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Abstract. Pedestrian detection and tracking in video surveillance systems is a 
complex task in computer vision research, which has widely used in many appli-
cations such as abnormal action detection, human pose, crowded scenes, fall de-
tection in elderly humans, social distancing detection in the Covid-19 pandemic. 
This task is categorized into two sub-tasks: detection, and re-identification task. 
Previous methods independently treat two sub-tasks, only focusing on the re-
identification task without employing re-detection. Since the performance of pe-
destrian detection directly affects the results of tracking, leveraging the detection 
task is crucial for improving the re-identification task. The total inference time is 
computed in both the detection and re-identification process, quite far from real-
time speed. This paper joins both sub-tasks in a single end-to-end network based 
on Convolutional Neural Networks (CNNs). Moreover, the detection includes the 
classification and regression task. As both tasks have a positive correlation, sep-
arately learning classification and regression hurts the overall performance. 
Hence, this work introduces the Regression-Aware Classification Feature 
(RACF) module to improve feature representation. The convolutional layer is the 
core component of CNNs, which extracts local features without modeling global 
features. Therefore, the Cross-Global Context (CGC) is proposed to form long-
range dependencies for learning appearance embedding of re-identification fea-
tures. The proposed model is conducted on the challenging benchmark datasets, 
MOT17, which surpasses the state-of-the-art online trackers. 

Keywords: Pedestrian Detection, Tracking and Re-identification, Video Sur-
veillance System, Convolution Neural Networks (CNNs). 

1 Introduction 

Nowadays, surveillance systems have been universally employed in many applica-
tions such as intelligent transportation systems, prevention of crime, military supervi-
sion systems, prisons, hospitals, industrial applications. The objective of the most sur-
veillance system is to detect and track abnormal pedestrian activities in a video scene. 
The pedestrians are always walking or running on the street under a supervision camera. 
For example, the first pedestrian detection and tracking benchmark [2] is proposed, 
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capturing real human activity on the street by CCTV. Pedestrian detection and tracking 
in video surveillance systems is a challenging task because of real dynamic environ-
ments such as illumination variation, crowded density scene, complicated distractor, 
shadows, occlusion, object deformation.  

Recently, the accelerated development of deep learning, especially for Convolu-
tional Neural Networks (CNNs), has brought a bright future in solving computer vision 
tasks such as pedestrian detection and tracking. 

Pedestrian detection and tracking are one of the core applications of multiple object 
tracking for understanding visual objects in video. It includes two sub-tasks: detection 
and data association (re-identification). The pedestrian detection is to determine what 
objects are presented and where objects are located in each frame. Data association 
groups the same objects in different frames to output trajectories, assigning and tracking 
unique identification (ID) to each object across all frames. Previous methods, Sort [3], 
Deep-Sort [4], Poi [5] treat two sub-tasks independently. Specifically, re-ID is a sec-
ondary task in which the performance of it heavily depends on the main detection. Ac-
cordingly, leveraging the detection task is important for enhancing re-ID performance. 
The model complexity is calculated in both the detection and re-ID task, affecting the 
total inference time. Therefore, this work joins detection and re-ID task in the single 
end-to-end network based on the single object tracking paradigm, reducing the model 
complexity. 

The generic detection consists of the classification and regression task. However, 
RetinaNet [15], BNL [14] only used classification performance for ranking detection 
during inference without considering regression score. There is inconsistency in object 
detection. PISA [16] showed that both of tasks have positive correlation. Mean that the 
detection has high classification quality corresponding to high regression quality, oth-
erwise. Accordingly, this paper introduces a novel module, named Regression-Aware 
Classification Feature (FACF), to guide regression distribution to classification feature 
with ignored computational cost. During backward, the gradient is propagated from the 
classification branch to the regression branch.  

The single object tracking follows the Siamese method learning the similarity using 
correlation filter of the search feature and template feature to emphasize the interest of 
objects. In this paper, similarity learning is employed with global feature modeling to 
get informative features from the input. The convolution operation is the main compo-
nent of CNNs, only extracting local features. As a result, the receptive field is limited 
inside local neighborhoods. To overcome this problem, many convolution layers can 
be deeply stacked up to 50 layers or 100 layers. This strategy is not efficient, leading to 
high computational cost and difficulty to perform back-propagation. Inspired by BNL 
[14] and GCNet [19], Cross-Global Context (CGC) with an additional computational 
cost is proposed to model long-range dependencies, i.e., global feature, and additionally 
learn similarity between features of the current frame and previous frame. Moreover, 
CGC improves appearance embedding for learning re-ID features. In another aspect, 
GCNet includes context modeling utilizing the global context pooling and transfor-
mation step using two convolutional layers with channel reduction to learn channel de-
pendencies. Although the channel reduction strategy avoids the high computational 
cost, it is ineffective because channel reduction can lose important information of input. 
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Therefore, Cross-Global Context avoids channel reduction by using lightweight 1D 
convolution to excite the importance of each channel without affecting the overall per-
formance. 

The proposed method is evaluated on two challenging benchmarks, that are MOT17, 
and MOT17Det. Compared to previous methods, the performance achieves high mul-
tiple object tracking accuracy (MOTA), ID switch, and higher order tracking accuracy 
(HOTA) with additional computational cost. 

2 Related Works 

Pedestrian detection and tracking.  Pedestrian detection and tracking are grouped 
into the online method and offline method according to input frame. For the online 
method, the input employs the current frame and past frame, while the offline method 
relies on the whole frame. Most of the online methods [3], [4], [5], and offline methods 
utilize available object detection and only consolidate data association performance. 
The data association includes the Kalman filter predicting future motions and the Hun-
garian algorithm for tracking. Several methods such as JDE [9], Tracktor [6], and 
CTracker [10] introduced single end-to-end networks leveraging re-detection to im-
prove appearance features for the re-ID step. Accordingly, this paper inherits “re-de-
tection” method to combine detection and re-ID into one network, inspired by 
CTracker. 
Correlation between classification and regression. GA-RPN [17] presented the fea-
ture adaptation module between classification and regression branch using deformable 
convolution to add offset prediction into the rectangular grid sampling locations in reg-
ular convolution, thus enhancing feature representation. PISA [16] proposed the posi-
tive correlation module between classification and regression, improving the overall 
performance. The classification score is inserted to regression loss to re-weight prime 
samples, i.e., give more contribution to easy samples. However, the classification score 
and regressed offsets are computed independently during testing. Mean that there is 
inconsistent computation during training and testing. Alternatively, this work intro-
duces a simple but effective module performing the correlation between classification 
and regression during training and testing without relating to the loss function. 
Global feature. GCNet [19] introduced global context module modeling long-range 
dependencies. This module includes the global context pooling and transformation step. 
The global context pooling squeezes the input tensor to vector to calculate the relation-
ship between a query position and all positions and aggregate features of all positions 
by taking an averaging. The transformation step using two convolutional layers excites 
channel dependencies, i.e., whether certain channels are important or not. BNL [14] 
proposed the bidirectional non-local network by the dissecting global context module 
to gather and distribute features between query position and key position, which applied 
to object detection task. 
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3 The Proposed Method 

This section analyzes the proposed end-to-end architecture, Cross-Global Context 
(CGC) module, and Regression-Aware Classification Feature (RACF) module. 
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Fig. 1. The overall architecture of the proposed method. The two adjacent frames, frame t – 1, 
and frame t, are the input of the single end-to-end network. The backbone ResNet-50 extracts 
feature from two input frames. Then, the feature pyramid is constructed from stage 3, stage 4, 
and stage 5 of the backbone structure. CGC is the cross-global context module to model long-
range dependencies and perform similarity learning between the feature at frame t – 1 and feature 
at frame t. Each head predicts classification score, regressed offset of paired bounding boxes of 
the same target, and Re-id score according to IoU score between paired bounding boxes with the 
same ID. 4× denotes four convolutional layers, each convolutional layer includes 3×3 convolu-
tion following by group normalization and ReLU activation function. A indicates the number of 
anchor boxes per location. 

The overall architecture is shown in Fig. 1. The input continuous video of this task 
is captured by CCTV, separated into discrete frames at a certain frame rate. Following 
the online method, the input only takes the current frame and last frame. Inspired by 
CTracker, two adjacent frames are used as input. The shared backbone extracting fea-
ture is ResNet-50 pre-trained on ImageNet. Similar to EFPN [13], and FPN, a feature 
pyramid is constructed to detect the objects with different scales, i.e., solve scale im-
balance problem. For example, the large objects, medium objects, and small objects are 
assigned to a small feature, medium feature, and large feature, respectively. The CGC 
module will be discussed in subsection 3.1. Note that three feature maps corresponding 
to three heads are selected as a pyramid. Each head includes the classification, regres-
sion, and identification branch. The classification branch outputs objectness scores of 
each anchor box (pre-defined box) because the network only contains the pedestrian 
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class. The regression branch predicts eight offset values corresponding to paired bound-
ing boxes of the same target (the first four values for a target in the previous frame and 
last four values for a target in the current frame). The RACF module will be described 
in subsection 3.2. The identification branch predicts re-ID score learning IoU (Intersec-
tion of Union) between paired bounding boxes with the same ID. It means that the data 
association tracks IoU matching between paired bounding boxes of two adjacent frames 
without applying the Hungarian algorithm for tracking. Therefore, the proposed net-
work is a one-shot tracker, which reduces inference time. 
3.1 Cross-Global Context 

The cross-global context models long-range dependencies avoiding channel reduction 
and performs correlation learning between two adjacent frames, shown in Fig. 2. 
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Fig. 2. The Cross-Global Context (CGC) takes two adjacent features as input. For each input, the 
CGC consists of the global context pooling and transformation step. The global context pooling 
learns the correlation between a query position and all key positions, which models long-range 
dependencies. The transformation step using light-weight convolution computes channel depend-
encies. 

The input takes two adjacent features at frame t – 1, and frame t. For feature Ft-1 with 
dimension C×H×W, CGC includes the global context pooling and transformation step. 
The global context pooling according to GCNet [19] gathers features from a query po-
sition and all key position by computing average, as follows: 

 ωij
t−1 = ∑

exp�𝐖𝐖k𝐅𝐅j
t−1�

∑ exp�𝐖𝐖k𝐅𝐅mt−1�m
𝐅𝐅jt−1H∗W

j=1  , (1) 
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where H, W, C is the height, width, and number of channels of the input feature map. 
ω ij

t-1 is a correlation function between the query position F i
t-1

 and key position F j
t-1, in 

which the input tensor is squeezed to vector C×1×1. Wk is a 1×1 convolution operation 
to gather feature of all positions. The exp is the exponential function. In CNNs, this 
function is softmax operation to output the attention map of each position, i.e., which 
positions contain the informative feature. Then, the matrix operation is performed be-
tween attention map and the reshaped input F j

t-1 to create a channel vector. 
 The transformation step learns channel dependencies by using excitation operation. 
In GCNet [19], the two 1×1 convolution layers with the channel reduction excite chan-
nel relationship, leading to losing information. To avoid channel reduction, CGC only 
utilizes lightweight 1D convolution with a kernel size of 5, learning cross-feature inter-
action. This computation is defined as: 

 et−1 = δ�𝐖𝐖zωij
t−1�, (2) 

where et-1 is a re-scale function. δ is the sigmoid function to output the probability of 
each channel. Wz is a 1D convolution with a kernel size of 5 and padding of 2. 
 Similarly, the global context pooling function ω ij

t and transformation function et of 
current feature at frame t are computed as Equation 1, and Equation 2, respectively. 
The rescaled features of two transformed features are crossed to learn similarity be-
tween the current and previous features, defined as: 

 𝐑𝐑t−1 = et−1 ⨀𝐅𝐅t, (3) 

 𝐑𝐑t = et ⨀𝐅𝐅t−1, (4) 

where Rt-1 and Rt are crossed features at frame t and t – 1 by using broadcast element-
wise multiplication. et-1 and et are re-scale functions computed as Equation 2. Ft and Ft-

1 are input features at frame t and frame t-1.  
 Finally, two crossed features are concatenated as input of head part: 

 𝐂𝐂𝐅𝐅 = [𝐑𝐑t,𝐑𝐑t−1], (5) 

where CF is the concatenated feature with dimension 2C×H×W. 
3.2 Regression-Aware Classification Feature 

The head consists of classification, regression, and identification branch, shown in Fig. 
1. The detection quality depends on classification quality and regression quality. Inde-
pendently learning the classification and regression branch is a straightforward way to 
improve detection quality. This paper introduces Regression-Aware Classification Fea-
ture (RACF) to positively correlate two branches, shown in Fig. 3. RACF module is 
computed consistently during training and testing. The easy samples and hard samples 
are measured by regression quality (IoU score). Specifically, the easy samples normally 
have a high IoU score corresponding to high regression quality. It means that the re-
gression branch gives more contribution (more signals) to easy samples through the 
FACF module. Alternative speaking, the network focuses on easy samples. Otherwise, 
the hard samples have low regression quality. The regression branch gives less 
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contribution to hard samples. During Non-maximum Suppression (NMS), the low-
quality samples are filtered out.     
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Fig. 3. The Regression-Aware Classification Feature (RACF) takes regressed offsets of paired 
bounding boxes as input. H, W, N is the height, width, and number of hidden channels, respec-
tively.  

To measure regression quality, the topk function is applied to select two maximum 
values from the regression distribution of each sample. Regularly, the regression distri-
bution is Gaussian distribution. The three convolutional layers learn the correlation be-
tween regression and classification quality to improve classification feature which is 
aware of regression feature. Each convolutional layer includes a 1×1 convolution oper-
ation following by a ReLU activation function. Since regression quality and classifica-
tion score are different ranges, the sigmoid function normalizes the regression quality 
between 0 and 1. Finally, the matrix multiplication is performed between learned re-
gression quality and classification to enhance the classification feature.  

During optimization, the gradient from the classification branch is propagated to the 
regression branch. The samples with higher classification loss will bring a larger gra-
dient for regression quality, which means higher suppression on the regression quality. 

4 Experiment Setup 

The proposed method conducts the experiments on the challenging benchmark MOT17 
[1]. This dataset includes 7 training videos and 7 testing videos. Pedestrian tracking is 
a complex task depending on classification, localization, and re-ID task. To measure 
whole aspects of performance, all results are evaluated by three primary metrics for 
tracking, detection, and ID assignment such as multiple object tracking accuracy 
(MOTA), and ID switch (IDF1) proposed by CLEAR MOT [11]; higher order tracking 
accuracy (HOTA) proposed by [12]. 

For implementation details, all experiments are implemented by the deep learning 
Pytorch framework. The parameters of the ResNet-50 [18] are pre-trained on ImageNet 
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as initialization. The added convolutional layers in FPN, three branches in the head 
part, CGC module, and RACF module are initialized by selecting values from the nor-
mal distribution. The model is trained for 100 epochs with a batch size of 8. The learn-
ing rate is set to 3×1e-5 for all experiments. Adam optimizer is employed to optimize 
objective function defined as: 

 L = Lreg(bit−1, git−1; bit, git) + Lcls(s, s�) + Lid�d, d��, (6) 

where Lreg is regression loss for paired bounding boxes of the same target at frame t-1 
and frame t, which uses smooth-L1 loss. Lcls is the classification loss using Focal loss 
[15] in which s, s� is classification score and target label. Lid is defined by CTracker [10] 
for identification loss, utilizing Focal loss [15] to predict ID according to IoU matching.  

5 Results 

This section analyzes how to select the hyperparameters in the CGC, RACF module 
and the importance of each component in subsection 5.1. The results of the ablation 
study are measured on the sub-set of the training set since the MOT benchmark did not 
provide ground truth annotation for the testing set. The main results tested on the 
MOT17 testing set are shown in subsection 5.2, which are submitted to the evaluation 
protocol system1.  
5.1 Ablation Study 

The number of hidden channels in RAFA. Several implementations are conducted to 
select the hyperparameter N in the RAFA module. We select N ∈ {16, 32, 64, 128, 256} 
to train the single-end-end model. The results are shown in Table 1, measured by the 
evaluation tool2. 

Table 1. The effects of the number of hidden channels on the performance 

N MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ #par 
16 74.3 65.8 85.1 259 60 1954 25927 1015 +0.4k 
32 74.6 66.6 85.2 270 53 2060 25413 1032 +1.3k 
64 75.7 66.3 85.7 270 55 1493 24807 998 +4.7k 
128 76.1 67.3 85.6 278 51 1668 24190 977 +17.5k 
256 74.8 66.2 85.2 266 57 2115 25158 1033 +67.8k 

 
where MOTP is Multiple Object Tracking Precision. MT, ML is Mostly Tracked Tra-
jectories, Mostly Lost Trajectories. FP, FN is the number of False Positives and False 
Positive. IDS is the number of Identity Switches. #par is the additional parameter of the 
RAFA module to the total parameters. 

 
1  https://motchallenge.net/ 
2  https://github.com/dendorferpatrick/MOTChallengeEvalKit 
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 The performance of the whole network is insensitive to the number of hidden chan-
nels N. The small N will output coarse features for the classification branch. Alterna-
tively speaking, the 1×1 convolution with output channels, 16 or 32, does not satisfy to 
learn variables of regression distribution. The model with a large N means that RAFA 
can learn rich information of regression quality. Specifically, the proposed method 
achieves the best results at N=128 with 76.1% of MOTA. Hence, we select N=128 for 
all experiments. In another aspect, the RAFA only takes 17.5k (thousands) parameters 
while the total parameters of the whole network are up to million parameters. Therefore, 
it demonstrates the RAFA module is simple but effective.  
Avoiding channel reduction in CGC. This experiment analyzes the effect of channel 
reduction on the CGC performance, which is shown in Table 2. 

Table 2. The effect of channel reduction on the results 

Method MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ IDS↓ #par 
CGC w/ CR 74.9 65.3 85.1 273 1836 1038 2×C2/r 
CGC w.o/ CR 75.6 65.7 85.1 283 2280 989 k=5 

 
As expected, the CGC module with channel reduction (use two 1×1 convs with a re-
duction ratio of r) decreases the MOTA score by 0.7% when compared CGC module 
without channel reduction (use 1D convolution with the kernel size of 5). Moreover, 
the lightweight operation only takes 5 parameters while using 2 consistent convolutions 
is still high computational cost. Usually, the number of channels C is 256 and r = 8, the 
number of parameters is 16.4k parameters in which larger than our method by 3280 
times.  
The effect of each component. We investigate the importance of individual compo-
nents on the sub-training set. The results are shown in Table 3. 

Table 3. The importance of each component 

Baseline CGC RAFA MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ IDS↓ 
    73.1 63.3 85.3 245 2229 2385 
     75.5 66.0 84.9 277 1747 983 
     74.9 65.3 85.1 273 1836 1038 
      76.1 67.3 85.6 278 1668 977 

 
 The baseline is the simple version of the proposed method, which outputs 73.1% 
MOTA. When CGC is added to the baseline, the results gain the MOTA score of 2.4%. 
Similarly, the RAFA boosts the baseline performance by 1.8%. Remarkably, the full 
version includes the CGC and RAFA module, which increases the baseline results by a 
large margin, 3.0% MOTA score. It is easy to understand that the proposed model can 
learn finer features from global features and regression quality, effectively. 
Error Tracking Decomposition. To measure the error of the proposed method, we 
decompose the tracking performance into three components: detection errors, associa-
tion errors, and localization errors, shown in Fig. 4. 
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Fig. 4. HOTA and decomposed components 

where alpha indicates the performance at different localization score thresholds from 
0.05 to 0.95 with step size 0.05. DetA is the detection accuracy score achieving the 
average score of 0.66, which decomposing to DetRe (Detection Recall) and DetPr (De-
tection Precision). For localization error, we compute LocA (localization accuracy 
score) at various alpha and average LocAα. Accordingly, LocA achieves a score of 
0.87, high localization quality because of that the RAFA learns localization quality to 
guide classification features in which the detection works well at the high alpha thresh-
old. For association errors, the AssA (association accuracy) is employed for assigning 
predicted IDs to ground truth trajectories, which decomposes to AssRe (association re-
call) and AssPr (association precision). 
5.2 Comparison with State-of-the-Art Methods 

This subsection shows the main results of the proposed method tested on MOT17. The 
performance of the whole network is compared with other methods, listed in Table 4. 
The bold font indicates the best results among trackers. 

Table 4.  Comparison with state-of-the-art online methods on MOT17 test set 

Method MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ IDS↓ 
DMAN [8] 48.2 55.7 75.9 19.3 26281 2194 
MOTDT [7] 50.9 52.7 76.6 17.5 24069 2474 
Tracktor [6] 53.5 52.3 78.0 19.5 12201 2072 
Tracktor+CTDet 54.4 56.1 78.1 25.7 44109 2574 
DeepSORT [4] 60.3 61.2 79.1 31.5 36111 2442 
CTracker [10] 66.6 57.4 78.2 32.2 22284 5529 
Ours 67.3 54.7 78.6 32.9 18771 5910 

 
 The proposed method achieves 67.3% MOTA, outperforming all trackers by a large 
margin. Specifically, our tracker surpasses the DMAN [8] at 48.2% MOTA, MOTDT 
[7] at 50.9% MOTA, Tracktor [6] at 53.5% MODA, Tracktor with CTDet [6] at 54.4% 
MOTA, DeepSORT [4] at 60.3% MOTA, and strong tracker CTracker [10] at 66.6% 
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MOTA. The visualization of the tracking performance in each sequence is shown in 
Fig. 5.  

frame 1 frame 100 frame 400

Fig. 5. The qualitative results on some sequences of MOT17 benchmark.  

6 Conclusion 

This paper introduced the online single end-to-end network joining detection and data 
association in the one-shot tracker for pedestrian detection and tracking in video sur-
veillance systems, which reducing computation cost. Moreover, the RACF module with 
simple but effective learned regression distribution to guide classification feature, lev-
eraging the positive correlation between classification and regression task. The CGC 
module with lightweight operation is proposed by investigating channel reduction in 
transform step to model long-range dependencies and similarity learning between two 
adjacent frames (current frame and previous frame). The performance is evaluated on 
the challenging benchmark MOT17, which outperformed all online trackers by a large 
margin.  
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