module. It also
transforms the dimensions of the feature map to support
a multi-scale detection approach. Ghost module [23] and
Depthwise convolution [24] were adopted to avoid com-
putation overhead on low-cost devices. Fig. 3 shows that
it employs 1 × 1 convolution (F1x1) at the beginning of
the process to extract channel-based from the (xi) input
features on a single spatial. Then, it applies depthwise
convolution and simple attention, respectively. This module
can be illustrated as:

Tr(xi) = satt(Wdw(F1x1(xi)))⊕ F1x1(xi), (4)

where Wdw is the updated single filter and satt is the simple
attention that helps improve the feature map produced by
the linear filter. In order to obtain essential information
from spatial context information, it applies average pooling
to summarize the mean of each spatial pixel. The simple
attention module can be described as:

satt(xi) = xi ∗ δ(W1x1(Avgpool(xi))), (5)

where 1 × 1 convolutional serves to scale the spatial rep-
resentation, then generates the probability of each pixel by
applying the sigmoid activation (δ). Fig. 4 shows that spatial
attention updates the input feature using a channel-based
representation to select the pixels of interest and provide
better specific features on the high-level features map.

D. Light attentive module

The proposed architecture uses an enhancement module
to boost the potency of crucial features from the input map.
Because the lightweight backbone is weak to refine the
specific features, it should be improved by inserting a special
block before the head of a detection. A Light Attentive
module (LIHAT) is proposed as an attention module that can
capture essential facial features with low computation and
memory complexity. It globally highlights long dependencies
according to each map that can select rich channels without
ignoring valuable information. It also ensures that every
relationship between facial components is represented, which
can be illustrated as:

Att(xi) = xi ∗ δ(W1d(Avgpool(xi) ∗Maxpool(xi))). (6)

It applies associative aggregation of average Avgpool and
max-pooling Maxpool to summarize the channel represen-
tation. This combination obtains a definite summary of the
feature map to help increase precision in selecting interest
features. In addition, it uses 1D convolution to reconstruct
spatial information efficiently. It then applies sigmoid acti-
vation (δ) to generate a weighted score that will be used
to update the information map on input features (xi), as
shown in Fig. 1. The LIHAT module enhances the quality
of the information map for adaptive feature refinement. It



allows the detector to operate fast at low computations and
significantly save parameters.

IV. TRAINING AND TESTING CONFIGURATION

A learning module requires a set of data to model the
characteristics of the features. The WIDER face dataset was
selected as a training dataset that provides varied instance
information and contains many challenges. This dataset cov-
ers multiple faces with different gender, ages, expressions,
scales, poses, illuminances, and occlusions. The benchmark
contains 32,203 images, of which 12,800 images are used
for the training phase. The augmentation techniques are
employed to enrich knowledge and prevent overfitting issues.
The method applies random cropping, scale transformation,
color distortion, and horizontal flipping, which adopts a work
[19]. The cropping result is resized to a high resolution of
1024 × 1024 used for the input dimensions of the training
model.

The entire training and evaluation phases are simulated
using the PyTorch framework. The ACETRON network is
trained in end-to-end mode applying a mini-batch of 32
that divides the dataset into small partitions. It applies the
Mean Squared Error [25] and the Softmax loss [21] as
the regression and classification loss, respectively. This loss
compares all anchor predictions with ground-truth through
IoU (Intersection over Union), generating positive and neg-
ative boxes. Then the whole neuron performs updating the
weights based on this error score. Furthermore, the training
process defines random weights initialization at all kernels
in the beginning iteration. The backpropagation process
updates the neuron weights by employing the Stochastic
Gradient Descent (SGD). Additionally, the optimizer uses
the regularization decay of 5 · 10−4 to optimize updating
weights. The proposed detector is trained by applying a
gradual learning rate: 10−3 learning rate at 300 epochs, 100
epochs at a 10−4 learning rate, 50 epochs at a 10−5 learning
rate, and 20 epochs at a 10−6 learning rate. The evaluation
phase instructs an anchor matching method by setting 0.5
IoU. It uses a GTX1080Ti only in the training phase to
increase computation speed. The detector speed was tested
on process evaluation with low-cost computing devices, such
as PC Intel Core I5-6600 CPU @3.30 GHz with 8 GB RAM
and Lattepanda Intel Cherry Trail Z8300 Quad Core CPU
@1.4 GHz with 4 GB RAM. In the inference stage, all
detection in the whole prediction layers is combined and
then utilized Non-maximum Suppression (NMS) of 0.5 to
select the best box as the final prediction.

V. EXPERIMENTAL RESULTS

This section explains an ablation experiment and the
evaluation of benchmarks, including Annotated Faces in
the Wild (AFW), PASCAL face, and Face Detection Data
Sets and Benchmarks (FDDB). It also describes the runtime
performance compared to other detectors and the implemen-
tation detector operating on low-cost computing devices.

TABLE I
ABLATION STUDY OF EACH PROPOSED MODULE.

Proposed Module Experiment
1 2 3 4 5

Backbone
√ √ √ √ √

M2L module
√ √ √ √

Multi-scale detection
√ √ √

Cheap operation module
√ √

LIHAT module
√

TPR on FDDB (%) 97.52 96.77 97.02 92.11 90.50
Parameters 489,630 488,174 534,764 583,148 368,108
GFLOPS 0.23 0.23 0.24 0.22 0.16
FPS on VGA-resolution 112.06 123.56 135.22 151.84 210.10

A. Ablative study

This subsection is examined each proposed module by
replacing a one-by-one module, which is then measured
in its performance and efficiency. This approach will show
the weaknesses and strengths of each proposed module. It
applies the same training setting, besides particular mod-
ule changes. The FDDB dataset is used as an evaluation
dataset to assess the True Positive Rate (TPR) at 1,000 false
positives as detector accuracy. TABLE I shows that it is
evaluated by substituting and removing each module. Then,
the performance, parameters, computational complexity, and
speed are analyzed comprehensively. Firstly, the experiment
removes all the light attention modules on each branch
detection. It decreases the accuracy by 0.75%, but this
investigation did not significantly impact parameters and
GFLOPS. This module can increase the ability of detection
without obstructing the detector’s efficiency. Secondly, the
cheap operation module is changed with 1 × 1 convolution. It
increases 46.6K parameters and TPR by 0.25%. Thirdly, the
experiment only uses one detection layer at the network end.
It inserts all anchors only on a detection layer. Although the
examination boosted the speed by 16.62 FPS, it declined TPR
and added parameters by 4.91% and 48K, respectively. The
last experiment eliminates the whole M2L block so that only
the shrinking block remains. It shows that M2L can increase
the performance by 1.61%, but it also adds the parameters
by 215K. In addition, this module decreases the processing
rate by 58.26 FPS.

B. Evaluation on dataset

The evaluation of the proposed detector is examined on the
AFW, PASCAL FACE, and FDDB datasets by comparing the
performance with other competitors.

1) AFW dataset: This dataset contains 205 images with
473 faces that capture from Flickr images. The challenges
provide various ages, glasses, skin colors, and expressions
with different backgrounds. The proposed detector achieves
99.45% of average precision (AP), as shown in Fig. 5. It
outperforms the CPU-based detectors, including FCPU [21]
and FaceBoxes [19]. Moreover, the commercial detectors
(Face++ and Picasa) obtain low accuracy. The qualitative re-
sult shows that ACETRON can accurately locate the face, as
illustrated in Fig. 8 (a). The weakness of the detector predicts



TABLE II
EFFICIENCY COMPARISON WITH OTHER FACE DETECTORS. SPEED RESULTS ARE TESTED ON VGA-RESOLUTION.

Detector Number of
Parameter GFLOPS TPR on FDDB

(%)
PC Core i5

(FPS)
Lattepanda

(FPS)
FaceBoxes [19] 654,178 0.15 96.48 70.23 6.25
DCFPN [26] 1,019,834 0.54 95.38 72.57 7.19
LFFD [18] 1,964,656 8.17 97.31 10.91 0.73
RetinaFace-Mobile [27] 426,610 0.76 97.25 21.11 1.51
FlashNet [20] 151,786 0.18 97.33 75.64 6.27
FCPU [21] 989,832 0.20 97.00 90.24 8.76
ACETRON 489.630 0.23 97.52 112.06 11.12

Fig. 5. Evaluation results on AFW dataset.

Fig. 6. Evaluation results on PASCAL FACE dataset.

background objects and dog faces as human faces. However,
the multi-pose and illuminance variation challenges can be
overcome by this detector.

2) PASCAL FACE dataset: This dataset consists of 851
images that contain 1,335 faces. A set of faces is obtained
from the subset of the PASCAL person dataset. The variety
of background supplies challenges the indoor and outdoor
environment to generate variations in lighting. Fig. 6 shows

Fig. 7. Evaluation results on FDDB dataset based on true positive rate at
1000 false positives.

that the proposed detector achieves an AP of 98.52%. It
outperformed FCPU and FaceBoxes by 0.46% and 1.48%,
respectively. The qualitative results in Fig. 8 (b) show that
ACETRON can detect faces in variation scale, pose, and
occlusion. The proposed detector falsely predicts objects with
textures and colors similar to faces.

3) FDDB dataset: This dataset contains 5,171 faces an-
notated in 2,845 images collected from Yahoo websites.
It provides many challenges, including occlusions, multi-
poses, illuminance, and low image resolutions. Fig. 7 shows
that the proposed detectors are examined on discrete cri-
teria with a true positive rate metric (TPR) at 1,000 false
positives. The performance of ACETRON is superior than
LFFD [18], Retinaface-mobile[27], FlashNet [20], FCPU,
and FaceBoxes. Even the detector performance is 0.19%
different from FlashNet. Fig. 8 (c) illustrates that a hand
and background object traps the detector to predict faces.
This problem does not weaken the detector’s performance
in detecting various sizes, poses, expressions, genders, and
occluded faces.

C. Runtime Performance on CPU devices

A vision-based detector observes patterns from objects
through visual input. It has the same way with eyes that
can interact with the brain to decide perception. This system
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Fig. 8. Qualitative results of the proposed detector on AFW (a), PASCAL FACE (b), FDDB datasets (c), and a video in real-world application (d).

requires a short processing time to synchronize it with the
action. A practical application also emphasizes a vision
method to operate in real-time. A digital advertising system
automatically offers consumer interest with fast processing
times. Integration with an advanced module can reduce
the speed of the overall system. Therefore, the need for
a fast initial detector is an appropriate solution without
compromising detection accuracy. In addition, the issue of
speed is often associated with its implementation on CPU-
based devices, which are generally used for smart digital
advertising technologies.

In the testing stage, input lives stream video taken from
a webcam to examine the real scenarios performance and
real-time speed of the detector at 1,000 frames on VGA
resolution. Fig. 8 (d) shows that the detector can detect
human faces using accessories (masks and glasses). Even
a partially occluded face challenge does not restrict the
detector from locating its location. On the other case, some

faces are not detected in certain positions due to disappear-
ing facial features such as eyes, eyebrows, and forehead.
Nevertheless, this detector is still feasible to apply to smart
digital advertising technology because most human faces are
detected accurately in real-time.

The proposed detector generates 490K parameters, less
than the FCPU as the fastest competitor. The implementation
results show that the detector achieves a speed of 112.06
frames per second on a CPU Intel Core i5, as shown in
TABLE II. This speed is superior to the FCPU of 21.82
FPS. In addition, other results also show that the proposed
detector is faster than the FlashNet detector that outperforms
by 0.19% TPR on the FDDB dataset. The proposed detector
also achieves the fastest detector on Lattepanda devices. This
device exploits a clock speed of 1.4GHz, classified as a
low-cost computing device. The competitors run slowly in
this device, so they tend to depend on expensive devices.
The ACETRON speed shows that this efficient detector can



be operated on low-cost devices. The proposed architec-
ture implements fewer operations and layers, resulting in
low computational and memory complexity. Additionally, it
keeps the precision of detection that accurately localizes the
multi-scale face area.

VI. CONCLUSIONS

This paper presents a fast face detection using the
lightweight CNN architecture that works in real-time on
the CPU devices. The ACETRON detector employs several
efficient modules that generate few parameters and compu-
tation complexity. The proposed architecture consists of four
main modules: an efficient backbone, transition, lightweight
attention, and multi-scale detection. Light backbone and
attentive modules help the network to distinguish distinctive
features rapidly and highlight the specific essential elements.
These modules use few operations and layers that produce
less computation cost and support the proposed detector to
quickly operate on low-cost computing devices. As a result,
the ACETRON achieves excellent performance compared
with CPU-based detectors on the benchmark datasets. The
network is fastest than other models and can operate at
real-time speeds of 112 FPS on a CPU and 11 FPS on a
Lattepanda device. The real scenario results show that the
detector can detect multiple faces with various challenges
of scales, positions, and occlusions. In future work, the
transformer module will be explored to enhance the small
feature face. Besides, a specific evaluation can be conducted
on the animal faces dataset to examine the detector in a
challenging environment.
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