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Abstract—This paper presents real-time pedestrian detection
based on a deep learning approach for localizing human areas. It
introduces lightweight architecture using a convolutional neural
network that can smoothly work on a CPU device. Specifically,
the framework contains three main modules. Firstly, light extrac-
tor features utilize an Efficient Bottleneck Partitioning (EBP)
block to distinguish person features and background features
rapidly. Secondly, the Path Aggregation Network (PANet) helps
the network’s ability to obtain fused information from differ-
ent feature frequencies. Lastly, Triple prediction anchor-based
layers to predict various human sizes. An end-to-end network
is comprehensively trained on the MS COCO 2017 dataset to
gain knowledge of discrimination for multiple challenges. The
pedestrian detection network (PdNet) produces lower trainable
parameters than other detectors. As a result, it achieves compet-
itive performance evaluated on the MS COCO 2017, PASCAL
VOC 2007, and 2012 datasets. Moreover, the main advantage
of this detector is that it can run 14 frames per second when
working in real-time on CPU devices.

Index Terms—Pedestrian detector, convolutional neural net-
work, CPU device, real-time.

I. INTRODUCTION

Several applications utilize pedestrian detection in broad
aspects, such as self-driving, person re-identification, pose
estimation, human action recognition, and robotics. Pedestrian
is also an essential object of a video surveillance system,
so this detection has become a trending task in the field of
computer vision. It localizes regions of the entire person body
in an image by providing bounding boxes as predicted areas
[1]. Intelligent systems have developed rapidly by employing
video surveillance to prevent criminal acts. The monitoring
system requires this detector to analyze video content sourced
from the camera [2]. In addition, the information can respond
periodically to identify abnormal behavior. Therefore, video
surveillance plays an important task for security systems to
monitor human activities in indoor and outdoor areas. Person
detection is a fundamental process for observing pedestrian
behavior systems. Video surveillance is required to work all
the time and under different illumination conditions [3]. It is a
challenge that is necessary addressed to evaluate the robustness
of a detector. Besides, the model’s efficiency supports a
method to be feasible to be implemented in low-cost devices
[4].

The previous studies have produced pedestrian detectors
using conventional methods [5]–[7]. Zhang et al. detected

three main human components: the head, upper body, and
lower body [5]. It employs statistical models and a pool of
rectangular features for variations in clothing or environmental
settings. Additionally, Haar-like features produce the different
characteristics between parts of the human body. Chen et al.
applied traditional feature descriptors and feature selection
methods to identify human body areas [6]. This work also
proposed a novel Oriented Chamfer Distance (OCD) feature
to distinguish pedestrian and background. On the other hand,
a low-cost pedestrian detection has been introduced using a
reliable cascade classifier [7]. It uses Viola and Jones extractor
features to obtain distinctive components. The methods above
have much potential practical value that can work in real-time
on a device. However, those methods are weak in detecting
a person in multi-appearance, multi-pose, angle of view,
occlusion, and illuminance challenges. The feature extraction
methods used are difficult to discriminate against complex
features from the background.

In recent years, the Convolutional Neural Network (CNN)
has been widely used as robust feature extraction. This ap-
proach is powerful for recognizing specific features of pedes-
trians [8]–[12]. Faster RCNN [13], SSD [14], and YOLOV3
[15] dominate the human body localization work. These ar-
chitectures produce high computing power, so it tends to be
expensive. It depends on graphic accelerators. In addition,
these detectors obtain slow processing speed when imple-
mented in Central Processing Unit (CPU) devices. On the other
hand, a lightweight CNN-based architecture runs smoothly
on the CPU [16]. This structure requires the suitability of
light convolutional layers to achieve competitive performance
with benchmark architectures. The trade-off between speed
and accuracy emphasizes the balance of the CNN model to
fast and robust work in real-world scenarios [17]. Therefore,
the proposed detector is designed to run smoothly on CPU
devices without compromising performance.

A pedestrian proposed network (PdNet) introduces a light
backbone that utilizes an Efficient Bottleneck Partitioning
(EBP) module to quickly discriminate against specific features
of the human body. It separates the two parts of the feature
map using simple convolution to reduce the constraints of high
computation and significant parameters. A Path Aggregation
Network [18] helps networks get information from multiple
dimensions and feature levels. It also supports multi-level



Fig. 1. The proposed architecture. A backbone module is used to extract human body features with efficient bottleneck partitioning module. Besides, the
PANet and detection modules help the detector to identify the location of pedestrian in multi-scale variant.

detection to predict various human body sizes by assigning
different anchor sizes [19]. The efficient architecture empha-
sizes the efficiency model to produce a lightweight detector
that can run smoothly on low-cost devices. It also eliminates
the dependence on expensive hardware from the CNN model,
which uses a graphic accelerator in inference stages. Based
on this description, the main contributions of the work are
summarized as follows:

1) A novel real-time pedestrian detection (PdNet) is pro-
posed to locate an entire human body quickly and
accurately that can run smoothly on a CPU device to
be implemented in video surveillance.

2) A bottleneck module is improved to be more efficient. It
supports the detector to work fast without compromising
its accuracy. As a result, it achieves competitive perfor-
mance from other architecture on MS COCO 2017 [20]
and PASCAL VOC [21].

II. PROPOSED ARCHITECTURE

The proposed architecture contains three main modules, as
shown in Fig. 1. First, a backbone as a baseline module to
comprehensively extract human body features with Efficient
Bottleneck Partitioning (EBP). Secondly, the PANet (Path
Aggregation Network) connect the relationship of the different
multi-frequency feature map. Lastly, the detection module
localizes the person area using a multi-scale region. The EBP
module is used in the backbone and PANet to discriminate
against human body features efficiently.

A. Backbone Module

The backbone module is assigned to comprehensively ex-
tract the input features map that involves a series of convo-
lution operations. In addition, it also reduces the feature map
size to save computing power while providing abundant object

Fig. 2. An efficient bottleneck partitioning fast discriminates the interest
features.

features through multi-layer channels. The proposed detector
applies 3 × 3 convolution with strides of two to gradually
shrink the feature map. Therefore, the last feature map of the
backbone module is reduced by 32 times from its original size.
On the other hand, the number of channels from each feature
map increases and produces 512 at the end of the feature
map. The SiLU activation and batch normalization follow
the whole convolution operation to prevent vanishing and
exploding gradient in each neuron. Several works [14], [15]
have used 3 × 3 Convolution as a robust filter to distinguish
the target object against the background. They employ this
block according to their respective demands.

Furthermore, the proposed detector introduces efficient bot-
tleneck partitioning to extract the reduced size feature map
comprehensively. This approach increases the efficiency of the
original bottleneck block [22] by dividing the input feature
map into two partitions, as shown in Fig. 2. The channel of
the input feature xi is split in half for each part by employing



a 1 × 1 convolution, illustrated as:

xi = [F1(xi), F2(xi)], (1)

where F1 and F2 are convolution operations using 1 × 1 kernel
with SiLU activation (S) and batch normalization (Bn). It then
applies the residual bottleneck module to only one partition
and fuses both partitions at the end of the module, defined as:

yi = F1(xi)+S(Bn(W2S(Bn(W1F1(xi)+ b1))+ b2)), (2)

zi = F2(xi). (3)

A bottleneck module employs sequentially 1 × 1 and 3
× 3 convolution to extract essential features. However, the
proposed module does not reduce the number of channel layers
at the beginning of the convolution to maintain the quantity of
information from the feature map. Finally, the output of this
module combines the feature map at the end of the module by
fusing the extracted features yi and the identity of the other
partitions zi, described as:

EBPi = [yi, zi]. (4)

The whole convolution operation is also followed SiLU and
batch normalization. EBP modules are applied to the second
to fifth stages with the number of modules at each stage,
including 1, 3, 3 and 3, respectively.

Bottleneck extracts essential features by providing a variety
of filter types and applying them sequentially. It informatively
preserves important features using residual functions to cor-
rect the feature map. On the other hand, EBP emphasizes
on saving of parameters and computational. It focuses on
generating small channels at the beginning of the module, so
the bottleneck is operating the kernel with less computation.
However, to prevent information loss due to channel shrinkage,
the identity module is applied to another partition and fuses
it with the extracted bottleneck. Therefore, the output of this
module generates computational efficiency while maintaining
feature extraction performance without significantly losing
feature information.

B. Triple Stages of Path Aggregation Network
A CNN architecture generates a different level of feature

map at each layer. The initial layer produces low-level features
representing simple shapes, while the forward layer provides
mid and high-level features that describe complex textures.
Feature information from this level is essential to be processed
and used in making prediction decisions. The pyramid feature
[18] connects the layers with different frequencies, thereby
helping to improve the performance of the CNN model. The
PdNet detector applies three-stage blocks with different feature
map sizes, including 80, 60, and 20. It uses upsampling at the
end of the backbone feature map, then concatenates with the
feature map at the previous level with the same spatial size.
An EBP is applied to extract features at the beginning of the
stage efficiently. It helps the detector acquire more specific
human body features. In addition, 3 × 3 convolution is also
applied to reduce feature maps used to generate feature maps
with different scales for multi-stage prediction assignments.

C. Detection Module

Object detection uses the detection layer to predict the
coordinates of (x, y, h, w) and the object’s class. Faster RCNN
[13] applies a one-stage detection layer to predict objects of
various sizes. This structure imposes to detect different scales
in one spatial dimension, limiting a particular scale to be
identified. Therefore, the PdNet detector applies multi-scale
detection layers to accommodate variations in object size.
Variations in the size of the feature map correspond to different
sizes of person objects. This method helps the detector to focus
more on employing each layer to predict objects at specific
scales. The feature map is 80 for predicting small people, 40
for middle people, and 20 for large scale. Each feature map
employs three anchors of varying sizes, as shown in Fig. 1. In
addition, EBP is also applied on the previous detection layer
to improve specific features before the number of channels
is generated according to the number of anchors and classes.
Instead of using residuals on bottleneck blocks, this ignores
them to reduce the computation of the module.

D. Loss Function

Generally, neural networks utilize the loss function to mea-
sure the inaccuracy between the predicted scores and ground
truth. Therefore, it encourages neural weights to optimally
work so it can minimize errors. The PdNet detector localizes
the area of the suspected human body by predicting the
coordinates and size of the box. It also estimates the objectness
and probability of class (pedestrian and none). Each detection
layer applies 3 × 3 to generate both offsets, adjusting the
number of channels based on the number of anchors. The
PdNet detector uses three losses: regression loss, objectness
loss, and classification loss to calculate prediction error of the
bounding box location, object or no object, and classification
error. It applies to each i grid and j anchor box as expressed
as follows.

Loss = λbox
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1obj
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B�

j=1

1obj
ij Lcls,

(5)

where B is number of anchors, s2 is grid area. 1objij is equal to
one when there is an object in the cell, and 0 otherwise. It sets
λbox = 0.05,λobj = 1, and λcls = 0.5 as balancing parameters
in regression, objectness, and classification loss, respectively.
These parameters adopt a work [23]. Lbox applies complete
IoU loss [24] which accumulates the difference of IoU area,
distance between box points, and consistency of aspect ratio
comparison. Lobj uses confidence loss [19], while Lcls uses
binary cross-entropy [19].

III. IMPLEMENTATION DETAILS

The PdNET implementation is built on the PyTorch frame-
work. The model is conducted with GTX 1080Ti as a GPU
accelerator. Then the trained model is tested on Intel Core



TABLE I
ABLATION STUDY. AVERAGE PRECISION (AP) ON MS COCO DATASET.

Model Number of parameters AP (%)
Bottleneck Wihout EBP 9,770,518 0.528
Bottleneck With EBP 6,954,838 0.524

I5-6600 CPU @ 3.30GHz, 32GB RAM. The robust model
is trained on MS COCO 2017 that contains 117,266 images.
To enrich the variety of data, it applies augmentation: color
distortion, vertical and horizontal flipping. Then random crop-
ping is used, and insert the augmented images on the mosaic
frame. Finally, it resizes the mosaic images to 640 × 640.
In the training stage, the Stochastic Gradient Descent is an
optimizing method to update neural weights with 10−2 is
the initial learning rates and update by 2 · 10−1 in the final
OneCycleLR learning rate. The weight decay is 5 · 10−4, and
the momentum is 0.937. It uses batch sizes of 32 for the entire
training dataset. The IoU (Intersection over Union) threshold
in training stages is 0.5 to generate the best bounding box.

IV. EXPERIMENTAL RESULTS

In this section, the PdNet architecture is evaluated on MS
COCO 2017, PASCAL VOC 2007, and PASCAL VOC 2012
datasets. Besides, another experiment shows the PdNet speed
was tested on CPU and compares to other detectors.

A. Ablative Study

The PdNet detector employs EBP as an efficient feature
extractor. This module plays an essential role in supporting
the network to operate in real-time without compromising
accuracy. Table I shows that EBP can emphasize the number of
parameters of the proposed detector. This experiment shows
a difference of 2.8M parameters with the use of a common
bottleneck. A bottleneck without EBP removes the efficient
partitioning module at all layers, including backbone, PANet,
and detection, so it is the same as the vanilla bottleneck mod-
ule. On the other hand, the accuracy showed a non-significant
difference between the two experiments when evaluated on the
MS COCO dataset with the primary challenge metric.

B. Evaluation on Datasets

1) MS COCO 2017: This dataset contains a lot of instances
with complex challenges with different poses, the object scale,
and the occlusions. Therefore, the proposed detector can learn
the object, and excellent generalizes with complicated envi-
ronmental conditions. The MS COCO 2017 dataset generally
consists of 122,218 labeled images and 80 object classes. It
divides 118k train for and 5k validation. Furthermore, it uses
66,808 person images extracted from this dataset for pedestrian
detection. In addition, we chose 64,115 human images for
the training processing, and the rest were used for validation.
Table II shows that the PdNet achieved 52.40% AP on the
primary metric (IoU=.50:.05:.95). This performance is slightly
lower by 0.8% AP with the YOLOV5 small version. On the
other hand, the YOLOV3 tiny version is higher than PdNet’s
performance and differs by 1.25% AP using Darknet19 as the

TABLE II
EVALUATION RESULTS ON MS COCO 2017, PASCAL VOC 2007 AND

PASCAL VOC 2012 DATASETS.

Evaluation on MS COCO 2017

Model AP
(%) Backbone Training

dataset
ResNet18 (0.25) 40.10 ResNet18 COCO17
ShuffleNetv2(0.5) 33.80 ShuffleNetv2 COCO17
MobileNetV2(0.33) 39.10 MobileNetV2 COCO17
PeleeNet(0.5) 41.90 PeleeNet COCO17

Bai et al. [10] 45.50 Manually
designed COCO17

Tiny model-Bai et al. [12] 42.90 Manually
designed COCO17

Tiny-YOLOv2 [15] 44.97 Darknet19 COCO17
Tiny-YOLOv3 [15] 53.65 Darknet19 COCO17
YOLOV5-small [23] 53.20 CSPBottleneck COCO17

PdNet 52.40 Manually
designed COCO17

Evaluation on PASCAL VOC 2007
Improved Faster RCNN [13] 75.65 VGG16 Caltech
TinyYOLOV2 63.88 Darknet19 VOC07
Tiny-YOLOV3 68.54 Darknet19 VOC07
Improved Tiny-YOLOv3 [11] 73.98 Darknet19 VOC07
Enhanced Tiny-Yolov3 [11] 78.64 Darknet19 VOC07
YOLOV5-small [23] 88.80 CSPBottleneck COCO17

PdNet 88.30 Manually
designed COCO17

Evaluation on PASCAL VOC 2012
Faster R-CNN [8] 62.90 VGG16 VOC07++VOC12

SSD512 [8] 39.40 VGG16 VOC07++VOC12+
COCOTRAINVAL35K

RefinedDet320 58.50 VGG16 VOC07++VOC12+
COCOTRAINVAL35K

RefinedDet320+ 61.60 VGG16 VOC07++VOC12+
COCOTRAINVAL35K

RefinedDet512 63.60 VGG16 VOC07++VOC12+
COCOTRAINVAL35K

RefinedDet512+ 66.00 VGG16 VOC07++VOC12+
COCOTRAINVAL35K

RFBNet300 29.00 VGG16 COCOTRAINVAL35K
RFBNet512-E 32.60 VGG16 COCOTRAINVAL35K
RFBMobileNet 23.80 MobileNet COCOTRAINVAL35K
YOLO-AF-MS [8] 77.30 CSPDarkNet53 COCOTRAINVAL35K
YOLOV5-small [23] 88.90 CSPBottleneck COCO17

PdNet 88.40 Manually
designed COCO17

backbone module. However, the proposed detector can detect
a small person in indoor and outdoor conditions, as shown in
Fig. 3 (a).

2) PASCAL VOC 2007: This dataset contains around 9,963
labeled images with 20 object classes, described as follows:
Person, Bird, Cat, Cow, Dog, Horse, Sheep, Airplane, Bicycle,
Boat, Bus, Car, Motorbike, Train, Bottle, Chair, Dining table,
Potted plant, Sofa, and TV/Monitor. It provides for image
classification and detection. This dataset also contains more
complex backgrounds, varying human postures, and occlusion.
It only uses 2,007 images for evaluation of the proposed
detector that only includes the human object. Table II shows
that PdNet achieves an AP of 88.30% that is 0.5% different
from the YOLOV5 small version as the leading competitor.
The insignificant difference is not bad because the qualitative
results show the proposed detector can detect the human body
in different scales and occlusions, as shown in Fig. 3 (b).

3) PASCAL VOC 2012: This dataset contains 16,135 im-
ages, of which 5,138 images have ground truth with 20 types
of class. The categories are the same as PASCAL VOC 2007.
However, it only uses person class to evaluate the proposed



Fig. 3. Qualitative results from the prediction of the PdNet detector on the MS COCO 2017 (a), PASCAL VOC 2007 (b), PASCAL VOC 2012 (c), RGB
video on VGA resolution (d), and infrared video on HD resolution (e).

detector. A total of 2,093 images with ground truth is used
to examine pedestrian detectors. The PdNet achieves an AP
of 88.40% in this evaluation dataset. It differs 0.50% with
YOLOV5 small architecture, as shown in Table II. However,
the critical difference contrasts with the number of parameters
produced by each detector which differs by 1M parameters.

C. Runtime Performance on CPU

In general, CNN benchmark architectures generate a lot of
computation and parameters because it uses many operations
to compute the weighted layer. Therefore, they need expen-
sive hardware to operate the model in real-time applications
because the detectors are very slow to work using CPU-
based devices. The graphic accelerator must be used to be
implemented for practical applications. The proposed detector
generates 6,954,838 parameters with 11.9 GFLOPS. These
results encourage PdNet to operate in real-time on Intel Core
I5-6600 CPU @ 3.30 GHz. Faster RCNN and SSD are very

slow on this device. These detectors are not feasible to run
on this CPU device, so they are irrelevant in real application
scenarios. Fig. 4 shows that the proposed detector achieves
11.9 FPS, faster than other competitors. Although the precision
is slightly below the YOLOV5 small version, this competitor
is 4 FPS slower. Fig. 3 (c) and (d) show that the proposed
detector works well when implemented as a pedestrian de-
tector for video surveillance. It is robust in localizing the
human body on low-illuminance conditions with infrared-
based cameras. There are occluded persons by other objects,
but it does not obstruct the PdNet from precisely localizing
the human body area. It is because the proposed detector
comprehensively learns specific human body features from
complex instances and complicated environmental conditions.
Although the dataset only provides images of the person in
general, the person and pedestrian features are the same. It can
help the proposed architecture create an accurate pedestrian
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detector. Additionally, the learning-based detector emphasizes
the efficiency of computation power and can operate in real-
time on low-cost devices.

V. CONCLUSION

This paper presents a CNN-based pedestrian detector for
the video surveillance system. This detector aims to be able
to operate in real-time without the accelerator graphic. The
PdNet consists of a backbone, PANet, and detection module.
An efficient bottleneck partitioning plays an essential role in
reducing computational overhead. In addition, this module also
helps the detector to produce fewer parameters than other com-
petitors. Experimental results show that the proposed detector
achieves competitive performance with other frameworks on
MS COCO, PASCAL VOC 2007, and PASCAL VOC 2012.
The PdNet offers the main advantage that it can run in real-
time on a CPU by 11.9 FPS. In future work, the attention
module can be applied in the detector to improve the accuracy
by enhancing the specific human body feature without adding
excessive computing power.
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