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Abstract—Convolution neural networks (CNNs) have achieved
the highest performance today not only for human posture
prediction but also for other machine vision tasks (e.g., ob-
ject identification, semantic segmentation, images classification).
Furthermore, the Attention Module demonstrates their superi-
ority over other conventional networks (AM). As a result, this
work focuses on a useful feed-forward AM for CNNs. First,
following a stage in the backbone network, feed the feature
map into the attention module, which is separated into two
dimensions: channel and spatial. The AM then multiplies these
two feature maps and passes them on to the next level in
the backbone. The network can collect more information in
long-distance dependencies (channels) and geographical data,
resulting in higher precision efficiency. Our experimental results
would also show a difference between the employment of the
attention module and current methodologies. As a result of
the switch to a High-resolution network (HRNet), the predicted
joint heatmap keeps accuracy while reducing the number of
parameters compared to the baseline-CNN backbone. In terms
of AP, the suggested design outperforms the baseline-HRNet by
2.0 points. Furthermore, the proposed network was trained using
the COCO 2017 benchmarks, which are currently available as
an open dataset.

Index Terms—machine learning, high-resolution network, at-
tention module, human pose estimation.

I. INTRODUCTION

In contemporary world nowadays, 2D human pose esti-
mation plays an important but challenging function in com-
puter vision, serving numerous objectives such as human re-
identification [1], [2], activity recognition [3], [4], human pose
estimation [5], [6] or 3D human pose estimation [7], [8].
Human pose’s main goal is to recognize bodily sections for
human body keypoint. Channel and spatial background are
vital in improving the precision of key point regression. As
a result, this research will concentrate on how to teach the
network get better attention information.

Deep convolutional of neural networks have recently at-
tained out standing performance, according to recent break-
throughs. Most existing approaches route the input through
a network, which is generally made up of high-to-low reso-
lution subnetworks connected in series, before increasing the
resolution. Hourglass [9], for example, restores high resolution
using a symmetric low-to-high process. SimpleBaseline [10]
generates high-resolution representations using a few trans-
posed convolution layers. Furthermore, dilated convolutions
are employed to enlarge the latter layers of a high-to-low
resolution network (e.g., VGGNet or ResNet) [11], [12].

Deep convolution of neural networks has now stored signif-
icant advances in human posture [13], [14]. These networks,
however, still have a lot of challenges to sort out. First and
foremost, how can accuracy be improved in various types
of networks? (e.g., real-time network, accuracy network).
Second, while updating or modifying a network, it is fre-
quently necessary to examine its speed. Last but not least, the
present network must improve accuracy while remaining as
quick as feasible. This research describes an unique network
and the attention module’s dependability in terms of speed
and accuracy. The suggested experiment compares using and
not using the attention module. The experiment also differs
from the Simple Baseline [10] experiment, which inactive the
attention mechanism and for upsampling, it instead used the
transpose convolution [15]. The proposed method would focus
on how productive and economical each network situation is.

In particular, proposed technique was established a sim-
ple fine-tune attention module [16], which demonstrated a
considerable improvement in mean Average Precision (mAP).
Inspired by VGG16 [11], the suggested network attempts to
enhance the spatial attention module (SAM) by employing
two 3×3 convolution layers rather than a 7×7 convolution
layer. The network maintains the mAP while lowering the
implementation cost by using 3×3 kernel. Furthermore, the
number of parameters was reduced, resulting in an increase
in network speed. To understand clearly about AM, proposed
network increase 4.7 point in Average Precision for precision
and only increase around 16.5 percent of number parameters,
which contrasted with the Attention mechanism standard [16]
when utilized High-Resolution Network [17] as a backbone
network. This research offers a novel network attention module
that can readily react to a variety of difficulties in numerous
applications, such as object identification, images classifica-
tion, and human position estimation. The proposed method
computes joint human pose estimations based on feature map
recovery using an up-sampling method.

II. RELATED WORK

2D-Human Pose Estimation: The most important aspect
of human pose estimation is key-point detection and its
interaction with geographical data, Deeppose [18], Simple
baseline makes use of joint prediction using an end-to-end
architecture with a larger restriction. Later, Newell with the
Stacked hourglass network [9] reduces the amount of settings
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Fig. 1. Demonstrate the outline of the proposed 2D-human-pose estimation architecture. The proposed approach divided the network into 4 stages, each stage
was connected by an attention module.

while maintaining great accuracy. Nowadays, Sun with the
High-Resolution network [17] maintains the high-resolution
map from beginning to end to keep the high-level feature
for the network until the end. To represent local joints, all of
the approaches employed Gaussian distributions. After that, a
convolution neural architecture was utilized to predict human
posture estimation. To minimize employment costs, they must
shrink the quantity of parameters , and using appropriate
attention approaches will reduce the network’s parameter.
As a result, the suggested strategy focuses on the employed
attention module while increasing accuracy and decreasing the
number of parameters.

On the other side, for increasing network performance, a
3×3 kernel size outperforms a 7×7 kernel size. However,
in certain more sophisticated and expensive architectures, the
7×7 kernel size provides more precision. In comparison, our
attention module gives a sufficient perspective for network
design, with a limited number of parameters and high speed
or a larger number of parameters and lower speed. The article
then demonstrates how the attention module will function in
each procedure and outcome.

High resolution network: Most convolutional neural net-
works for keypoint heatmap estimation are composed of a stem
subnetwork, similar to a classification network, that decreases
the resolution, a main body that produces representations with
the same resolution as its input, and a regressor that estimates
the heatmaps where the joint positions are estimated and then
transformed in original resolution. Keeping the full resolution
give the network get better accuracy. The main body primarily
employs a high-to-low and low-to-high structure, which may
be supplemented by multi-scale fusion and intermediate (deep)
supervision.

In parallel, High Resolution architecture connects high-
to-low subnetworks. It keeps high-resolution representations
throughout the process, allowing for spatially exact heatmap
estimate. It produces consistent high-resolution representations
by repeatedly merging the representations created by the high-
to-low subnetworks. Our technique differs from most previous
efforts in that it requires a distinct low-to-high upsampling
procedure as well as aggregate low-level and high-level feature
map. Without the need of intermediate heatmaps supervision,
the technique is superior in joint identification accuracy and



efficient in computing complexity and parameters.
Attention mechanism: Human visualization is vital in

computer vision, and a variety of focus processing methods
are being made to improve the efficiency of CNNs. Wang et
al. [19] also proposed a non-local network for gathering long-
distance interdependence. SKNet [20] integrated the SENet
Channel Focus Module with the Inception Multi-Branch Con-
volution, which was inspired by SENet [21] and Inception
[22]. Furthermore, the Module for geographical attention is
derived from Google’s STN [23], which gathers the back-
ground data of the feature maps. Furthermore, the attention
module provides several benefits for saliency detection, multi-
label categorization, and individual identification.

The suggested approach in this research was motivated by
the CBAM architecture [24] to create the productive in the
middle of both spatial and channel module by employing
element-wise multiplication. Following that, the tensors adds
to the previous tensors to merge the old and latest data from
the Attention block.

III. METHODOLOGY

A. Network architecture

Backbone network: Our architecture used a backbone that
includes HRNet-W32 and HRNet-W48 [17], as shown in
Figure 1 for a full architecture. Each HRNet has four phases,
which include residual blocks and connections. The original
input RGB image shrinks the size to 256×192 (HRNet-W32,
HRNet-W48), the tensor traverse each pillar layer, and the
initial resolution of H ×W drops two times for every stage.
Finally, after travelling down the backbone, the function map’s
dimension is decreased to W

16×
H
16 with 256 channels at the last

bottom layer of network. However, the backbone network will
only use the first subnetwork which keeps the size is W ×H
until the end of regression. Furthermore, the dimension of the
channels got doubled at each stage. It progresses from 32 after
the beginning stage to 256 in the final stage. The baseline
network’s job is to accumulate useful data from extract feature
maps and transmit them to the Training System, which uses
cross entropy loss to predict human joints.
After extracting the helpful data from the backbone architec-
ture, the upsampling architecture recovers the information by
using the tensor from the final layer of the baseline network
and up-scale it. Following that, the feature map will genarate
Gaussian Heat Maps based on the Ground truth, as shown
in Fig.1. The default heat map dimension is same with the
original images 256 × 192 for images worth 256 × 192 and
384×288 for images worth 384×288. In order to fix with the
resolution of the feature maps throughout the training phase,
the heat maps must grasp the image’s scale. For regression,
the network will utilize the ground truth heat map and these
heat maps to generate the predicted human joint.
Attention Module The Attention Mechanism is made up

of two primary components, as shown in Fig.2. First, the
feature information was sent to the channel attention module
following block one in the backbone network (CAM). The
feature information in CAM uses global average pooling to
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Fig. 2. Spatial Attention Module (SAM) and Channel Attention Module
(CAM) Architecture . At comparison, this picture depicts the description of
the attention module, which includes the spatial and the channel module in
the bottom and center of the list, respectively, and the whole attention module
at the top.

reduce the tensors from W×H×C to 1×1×C. It first passes
through the convolution block, which converts the tensor to
1 × 1 × C

r , where r is the shrinking ratio which is stick to
16. The weight was then triggered by the CAM using the
ReLU. The last stage in CAM is to employ a 1x1 convolution
layer to resize the channel to 1× 1×C and to normalize the
tensor using the sigmoid. The information for CAM were then
combined using element-wise multiplication.

The tensor will be supplied into the Spatial Attention
Module after passing through the CAM. The tensors in SAM
takes the average pooling for the channel from W ×H×C to
W ×H×1. Following pooling, convolution layers with kernel
size 3×3 were utilized two times to extract the geographical
data for the architecture, and the final step in SAM is fed to
the CAM shown in Figure 2. Finally, the intended solution
employed element-wise extensions to the original tensor and
the tensor after AT to be merged, as well as a new tensor for
the continuous backbone network block.

B. Loss Function

Heat maps are used in this work to illustrate body joint
locations for the loss function. As the ground-truth position
in Fig. 1 by m = {mj} J = 1J , where Xj = (xj, yj) is
the geographical harmonize of the j th body joint for each
image. The value of heat map for Ground-truth Hj is then
constructed using the Gaussian distribution and the mean aj
with variance

∑
as shown below.

Hj(p) ∼ N (aj ,
∑

) (1)

where p ∈ R2 demonstrate the coordinate, and
∑

is ex-
perimentally decided as an identity matrix I. The last layer
of the neural architecture forecast J heat maps, i.e., Ŝ =



Fig. 3. Predicted Heat-map before and after used Attention Module that includes 17 sequences images for 17 keypoint in COCO dataset

{
Ŝj

}
j = 1J for J body joints. A loss function is defined

by the mean square error, which is calculated as follows:

L =
1

MJ

M∑
m=1

J∑
j=1

∥∥∥Sj − Ŝj

∥∥∥2 (2)

M denotes the number of selected in the training process.
Using data from the last layer or backbone architecture, the
trained network generated predict heat maps using ground-
truth heat maps.

IV. EXPERIMENTS

A. Experiment Setup

Dataset. The proposed technique uses the Microsoft COCO
2017 dataset [25] throughout the training and inference pro-
cess. This dataset comprises around 200K pictures and 250K
human samples, each with 17 keypoint labels. The study’s
data collection includes three folders: train set for training,
validation set and test-dev set for testing. Furthermore, the
annotations files for train and validate are open to the public
and are accompanied by the individualist.

Evaluation metrics. This paper utilized Object Key-
point Similarity (OKS) for COCO [25] with OKS =∑

i exp(−di
2/2s2k2

i )δ(vi>0)∑
i δ(vi>0) In this case, di is the Euclidean

distance between the predicted keypoint and the groundtruth,
vi is the target’s visibility flag, s is the object scale, and
ki is a joint for seventeen join in COCO 2017 dataset. The
standard average accuracy and recall value are then computed.
AP and AR are the averages from OKS=0.5 to OKS=0.95, with
APM representing medium objects and APL representing
large objects in Table I.

Implementation details The suggested technique employed
data increase in model training, such as flip, 40 degrees by
outline for rotaion, and scale, which put 0.3 for the factor.
For training images, the batch size was stick to 4 and utilize
the shuffle function. The total number of epochs in our
experiment is 210, with the baseline learning-rate set at 0.001
and multiplied by 0.1 (learning decade factor) at the 170-th and
200-th epoch. The Adam optimizer [26] and the momentum
is 0.9 was employed.

All proposed research are carried out using the Pytorch
framework and tested on two datasets. The picture input
resolution was reduced to 256x192. The model was trained

using CUDA 10.2 and CuDNN 7.3 on a single NVIDIA GTX
1080Ti GPU.

B. Experiment Result

TABLE I
THE RESULT FOR APPLY THE ATTENTION MODULE FOR EACH STAGE OF

HRNET

Backbone Stage #Param AP
HRNet-W32 - 28.5M 74.4
HRNet-W32 1 30.2M 75.5
HRNet-W32 1+2 32.9M 76.0
HRNet-W32 1+2+3 36.4M 76.1

The suggested technique compares each circumstance while
adding the attention module for each step from stage 1 to
stage 3, as shown in Table 1. The Average Precision (AP)
demonstrates that using AM in the first stage gains 1.1 in mAP,
which boosts accuracy more than using AM in the second and
third stages. Furthermore, the AP is enhanced by 1.5 percent,
2.2 percent, and 2.7 percent, respectively, while the number
of parameters grows by 5.96 percent, 15.4 percent, and 27.7
percent for adding AM with stages 1, 2, and 3. In our proposed
network, we used only 2 blocks of AM in stage 1, 3 blocks
for stage 2 and 4 blocks for stage 3.

TABLE II
THE RESULT FOR APPLY THE ATTENTION MODULE FOR EACH

SUB-NETWORK OF HRNET

Backbone Sub-network #Param AP
HRNet-W32 - 28.5M 74.4
HRNet-W32 1 31.1M 75.4
HRNet-W32 1+2 33.8M 75.9
HRNet-W32 1+2+3 35.5M 76
HRNet-W32 1+2+3+4 36.4M 76.1

As shown in Table 2, the proposed approach compares
each case while adding the attention module for each step
from sub-network 1 to sub-network 4. The Average Precision
(AP) shows that utilizing AM in the first sub-network results
in a 1.0 increase in mAP, which improves accuracy more
than using AM in the second, third, and fourth sub-networks.
Furthermore, the AP increases by 1.3 percent, 2.0 percent,
2.6 percent, and 2.7 percent, respectively, while the number
of parameters increases by 9.1 percent, 18.6 percent, 24.5



TABLE III
COMPARISON ON MICROSOFT COCO 2017 VALIDATION DATASET. AM IS MEAN ATTENTION MODULE

Method Backbone Input size #Params AP AP 50 AP 75 APM APL AR
8-Stage Hourglass [9] 8-Stage Hourglass 256×192 25.1M 66.9 - - - - -
Mask-RCNN [27] ResNet-50-FPN 256×192 - 63.1 87.3 68.7 57.8 71.4 -
SimpleBaseline [10] ResNet-50 256×192 34.0M 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [10] ResNet-101 256×192 53.0M 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [10] ResNet-152 256×192 68.6M 73.7 91.9 81.1 70.3 80.0 79.0
Fine-tuning AM [16] ResNet-50 256×192 31.2M 71.4 91.6 78.6 68.2 75.7 76.3
Fine-tuning AM [16] ResNet-101 256×192 50.2M 72.3 92.0 79.4 68.3 77.1 77.1
HRNetBaseline [17] HRNet-W32 256×192 28.5M 74.4 90.5 81.9 70.8 81.0 79.8
HRNetBaseline [17] HRNet-W48 256×192 63.6M 75.1 90.6 82.2 71.5 81.8 80.4
HRNet + our AM HRNet-W32 256×192 36.4M 76.1 91.0 82.7 71.5 82.9 81.2
HRNet + our AM HRNet-W48 256×192 71.8M 76.4 91.1 83.1 72.2 83.3 81.4

percent, and 27.7 percent when AM with sub-stages 1, 2, 3,
and 4 is included. In our suggested network, we employed
three blocks of AM in the first sub-network , three blocks in
the second sub-network, two blocks in the third sub-network ,
and one block in the final sub-network. Fig.3 shows the result
of how the attention module impacts the heatmap generate,
which shows AM gained significantly better performance
heatmap prediction for the left wrist and left elbow keypoint
in the seventh and eighth pictures. Moreover, the attention
module also helps the network get better for other joints.

COCO datasets result Our result was estimate on COCO
validation dataset. The AP in the proposed perspective get
better than the Basic High-Resolution standard in whole
circumstance of 1.7 AP, 1.3 AP in HRNet-32, HRNet-W48,
respectively. Furthermore, the average recall (AR) is 1.4 points
higher in the case of HRNet-W32 and 1.2 points higher
with the situation of HRNet-W48. The visualize result can
see in Fig.3 which show that used attention module make
the predicted heat map get more accurate. Figure 4 show
the qualitative result for the COCO 2017 dataset, which
demonstrated attention module increase the result of AP for
the medium and large object in 0.7 AP and 1.5 AP respectively.

However, human pose estimation, like many other designs
today, has a number of issues that must be addressed. The first
issue was that the images had hidden joints that were hard
to train and anticipate. Second, low-resolution human photos
must be correctly removed for human body joints. Following
that are images of crowd scenarios, in which it is frequently
difficult to determine all of the locations of the joints for
all participants. Finally, there is a scarcity of information on
images with incomplete parts for evaluating human postures.

V. CONCLUSION

This research shows the effect of the attention module on
CNNs, with a focus on High-Resolution networks. Further-
more, our work demonstrates that by not increasing the amount
of parameters, the attention module utilized has a bigger effect.
On the other hand, the Attention Module highlighted the
critical feature map rather than the other component. As a
result, the network will improve efficiency, notably for various
activities in the field of computer vision. Future research
will focus on defining specific applications or settings to be

included in our study, such as the surveillance system and the
3D human pose estimation. Another challenge is related to
the limitations in assessing human exposure, which restricts
the network’s accuracy.
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