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Abstract—Intelligent surveillance systems require face
detection to identify human facial areas. This system should
be able to utilize dual-camera sensors (color/IR) for work-
ing every time. Additionally, practical application demands a
detector to be operated in real-time on a low-cost device or
CPU. The deep Convolutional Neural Network (DCNN) tech-
nique has successfully used a robust facial extractor, but it
requires a high amount of computation for high-resolution
input. On the other hand, the light architecture generates
a large number of false positives as a fast detector. This
feature extractor pays less attention to specific facial features
and often ignores global and local relationships between
elements. This paper proposes an efficient face detector to
accurately localize faces using light architecture. The one-stage detector consists of an efficient backbone to rapidly
extract features and a four-level detection layer to predict variations in facial scales. To improve the non-robust feature
extractor, it implements an enhancement module to enhance specific facial features at each level without significantly
increasing the parameters. The proposed detector uses knowledge from the WIDER FACE dataset to train the model
with a gradual learning rate. The experiment results show the effectiveness of the detector in outperforming CPU-based
detectors on benchmark datasets. It also runs in real-time at 27 frames per second on a CPU using the RGB and infrared
cameras for Full High Definition (Full HD) resolution, faster than other published detectors.

Index Terms— Dual-camera sensors, efficient detector, face detection, high resolution, real-time, low-cost devices.

I. INTRODUCTION

FACE detection is a vision method that can identify and
predict the location of human faces in an image. It is

an active research field that has continued growing over the
past few years. Besides, this method is necessary for various
applications and is a supporting process for high-level facial
classification systems [1]. In recent years, with the rapid devel-
opment of intelligent systems, video surveillance was also an
outbreak as a solution to prevent criminal acts. Intelligent
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Surveillance Systems (ISS) play an essential role in these
systems. They can automatically analyze the content of video
streams from cameras or CCTVs and respond periodically to
the abnormal behavior of the monitoring system [2]–[4]. The
activity and identity of the person are identified as helpful
information. Therefore, this application requires a face detec-
tion process at the beginning stage and will be used for the
advanced facial analysis process [5]. In general, the video input
of this system is high resolution, which demands operation
in real-time. Additionally, practical applications encourage
this system to work quickly with a minimum delay while
maintaining the detector’s accuracy [6], [7]. Video surveillance
is needed to work all the time. Instead of only utilizing
RGB camera sensors, this system also uses infrared to capture
objects in the nighttime [8]. Therefore, the face detector should
also be robust work in low-illumination challenges.

Recently, deep learning methods for face detection are
emerging due to their superior performance [9]–[12]. The
CNN method can learn from large-sized datasets and deliver
satisfying results in various image conditions [13]–[15].
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TABLE I
PROS AND CONS OF LATEST CPU-BASED FACE DETECTOR

Li et al. [11] proposed a face detector to classify with
multi-view, occlusions, and extreme expressions. A bi-channel
network and self-learning method are applied to offer bet-
ter performance in detecting challenging faces. Furthermore,
a receptive field task cascaded CNN has been proposed as
an accurate face detector [12]. It improves the Inception-V2
module to enhance the feature discriminability and robustness
for small targets. The robustness of various methods is sum-
marized in the WIDER face detection benchmark. Some of
them achieve high performance [9], [10], [12]. However, the
strong performance comes with a drawback in computation
cost. It either requires powerful hardware or a lot of processing
time. These two factors restrict the applicability of deep
learning-based face detectors in various use cases that demand
real-time processing or deployment on systems without an
expensive device [16].

The CPU face detectors have been developed to enable
lower computation costs and work on low-cost devices.
The FaceBoxes [17] detector applies Rapidly Digested Con-
volution Layers (RDCL) and Multiple Scale Convolution
Layers (MSCL) to extract features efficiently. In addition,
it utilizes an anchor densification strategy to increase the
accuracy and recall rate of tiny faces. Other detectors apply
anchor-free methods and improve MobileNetV2 to detect faces
of various scales [18]. FlashNet overcomes the overhead of
computational cost and achieves a small number of para-
meters. It runs in real-time at 28.30 FPS on a single CPU.
However, FaceBoxes and FlashNet are designed to work with
small resolution images. These methods were unsuitable for
processing higher resolution images required for a surveillance
system to identify people’s faces. In order to compare the latest
CPU-based detector, the summarized pros and cons of each
architecture are shown in Table I.

The works in this research aim to develop a high-quality
face detection algorithm that works in real-time for high-
resolution video. It utilizes a deep learning model that pro-
duces high accuracy results due to its capability of learning
from a large amount of training data. However, deep learning
models often suffer in processing time due to their com-
putation cost [20], [21]. Therefore, high-performance GPUs
are required to make the model run smoothly. The usage
of an accelerator leads to high hardware costs and makes
the system hardware-dependent [22]. This research aims to

decrease the computation cost of a deep learning-based face
detector to run on a CPU without ignoring the performance.
Thus, eliminating the need for expensive GPUs and making the
model more hardware independent. Additionally, it also will
increase usability when implemented on a low-cost device.
The main contributions are as follows:

1) This paper proposes a new framework for a fast and
accurate face detector (FAFCPU) that works smoothly
on a CPU using the efficient and lightweight CNN
architecture. It consists of two main modules, an effi-
cient backbone that is useful to extract distinctive facial
features and a four-level detection module to predict
variations in facial scales.

2) The proposed model achieves high accuracy and outper-
forms the other state-of-the-art CPU-based methods in
Face Detection Data Sets and Benchmarks (FDDB) [23]
and WIDER FACE [24].

3) The proposed FAFCPU detector works using RGB and
Infrared cameras in real-time on the CPU. It achieves
27 FPS for high-resolution input video (Full HD)
and 122 FPS for VGA input video. These processing
times are 50% and 35% faster than the previous state-
of-the-art CPU-based detector for full HD and VGA
resolution, respectively.

The remainder of the paper is organized as follows:
Section II describes the proposed architecture. Section III
explains the implementation setup for training and testing
of the CNN model. Section IV discusses the experiments
conducted to assess the effectiveness and efficiency of the
proposed detector. Finally, conclusions and future work are
presented in Section V.

II. FACE DETECTOR ARCHITECTURE

The efficient model for real-time facial detection is
described in this section. Fig. 1 shows the overall architecture
that consists of an efficient backbone, a stem, a transition,
an enhancement module, and a four-stage detection layer.

A. Light Backbone Module
Feature extraction plays an essential role for the accu-

racy of an object detector. The principal of the CNN-based
architecture is to extract the pixel information and shrink the
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Fig. 1. The FAFCPU architecture contains a light backbone to efficiently discriminate facial features and a four-level detector to predict multiple
scales faces. The enhancement module highlights the useful features and reduces trivial features.

feature map at the end of the network [25]. This approach
helps to reduce the computation time. On the other hand,
it increases the number of channels and the depth to prevent
the loss of useful information. As the layers become deep, the
computation cost and the number of parameters increase [26].
Therefore, the proposed backbone uses only eight convolution
layers to extract the spatial input size rapidly. This module
gradually shrinks the feature map to 32 times smaller without
ignoring important information from objects. A 5 × 5 convolu-
tion is applied at the beginning stage to reduce the feature map
size drastically. Furthermore, the proposed module utilizes the
bottleneck convolution series [27] to extract shrunken feature
maps efficiently. It uses a smaller number of channels in the
1 × 1 convolution layer by applying a 0.5 channel ratio of the
input features. This technique is used to reduce the number
of parameters generated by the next convolution operation.
A 3 × 3 filter is then applied to extract the local features
to produce the same size feature map. A shrink block follows
these three sequential modules to reduce the size of the feature
map. Instead of using a pooling layer, it employs a 3 × 3
convolutional layer with a stride of two as a local filter.
Each convolution layer is followed by Batch normalization
and Rectified Linear Units (ReLU) activation for convergence
training and to prevent overfitting [28].

B. Efficient Stem Module
The slim stem module is introduced in this work to extract

specific facial features comprehensively. This process main-
tains the size of the feature map, so it sequentially applies the
convolution operations. Fig. 2 (a) shows that two 3 × 3 filters
are employed for a stem block by reducing the channel size at

the beginning of the layer. It also adopts a bottleneck technique
to halve the number of channels from the feature map input
that impacted saving trainable parameters. This layer produces
medium and high-level features that contain complex facial
features. Therefore, a detection layer is installed at the end
of this module to predict medium-sized faces. To reduce
computations, the proposed model ignores the residual tech-
nique [27]. In addition, the use of a lot of stem blocks also
affected the increase in the number of parameters. The module
efficiency emphasizes compression of computational cost to
allow the detector to run fast in real-time without using an
additional expensive device.

C. Efficient Transition Module
The transition module utilizes light convolution operations

to transform feature maps from medium to high-level predic-
tion layers. It consists of a ghost module [29] and Depth-
wise convolution [30], which employs a combination of single
channel and simple filter convolution. The ghost module
applies a 1 × 1 filter to the input features (h × w × c) with
the target channel (c∗), as shown in Fig. 2 (b). ReLu and batch
normalization are involved after this filter. Furthermore, Depth-
wise convolution extracts single channel-based features. The
fusion stage is used at the end of the block to combine the
extracted features of simple filter and single channel-based
images. It produces twice the target channel size (2c∗) to
enrich the information from the efficiently extracted feature
map. Furthermore, a lightweight shrink block is applied to
degrade the feature map size between prediction layers. Instead
of using pooling to reduce the size, Depth-wise convolution
with stride two is more powerful without changing the channel
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Fig. 2. Proposed efficient stem module using the bottleneck approach (a), ghost module (b), and enhancement module to increase interesting facial
features (c).

size. The transition modules efficiently extract and shrink
feature maps to assist multi-scale predictor tasks.

D. Four-Level Detection With Anchor Assignment
The FAFCPU uses the pyramidal feature hierarchy to detect

faces of various sizes. It avoids extra computations produced
by the Feature Pyramid Network (FPN) structure [31]. It elim-
inates additional operations such as convolution and upsam-
pling connecting between the heads. A head module applies
two 3 × 3 convolutions to generate the regression and classi-
fication layers with channel sizes of coordinates × anchors
and classes × anchors, respectively. One stage detector
predicts bounding boxes based on dimensional clusters using
anchor boxes. It employs various sizes of anchors according
to the face scale. Instead of using a single predictor, FAFCPU
employs four prediction layers to accommodate multi-scale
faces. This structure overcomes the problem of inconsistency
between the fixed receptive field and the different facial scales.
Additionally, it also assigns different sizes of anchors to each
prediction level. The first level is responsible for large faces by
applying anchors with 384 and 512 sizes. The second, third,
and fourth levels handle medium and small faces by using
anchor sizes of [256, 192], [128, 96, 64, 32], and [16, 8],
respectively. This strategy focuses on assigning anchors to
predict faces based on the scale to increase the effectiveness
of the multi-level prediction layer.

E. Enhancement Module
A light extractor feature weakly discriminates against

unclear features. Therefore, we introduced an enhancement
module to increase the intensity of essential facial information
and reduce trivial features. This module globally captures

long dependencies to enhance the valuable information and
the relationships between facial components. Global average
pooling (GAP) is applied to summarize the set of the input
features (xi ) for each channel and to convert them into the
probability weights, illustrated as:

Emi = xi · σ(W2 ReLU(W1G AP(xi ))). (1)

This module is inspired by the SE block [32] but is
improved by applying a convolutional squeeze to extract vector
information and employing sigmoid (σ ) to generate weighted
representations. Then, it is used to update the set of pixels
from the input features (xi ) as shown in Fig. 2 (c). This
module adaptively works with different size features for each
prediction level. Therefore, it amplifies the useful information
at each prediction layer to improve the detector’s performance
and minimize prediction errors.

F. Dual Loss Functions
A face detector localizes the vital area of the suspected

face by predicting the coordinates and size of the box. This
generates a coordinate vector (x , y, w, and h) and classes (face
and none). Both offsets are produced by a 3 × 3 convolution
in the prediction layers. The channel size is adapted to the
number of anchors. The detector requires a loss function to
quantify the inaccuracy of the prediction results. It encourages
the performance of updating the weights for each filter. The
FAFCPU applies two losses consisting of regression loss to
determine the prediction error of the bounding box location
and classification loss to calculate the prediction error of the
presence of faces. Regression loss employs an L2 function [33]
that is used to obtain the error prediction of boxes. It sums up
all the squared differences between the ground-truth and the
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TABLE II
ABLATIVE STUDY OF LIGHT AND COLOR AUGMENTATION DISTORTIONS

predicted scores, described as:
Lreg(ri , r∗

i ) =
∑

x,y,w,h

(r∗
i − ri )

2, (2)

where r∗
i and ri are the ground-truth box and coordinate

vectors from the predictor location for each i -th anchor,
respectively. This function provides a greater penalty than
L1 loss, so the network is pressured to work harder on this
mission. Moreover, category loss uses Focal loss [34], defined
as:

Lcat (ci , c∗
i ) = −α(c∗

i − ci )log(ci), (3)

where ci is the predicted class, c∗
i is the ground-truth label

of 1 and α is the constant parameter of 0.75. This loss
function overcomes the class imbalance problem by assigning
more weights to misclassified examples. It is distinct from
the original version, which ignores the variation of the γ
parameter to tune the weight of different samples. Dual loss
combines two objective losses and applies parameter balancing
on both sides. It helps the network to work fairly on both
losses. The dual loss boxes detector is described as:

L D(ri , ci ) = 1

N

∑

i

Lreg(ri , r∗
i ) + 5

N

∑

i

Lcat (ci , c∗
i ), (4)

where N is the denominator in both functions defined as
the number of matched default boxes. It is paired with two
constants to improve network training.

III. TRAINING AND TESTING CONFIGURATION

This section introduces the training dataset, augmentation,
and implementation details to optimize the training process.

A. Training Dataset and Augmentation Data
A learning dataset provides knowledge for detectors to

recognize characteristics and models of facial features. There-
fore, the complexity of data builds a model to be robust
in real-case applications. WIDER FACE is a large dataset
containing multiple faces with a high degree of variabil-
ity in scale, pose, exposure, and occlusion. It consists of
32,203 images, including 12,800 in the training category.
An augmentation technique is applied to this dataset to
enrich the variety of knowledge. This method also prevents
overfitting in the training process. Random cropping, scale
transformation, color distortion, and horizontal flipping are
used to create varying instances [19]. The color and light
distortion use random uniform distributed with the interval of
[−100, 100), [0.5, 1.5), [0, 3), and [−18, 18) for brightness,
contrast, saturation, and hue, respectively. Based on Table II,

the ablation study of augmentation distortions proves that each
process provides improved performance of the detector. The
brightness augmentation has the most significant impact on
detector performance. The last process resizes images to a
high resolution of 1024 × 1024 as the input size of the training
mode.

B. Implementation Details
The training process utilizes a mini-batch to divide the

dataset into small partitions of 32. The model is trained in
end-to-end mode. Random weights are initialized at all filters
in the beginning process. Then the backpropagation process
works to update these weights. It applies Stochastic Gradient
Descent (SGD) [35] to optimize neuron weights. Several
parameters are set, including the weight decay of 5 · 10−4,
the momentum of 0.9, and the gradual learning rates. The
first 300 epochs are applied at a 10−3 learning rate, the next
100 at a 10−4 learning rate, then 50 at a 10−5 learning rate,
and the last 20 at a 10−6 learning rate. The evaluation stage
requires an anchor matching process by selecting 0.5 IoU
(Intersection over Union) [36]. To implement the algorithm
into a FAFCPU detector, it uses the PyTorch framework.
A GTX1080Ti accelerator is used to speed up the training
process. A computer with an Intel Core I5-6600 CPU @
3.30 GHz and 8 GB RAM is used as the main device for
testing. The real-case experiment is conducted in a university
environment with different lighting conditions to examine
the detector performance in real scenarios. Furthermore, the
proposed detector was tested with multi-cameras such as color
and infrared cameras, alternately used according to day and
nighttime.

IV. EXPERIMENTS AND RESULTS

This section discusses an ablative study to examine the
effectiveness of each proposed module, the evaluation on
benchmarks, the runtime efficiency to compare the speed with
other CPU competitors, and the implementation of the pro-
posed detector in a real-time application on low-cost devices.

A. Model Analysis
The proposed modules are examined one by one in the

ablative study section. It uses the same training configuration,
except for specified changes to the proposed module. Then,
it evaluates the true positive rate of each module at 1,000 false
positives on the FDDB dataset. Table III shows the experi-
ments are comprehensively tested by gradually replacing the
module and analyzing for accuracy, number of parameters,
and speed to observe the strength of each module. Firstly,
it removes all balancing parameters from regression and clas-
sification loss. It has no impact on parameters and speed.
However, it only reduces performance by 0.006. Secondly,
it ignores the enhancement modules that are applied to each
head of a detection layer. It reduces AP and parameters by
0.004 and 19K, respectively. Besides, it increases the speed
by 1 FPS. Thirdly, each ghost module is replaced with a
1 × 1 convolution, adding 47K parameters but only increases
AP by 0.002. Fourthly, it does not use four detection layers.
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TABLE III
ABLATIVE RESULTS OF THE PROPOSED MODULES. THE EVALUATION CONSISTS OF TRUE POSITIVE RATE (TPR) ON THE FDDB DATASET,

THE NUMBER OF PARAMETERS, AND THE SPEED OF MODEL ON A CPU

Fig. 3. Evaluation on the WIDER FACE validation and testing sets.

It employs a prediction layer by applying all anchors in a layer.
Even though this experiment increased the speed by 2.48,
it significantly decreased AP and parameters by 0.047 and
35K, respectively. Finally, the efficient stem block significantly
increases the performance by 2.4%, adding to the parameters
by 443K. On the other hand, it only reduces the detector speed
by 8 FPS.

B. Benchmark Evaluation
The evaluation of the proposed detector is presented on

the benchmarking datasets FDDB and WIDER FACE. It also
compares the performance with those of other detectors.

1) WIDER FACE Dataset: This dataset is a large face
benchmark that contains many variations in challenges, such
as scales, poses, expressions, occlusions, and lighting. It is
divided into training (40%), validation (10%) and testing
(50%) sets. Each validation and testing set provides easy,
medium, and hard categories. Fig. 3 shows that the FAFCPU
obtains performances of 0.922 (easy), 0.902 (medium), and
0.75 (hard) on the validation sets, while the testing sets are
0.915 (easy), 0.898 (medium), and 0.75 (hard). It outperforms
the FCPU [6], FaceBoxes [17], and DCFPN [19] detectors on

Fig. 4. Evaluation results using discrete ROC (Receiver Operating
Characteristics) curves with 1,000 false positives on the FDDB dataset.

the easy and medium validation and testing sets. However,
FAFCPU is inferior to FaceBoxes and DCFPN for the hard
category. Fig. 5 (a) shows that the FAFCPU detector can
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Fig. 5. Qualitative results on the WIDER FACE dataset (a), FDDB dataset (b), FDDB dataset with distortions (c), real-time color video (d), and
real-time night vision video on Full HD resolution (e).

detect multiple small faces. The proposed detector lacks the
ability to predict tiny faces. The shallow backbone is too
weak to distinguish small facial features, so that fourth level
detection often mistakenly predicts faces with these specific
features.

2) FDDB Dataset: This dataset has 2,845 images contain-
ing 5,171 faces collected from Yahoo websites. The images
consist of various resolution, e.g. 363 × 450 and 229 × 410.
It includes faces of famous people with position, lighting, and

background challenges. Fig. 5 (b) shows that the FAFCPU can
detect the faces of these challenges. This detector achieves
a True Positive Rate (TPR) performance of 0.978, as repre-
sented in Fig. 4. These results show that it is superior to the
state-of-the-art CPU detectors. The evaluation stage requires
a conversion process to obtain a rectangle box. It applies
discrete criteria by comparing the intersection between the
prediction and ground truth. This means the actual score will
be one when the IoU is higher than 0.5 and 0 otherwise. The
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TABLE IV
EVALUATION OF DETECTOR IN DIFFERENT LIGHT AND COLOR

DISTORTIONS ON FDDB DATASET

proposed detector is also examined at different light and color
distortion, as shown in Table IV. Entire images in the FDDB
dataset are sequentially applied to scenario distortions such
as brightness, contrast, saturation, and hue. As a result, the
FAFCPU detector only degrades by 1% when applied to all
scenarios. The visualization results show proposed detector
successfully detects the face in dark and light conditions,
as shown in Fig. 5 (c). In contrast, the latest competitor is
more affected by the distortions process. In addition, these
experiments show that both detectors have a similar average
time in the inference phase. The various distortion images have
no impact on the processing time of a CNN-based detector.
The speed of the spatially based convolution operation is only
affected by the dimension of feature map input and kernel
size. Based on the evaluation result, the proposed detector
has a robust feature extractor that efficiently discriminates the
facial features. The combination module effectively predicts
multi-scaled faces so that the architecture can be adopted by
CNN-based face classifiers such as facial recognition, emotion,
gender, age, and others.

C. Runtime Efficiency on Different Video Resolutions
A CNN-based detector generally produces high computation

because it employs many operations to generate the essential
features. It requires an expensive device to run in real-time,
so it can be accelerated using a GPU. However, practical appli-
cations demand a vision method to operate on CPUs with low
computational complexity and lightweight parameters. The
FAFCPU generates 735,556 parameters with 300 MFLOPS.
These results indicate that the proposed detector is slighter
than the standard CNN-based architecture. In the testing stage,
the experiments are conducted on a computer with an Intel
Core I5-6600 CPU @ 3.30 GHz and 8 GB RAM. It also
compares its speed with the competitors on different video
resolutions, such as VGA (Video Graphics Array), HD (High
Definition), and Full HD (Full High Definition). The final
bounding boxes are produced by applying a Non-Maximum
Suppression (NMS) of 0.3 to select positive anchor boxes and
a confidence threshold of 0.05.

As a result, the FAFCPU outperforms the speed of the FCPU
as the latest competitor. Fig. 6 shows a significant difference
in VGA-resolution of 33 FPS. In addition, the proposed
detector also runs faster than the FlashNet detector [18], which
differs by 0.005 AP on the FDDB dataset. Even the FAFCPU
achieved 27.23 FPS for Full HD resolution video, which stands
out from other detectors that fail to achieve real-time speeds.

Fig. 6. Comparison of detector data processing speeds at different video
input sizes.

TABLE V
THE FAFCPU SPEED USES MULTIPLE CAMERAS

IN DIFFERENT RESOLUTION VIDEOS

Fig. 5 (d) shows the visualization results of the proposed
detector working for Full HD resolution video that can detect
multi-profile faces. In addition, FAFCPU is also robust in
recognizing facial features on low-illuminance conditions with
infrared-based cameras, as shown in Fig. 5 (e). Although some
faces are covered with masks, this challenge does not obstruct
the detector from finding the face location. Video surveillance
generally uses multiple cameras to monitor objects and people.
Table V shows that the proposed detector is tested for data
processing speed in a single system that uses a different
number of cameras. Since a system handles more than one
camera, the detector speed is also divided according to the
number of cameras used. However, it can run in real-time on
VGA and HD resolutions. In contrast, it runs quite slowly
when using more than two cameras at FULL HD resolution.
The proposed detector comprehensively learns specific facial
features from complex data sets. It robustly discriminates
against the human face for video surveillance even at various
exposure distortions. In addition, the learning-based model
emphasizes efficiency to be able to operate in real-time on
high-resolution input.

D. Real-Time Application on Low-Cost Devices
Practical applications encourage a vision-based detector

to work in real-time. In addition, its implementation on a
low-cost device is more valuable because these devices are
more widely used for current technologies. PC, Lattepanda,
and Notebook use CISC processors (Complex Instruction Set
Computer), while Raspberry Pi represents RISC processors
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Fig. 7. Comparison of detector speeds on low-cost devices.

(Reduced Instruction Set Computer). CPU detector’s speeds
were examined for efficiency with several inexpensive devices
on VGA-resolution. We take input from a webcam to analyze
the real-time speed of each detector at 1,000 frames. Fig. 7
shows that the FAFCPU is superior when operated in real-
time applications. Each device produces a different speed
depending on the processor size. The proposed detector runs
slowly on raspberry pi, but it works smoothly on Note-
book and Lattepanda devices. In contrast, other detectors
work slowly on all three devices. Therefore, the FAFCPU
is more efficient than CPU-based face detectors on low-
cost devices. The proposed architecture avoids redundant
operations, thus producing a low amount of computations.
In addition, the proposed modules maintain the performance
of the detector to recognize multiple-scale faces with high
accuracy.

V. CONCLUSION

This paper presents a dual camera-based fast face detector
that works in real-time on a CPU using the CNN method.
A high-performance detector contains several light modules
that generate fewer parameters than the general CNN method.
It consists of two main modules, an efficient backbone, and
a four-level detection module. Efficient transition and stem
modules are applied to distinguish distinctive features rapidly.
It also produces less computation cost, which allows the detec-
tor to work quickly. In addition, several training parameters
and dual loss functions improve the training performance of
the model. As a result, the FAFCPU achieves state-of-the-
art performance on the face detection benchmarks compared
with CPU-based detectors. This detector is fastest than other
competitors and achieves real-time speeds at a Full HD reso-
lution of 27 FPS on a CPU. The proposed detector can detect
multiple faces in different light distortions when implemented
in real scenarios. In future work, a super-resolution method
can be explored to increase the accuracy of tiny face detection.
Additionally, advanced applications in metropolitan areas will
be developed to enhance the capabilities and capacities of face
detectors.
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